
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 36, January 2019

6

Performance of Aspect-Oriented Software Quality

Modelling using Artificial Neural Network Technique

Pankaj Kumar
CSE Department
MU, Chittorgarh

Sarvottam Dixit
Faculty of E & T
MU, Chittorgarh

S. K. Singh
CSE Department

GCET, Greater Noida

ABSTRACT

An exact estimation is the key focus of any prediction model.

Software quality is one of the basic research issue for software

organizations. Of late, different uses of soft computing

techniques has been endeavored. This has been conceivable

because of the accessibility of informational collections of

expansive a large number of finished projects. Among various

soft computing techniques, Artificial Neural Network (ANN)

based models are outstanding, which to a great degree needs

more research work and tries to find the most sensible model

for software quality in term of accuracy, evolvability,

extensibility, sustainability, design stability, and

configurability associated with the suitability of model.

This paper attempts to explore the performance of aspect-

oriented quality modelling using artificial neural network

technique. Software quality relies upon a few performance

elements. Further, these elements are related to each other and

influence the software development process and quality

directly or indirectly.

Keywords

AOP, Aspect, AOSQ, Quality Model, ANN

1. INTRODUCTION
Software has turned out to be larger and more complex, as

demand for functionality has increased along with computer

power. The ideal philosophy of any software is to deliver a

quality product that meets the client’s needs on-time and on-

budget. However, delivering quality software is troublesome

and just ends up harder as the application and the group taking

a shot at it start to develop [2, 3].

Software quality has obtained its significance in different

application regions, for example, e-government applications,

mobile applications, web applications, software engineering,

and business process advancement. Using software quality

measurement, software suppliers upgrade their administration

strategies and decision support activities. Quality identifies

with human-software interactions when a software product is

utilized as a part of a specific goal. As of now, different

quality models are bound to incapable estimation plan and

numerous quality models are subjectively muddled [4, 5].

Software organizations tackle this problem by leveraging

artificial intelligence (AI), machine learning (ML), and soft

computing (SC) to identify issues before production and focus

testing efforts on the highest risk areas of the quality.

Two of the biggest issues that software leaders face is cost of

change and software quality. Cost of change is the cost

associated with fixing an issue over time. The second major

issue facing software leaders is quality. Time, budget, and/or

people are most always a limiting factor and unfortunately

quality assurance is one of the areas that suffers the most

when a release is approaching. What is needed is a way to

better understand the areas of the most quality issues and

predict the areas with the highest quality risk. With this

knowledge, teams and managers can direct their limited

resources optimally.

An explanation for these problems in software is lack of

quality. If software quality is to be improved a means to

evaluate quality is required. Unfortunately, there is no direct

way to measure this, and although currently available

software tools attempt to assist in this regard, the assistance is

rather limited. This has motivated efforts to develop

predictive models of aspect-oriented software quality [6, 7].

Artificial intelligence (AI), machine learning (ML), and soft

computing (SC) techniques are applied to develop model that

can describe these quality classes. Artificial Neural Network

(ANN) is selected for evaluation which is a part of soft

computing techniques.

The reminder of this paper is composed as section 2 portrays

the background study. Section 3 talks about aspect-oriented

software quality. Section 4 discusses about the artificial neural

network. Section 5 contains the proposed modelling. Finally,

Section 6 closes with the distinctive perceptions.

2. BACKGROUND STUDY
The overall background studies related to software quality

with artificial neural networks are represented in tabular form

which is shown in table 2.

3. ASPECT-ORIENTED SOFTWARE

QUALITY
Over the last 50 or so years, languages have continued to

evolve in order to support their ever increasing usage.

Program design and maintenance became issues with the

dawn of software engineering.

Today, the leading programming paradigm used is Object

Oriented programming (OOP). [7, 8] The aim behind the

development of OOP was to organize the data of an

application and its associated methods into coherent entities.

It encourages software reuse. When the complex program

contains:

 Crosscutting concern

 Code Scattering

OOP is impossible to show the clear and fine programming

Structure.

Enter aspect-oriented programming (AOP). AOP could be the

next step in the steady evolution of the OO paradigm, or

perhaps it will evolve into a completely new paradigm

independent of OO. Whatever the case, AOP offers a solution

to a design and maintenance problem that has plagued

software developers for years. That is, how can we create

modules with little or no crosscutting concerns? AOP

introduces the notion of Aspects, and shows how we can take

crosscutting concerns out of modules and place them in a

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 36, January 2019

7

centralized place. While this paradigm is still relatively new,

it seems promising and perhaps given time will replace OO.

Xerox PARC (Palo Alto Research Center) has worked on

developing programming techniques that makes it possible to

express those programs that OOP fail to support. This

programming technique is called Aspect-Oriented

Programming (AOP). The term Aspect-Oriented

Programming includes Multidimensional Separation of

Concerns, Subject-Oriented Programming, Adaptive

Programming and Composition Filters.

Aspect-Oriented Programming (AOP) is a new programming

paradigm developed at PARC. Aspect-Oriented Programming

aims to achieve separation of concerns by improving code

modularization using Aspects. Most of the time, aspects

represent non-functional requirements. In AOP, components

and aspects are separate codes and the weaving process is

done by a static (compile time) or dynamic (run time)

compiler that is called an aspect weaver.

Any new addition to the existing code may further worsen the

situation, if the integration is not carried out carefully. Since

the target application will have its behavior changed, it can

cause an impact on software quality parameters like

reliability, functionality, performance and efficiency. The

application of AOP paradigm can simplify the up gradation,

maintenance and evolvability of the software. However, the

incorrect usage of AOP paradigm may not lead to the desired

quality level of the software. Further, existence large number

of process paradigms and existence varied product standards,

the assessment of quality becomes pertinent.

Several quality models derived for the ISO/IEC 9126 Quality

Model. In this paper, we have reviewed number of software

quality models that derived from ISO/IEC 9126 Quality

Model is known as tailored software quality model.

Table 1: Tailored Software Quality Model

Tailored Software Quality Model Year

Bertoa Model 2002

GEQUAMO (Generic, Multilayered and

Customizable Model)

2003

CapGemini Open Source Maturity Model 2003

ALVARO Model 2005

RAWASHDEH Model 2006

Open BRR Model 2006

Andreu Model 2007

ISO 25010 Model 2008

SQO-OSS Model 2008

AOSQUAMO Model 2009

QualOSS Model 2009

Alvaro Model 2010

REASQ 2010

Upadhyay Model 2011

Al-Badareen Model 2012

QUAMOCO Model 2012

AOSQ Model 2012

Midas Model 2013

PAOSQMO Model 2016

Table 1 shows the tailored software quality model. Most of

the tailored software quality models assess with its

applications.

4. ARTIFICIAL NEURAL NETWORKS

(ANN)
Numerous advances have been made in developing intelligent

system, some inspired by biological neural networks.

Researchers from many scientific disciplines are designing

Artificial Neural Networks (ANNs) to solve a variety of

problems in pattern recognition, prediction, optimization,

associative memory, and control system.

Artificial Neural Networks are relatively crude electronic

models based on the neural structure of the brain. The brain

basically learns from experience. It is natural proof that some

problems that are beyond the scope of current computers are

indeed solvable by small energy efficient packages. This brain

modeling also promises a less technical way to develop

machine solutions. This new approach to computing also

provides a more graceful degradation during system overload

than its more traditional counterparts [1].

These biologically inspired methods of computing are thought

to be the next major advancement in the computing industry.

Even simple animal brains are capable of functions that are

currently impossible for computers. Computers do rote things

well, like keeping ledgers or performing complex math. But

computers have trouble recognizing even simple patterns

much less generalizing those patterns of the past into actions

of the future [1].

An artificial neural network is an information processing

system that has certain performance characteristics in

common with biological neural networks. The model of ANN

is shown in figure 1.

y

1

2

n

3

5

4

Input Layer Hidden Layer

Output Signals

x1

x2

xn

w11

w12

w21

w22

wn1

wn2

In
p

u
t

S
ig

n
a

ls

w35

w45

Output Layer

Hidden-Output

Layer Weight

Input-Hidden

layer Weight

Figure 1: ANN Model

Artificial neural networks have been developed as

generalizations of mathematical models of human cognition

or neural biology, based on the assumption that:

a) Information processing occurs at many simple

elements called neurons.

b) Signals are passes between neurons over connection

links.

c) Each connection link has an associated weight,

which, in a typical neural network, multiplies the

signal transmitted.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 36, January 2019

8

d) Each neuron applies an activation function (usually

nonlinear) to its net input (sum of weighted input

signals) to determine its output signal.

Selection of artificial neural networks fall into the following

five categories:

a) Prediction

b) Classification

c) Data Association

d) Data Conceptualization

e) Data Filtering

The computation in artificial neural network is done using

following diagram shown in figure 2.

∑

x1

x2

xn

y

B
ia

s

Summation Activation Function

Y

x0

w1

w2

wn

w0

In
p

u
t
S

ig
n

a
ls

Output Signal

Figure 2: Computational Model of Artificial Neuron

Where, is the bias and is the corresponding weight.

 are n input signals and

 are corresponding weights.To calculate

the final output, we use the following equation

or

Where, y is total inputted signals. To generate final output Y,

we apply the activation function as .

5. PROPOSED MODELING
Different topologies of feedforward ANNs using the

backpropagation learning algorithm were studied to approach

the behavior of AOP project quality for various levels. The

systematic modeling procedure proposed in this paper can be

seen in figure 3.

Assessment of AOP based Quality

Model & Performance Evaluation

Creation of Quality Attributes

Attributes Measurement

Attributes Determination

Development of AOP based

Quality Model

Input Selection

Simulation

Data Division & Subset

Selection

ANN Model Creation –

Training, Testing, & Validation

Data Preparation

Figure 3: Proposed Methodology

The main steps for project modeling for quality ANN include:

Data preparation, Input selection, Data division and selection

of subsets, Model creation, and Performance evaluation.

Another important step for the creation of ANN models for

quality prediction. ANN uses historical data for prediction of

parameters. While making ANN models, a few information

might miss from the original database. Modelers for the most

part supplant the missing information with the normal of the

example or just erase or overlook the entire line, causing the

loss of imperative information.

Following are the steps:

a) Data preparation for ANN models

b) Selection of inputs and outputs for the ANN model

c) Construction of the input database using Monte-

Carlo method

d) Creation of the ANN model, division of models into

subsets of parameters and performance evaluation

Table 1: Background Study

Year Paper Title and Author Name Summary

1997

Application of neural networks to software quality

Modeling of a very large telecommunications

system

by T. M. Khoshgaftaar et.al.

Authors introduce the use of the neural networks

as a tool for predicting software quality.

2004

Estimation of Software Defects Fix Effort Using

Neural Network

by Hui Zeng et.al.

Authors present a solution for estimating

software defect fix effort using self-organizing

neural networks.

2005

Empirical validation of object-oriented metrics on

open source software for fault prediction

by T. Gyimothy et.al.

Authors empirically validated Chidamber and

Kemerer metrics on open source software for

fault prediction. They employed regression

(linear and logistic regression) and machine

learning methods (neural network and decision

tree) for model prediction.

2005
Evaluation of various training algorithms in a neural

network model for software engineering applications
Authors propose to evaluate various training

algorithms in a neural network model and shows

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 36, January 2019

9

by K. K. Aggarwal et.al. which is the best suited for software engineering

applications.

2008

Software Effort Estimation Using Soft Computing

Techniques

by P. S. Sandhu et.al.

The paper shows that soft computing technique–

neuro-fuzzy can be applied for effort estimation

by establishing its accuracy by comparing it

with various other models. The estimation was

done on NASA project data.

2008

Predicting Testing Effort using Artificial Neural

Network

by Yogesh Singh et.al.

The objective of this paper is to examine the

application of ANN for software quality

prediction using Object-Oriented (OO) metrics.

Testing effort has been predicted using ANN

method and independent variables are OO

metrics given by Chidamber and Kemerer. The

public domain NASA data has been used to find

the relationship between OO metrics and testing

effort.

2009

A Novel Neural Network Approach for Software

Cost Estimation Using Functional Link Artificial

Neural Network

by B. T. Rao et.al.

A novel computationally efficient Functional

Link Artificial Neural Network (FLANN) is

proposed by authors to reduce the computational

complexity so that the neural net becomes

suitable for on-line applications.

2009

Application of Neural Networks in Software

Engineering: A Review

by Yogesh Singh et.al.

Authors discuss, how Neural Network (NN) can

be used to build tools for software development

and maintenance tasks.

2010
Test Effort Estimation Using Neural Network

by Chintala Abhishek et.al.

The paper focuses on finding a method which

gives a measure of the effort to be spent on the

testing phase. This paper provides effort

estimates during pre-coding and post-coding

phases using neural network to predict more

accurately also.

2011

Estimating Software Effort Based on Use Case Point

Model Using Sugeno Fuzzy Inference System

by Ali Bou Nassif et.al.

Authors propose a new regression model is

created for software effort estimation based on

use case point model. Furthermore, a Sugeno

Fuzzy Inference System (FIS) approach is

applied on this model to improve the estimation.

2015

Predictive accuracy comparison between neural

networks and statistical regression for development

effort of software projects

by CuauhtémocLópez-Martín

Authors compare the neural network and

statistical regression for development effort of

software projects to get a better prediction of

costs, schedule, and the risks of a software

project, it is necessary to have a more accurate

prediction of its development effort.

2016

Estimating Software Effort Using an ANN Model

Based on Use Case Points

by Ali Bou Nassif et.al.

Authors proposed a novel Artificial Neural

Network (ANN) to predict software effort from

use case diagrams based on the Use Case Point

(UCP) model.

2016

Improving software quality using machine learning

by K. Chandra et.al.

The objective of this paper is to equate and

compare all of learning methods corresponding

to performance parameter with its statistical

method & methodology which would often

results enhanced. Data points are the basis for

prediction of models.

2016

A survey on machine learning techniques used for

software quality prediction

by S. Pattnaik et.al.

Authors conduct an extensive survey on various

machine learning techniques like fuzzy logic,

neural network, and Bayesian model, etc. used

for software quality prediction along with an

analytical justification for each of the proposed

solutions.

2017
A Review of Improving Software Quality using

Machine Learning Algorithms

Authors discuss a review of Improving Software

Quality using Machine Learning Algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 36, January 2019

10

by Jyoti Devi et.al.

2018

Towards an intelligent fault prediction code editor to

improve software quality using deep learning

by Vasu Jindal

Author proposes a new intelligent Integrated

Development Environment (IDE) which

seamlessly allow programmers to test their code

for faults using prior source code databases. The

IDE is built upon deep learning models for

making recommendations. The editor also gives

scores to programmers on their program design.

Author evaluate and validate our approach using

famous NASA code repositories.

2018

Deep neural network based hybrid approach for

software defect prediction using software metrics

by C. Manjula et.al.

Authors introduce a hybrid approach by

combining genetic algorithm (GA) for feature

optimization with deep neural network (DNN)

for classification. An improved version of GA is

incorporated which includes a new technique for

chromosome designing and fitness function

computation. DNN technique is also improvised

using adaptive auto-encoder which provides

better representation of selected software

features. The improved efficiency of the

proposed hybrid approach due to deployment of

optimization technique is demonstrated through

case studies. An experimental study is carried

out for software defect prediction by considering

PROMISE dataset using MATLAB tool.

6. CONCLUSION
Relationships between static software measurements and

quality components are often complex and nonlinear,

constraining the precision of conventional methodologies.

Artificial neural networks are adapt at modeling nonlinear

practical connections that are hard to demonstrate with

different strategies, and along these lines, are appealing for

software quality displaying.

In this paper, we have abridged about the work done by the

different authors and researchers, with the undertaking made

to incorporate however many references as could reasonably

be expected from year 1997 to 2018 and proposed an ANN

model to audit the execution of AOP software quality.

7. REFERENCES
[1] Anil K. Jain, Jianchang Mao, and K. M. Mohiuddin,

“Artificial Neural Networks: A Tutorial,” in IEEE

Computer Society, Volume: 29, Number: 3, Page

No.:31-44, March 1996.

[2] Pankaj Kumar, S. K. Singh, and Sufia Nadeem Chishti

“A Comprehensive Investigation of Quality of AOP-

based Small-Scale Projects using Aspect-Oriented

Software Quality (AOSQ) Model,” in IEEE International

Conference on Advances in Computing, Communication

Control and Networking (ICAC3N'18), Greater Noida,

(Uttar Pradesh), INDIA, Page No.: 63 - 67, October

2018.

[3] P. Kumar, and S. K. Singh, “Architectural Development

of E-Learning Application using Aspect-Oriented

Programming (AOP) Principles” International Journal of

Computer Applications (IJCA), Foundation of computer

science, New York, USA, Volume: 180, Issue: 2, Page

No.: 21-25, December 2017.

[4] P. Kumar, and S. K. Singh, “A Framework for Assessing

the Evolvability Characteristics along with Sub-

characteristics in AOSQ Model Using Fuzzy Logic

Tool,” in IEEE 3rd International Conference on

Computing, Communication and Automation (ICCCA-

2017), Greater Noida, (Uttar Pradesh), INDIA, Page No.:

340 - 345, May 2017.

[5] P. Kumar, and S. K. Singh, “A Comprehensive

Evaluation of Aspect-Oriented Software Quality (AOSQ)

Model using Analytic Hierarchy Process (AHP)

Technique,” in IEEE 2nd International Conference on

[6] Advances in Computing, Communication & Automation

(ICACCA-2016), Bareilly, (Uttar Pradesh), INDIA, Page

No.: 1 - 7, September-October 2016.

[7] P. Kumar and S. K. Singh, “A Systematic Assessment of

Aspect-Oriented Software Development (AOSD) using

JHotDraw Application,” in IEEE 2nd International

Conference on Computing, Communication and

Automation (ICCCA-2016), Greater Noida (Uttar

Pradesh), INDIA, Page No.: 1 - 6, April 2016.

[8] P. Kumar “Aspect-Oriented Software Quality Model:

The AOSQ Model,” in Advanced Computing: An

International Journal (ACIJ), Volume: 3, Number: 2,

Page No.:105-118, March 2012.

IJCATM : www.ijcaonline.org

