
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 37, January 2019

56

Improved Load Balancing Technique for Multimedia

Requests in Cloud Environment

Koushalesh Acharya

M.Tech Scholar
Branch: CTA

TIEIT, Bhopal (M.P)

Amit Saxena

Head of Department
Dept: CSE

TIEIT, Bhopal (M.P)

Milind Agrawal

B.E. Final Year
Branch: CSE

UIT, RGPV, Bhopal (M.P)

ABSTRACT

Cloud computing with its efficient and reliable service is now

considered as a good choice over traditional approach of

serving multimedia requests. The key issue to handle while

serving these requests is to provide the required resources in

shortest possible time without violating SLA (Service Level

Agreement). In this paper, propose an improved and efficient

load balancing technique for multimedia system called

ILBTM to serve the purpose. It considers current server load,

bandwidth availability and present network conditions while

choosing efficient datacenter for request processing. Its main

advantage is consideration of heterogeneous environment and

parameter calculation on the fly which makes it more

analogous to real time scenario.

Keywords

Cloud computing, load balancing, SLA, resource allocation,

response time.

1. INTRODUCTION
Cloud computing is all about delivering Infrastructure,

platform and software as a service which is reliable, scalable

and economical for hosting web based applications. Cloud

computing combination of the various concepts like

distributed, grid and utility computing. To meet the

dynamically changing needs Cloud computing deals with

resource allocation and service provisioning [1]. Basic

concern of cloud computing technology is to enable

datacenters to satisfy user’s expectations and needs, and allow

them to access and deploy applications from any corner of

world with better QoS (Quality of Service) [2]. Because of

this technology now a day’s developers and researchers do not

have to worry about huge investment on the hardware setup

and human resource before deploying any new service.

Rate of multimedia requests has terrifyingly increased in past

few years as people have started using applications with

multimedia content massively. These applications include

video conferencing, live broadcast, CAD in engineering,

MMS and many more. Rise in user demands attract

researchers to this field and motivate them to work for

knocking out challenges in its smooth working. Basically

multimedia system is a transmission that combines media of

communication i.e. text, audio, still images, videos and

graphical contents.

Multimedia requests need strict QoS provisioning and

therefore some of the key issues to be handled by service

providers include:

1.1 Response Time
It is the time interval of sending request by the user and

receiving response from the server. Multimedia requests are

highly sensitive to this parameter, as it contributes a lot in

performance measurement metrics. Less value of response

time indicates better performance. Therefore, we tried to

lower its value for better results in our work. It can be

calculated as summation of latency and processing time.
Latency, first parameter for calculation of response time, is

the delay incurred while transmitting a message or the time

which message spends “on the wire”. It is generally known as

ping time or round trip latency [3] which is an estimated value

that depends on real time experiments, but in our work we

have calculated its value by using distance and bandwidth as

parameters.

Processing time, time required by the server to process the

request is the another parameter to calculate the response time

.Here we have taken two parameters for its calculation one is

length of the request, and other is speed of Processing

Element (PE) on the server.

1.2 Heterogeneity
Distributed systems are called heterogeneous, if they have

different configurations for hardware and software. In current

context, heterogeneity primarily includes datacenter’s

capacity and network bandwidth [4]. Since these parameters

affect response time and processing time respectively and

therefore we have included them in our work to achieve better

results. Here in this paper, our main focus on the issue of

resource allocation for any multimedia request in minimum

possible time. For this we propose improved load balancing

technique for multimedia system called ILBTM.

The rest of the paper is organized as follows. Section 2

defines simulation needs, system architecture and basic

terminology used in the work. Section 3 discusses

classification of load balancing algorithms. Section 4 throws

light on related work on Load Balancing. Next section i.e.

section 5 elaborates the proposed work that introduces our

Load balancing approach - ILBTM. Section 6 presents System

configuration and experimental results. Finally section 7

concludes the paper and gives an outline for future work.

2. SYSTEM ARCHITECTURE
To assess many policies for resource provisioning, workload

modeling and performance modeling, load balancing, there is

need for repeated testing under varying system and user

configuration. To perform these testing in real life practice is

very tough and therefore there is need of simulation.

Simulation simply means that an imitation of the operation of

a real world of system or in other word we can say that it is an

act of imitating behavior of some process by means of

something suitably analogous. In this research work we have

used Cloudsim simulation toolkit [5] for simulating cloud

environment.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 37, January 2019

57

In this work, our system comprises number of distributed

serving nodes and users that can change their geographic

location with time i. e. experiment will be performed on

heterogeneous system. To present working in hierarchical

manner, we choose three level architecture as shown in figure

1[6]. The first level of architecture is Broker level; its main

task is datacenter selection. Whenever a request arrives broker

select the datacenter on the basis of some parameter for

example, least latency from user or minimum load on data

center. The next level that is second level of architecture is the

data center level, its main task to decide which host will

handle the request. And the third and last level is host level

where virtual machines are created. Actual processing is done

by virtual machine.

Fig 1: Three level system architecture

3. CLASSIFICATION OF LOAD

BALANCING ALGORITHM
Cloud computing enables shared servers to provide resources,

software for services on demand with high interoperability,

scalability and reliability [7]. There is some technical

challenges which are needs to be tackled before fully utilizing

these benefits include resource provisioning, efficient

resource consuming and system reliability. Load balancing is

mainly implemented for satisfying SLA (Service Level

Agreement). Load balancing is a technique to manage the

resources of a node for their better utilization and user

satisfaction.

It uses the concept of distributed computing in a way that it

distributed the work load equally across all available

computers for the fast processing and better performance. To

calculate load on a node, following parameter is required;

cost, response time and number of connections. Load

balancing algorithms are classified in two categories: Static

and Dynamic as shown in the figure 2[8].

3.1 Static Load balancing
Here we consider static information of system for the

selection of least loaded node. Its performance is better in

terms of complexity issue, but compromises with the result as

decision is made on statically gathered data. Static load

balancing is further divided into two categories as Distributed

and Centralized.

In distributed static Load balancing (DSLB) approach, the

final decision is made by comprehending decision of all

individuals however there are many decision makers, while in

centralized static load balancing (CSLB) technique, there is a

controller called centralized controller that incorporates

decisions of all decision makers. Distributed policies are also

divided into two more categories which are co-operative and

non co-operative policies.

Decision makers co-operate with each other for decision

making in Co-operative policies as they have common goals.

Their common goals are reduction of response time, cost

incurred for processing requests and increasing throughput.

In non co-operative policies all decision makers have different

goals to meet so they take independent decisions to reach an

optimized and best solution for defined goals. There is only

one decision maker in global static load balancing that

optimizes the expected run time of entire system for all jobs.

3.2 Dynamic Load balancing
Here in this load balancing, current system state is important

parameter while making decisions. Although dynamic load

balancing has higher run rime complexity then static one but

dynamic load balancing technique has better performance

report as it takes into account the current load of system for

choosing next datacenter to serve the request. This will

definitely provide an optimized solution for that state of

system.

Dynamic load balancing is bifurcated as Centralized and

distributed. In centralized policy, there is a central computer

that maintains a global state of system based on collected

information and all the decisions are made based on that

central computer. The only drawback with this approach is the

central computer which acts as bottleneck with increase in

number of computers.

Distributed load balancing approach is further divided as

sender and receiver initiated and symmetrically initiated. In

sender initiated approach, for processing the request is sent

from heavily loaded node to lightly loaded node. Sender is

identified as a node, if it accepts the next request which will

exceeds its threshold level.

In receiver initiated approach, lightly loaded nodes share

some load from heavily loaded nodes using request. In

symmetrically initiated approach, both sender and receiver

starts load balancing process. There is switching between

sender and receiver initiated load balancing on the basis of

load behavior as it oscillates between upper and lower

threshold.

4. RELATED WORK
Sundaram et. al., Sharma et. al., and Teo et. al. have

introduced various load balancing tactics in their work which

include: Round Robin, weighted round-robin, shortest

expected delay, least-connection and weighted least

connection [9] [10] [11]. Round Robin [12] load balancing

algorithm employs time sharing between datacenters. A time

quantum or time slice is defined and is allotted to all

datacenters one by one. Controller keeps the datacenter ID of

currently allotted time slot. Whenever a new request arrives, it

is forwarded to datacenter after referring controller. It is

traditional and earliest known approach and hence not very

effective in balancing load as requests may have different

resource requirements and size so despite of having nearly

equal number of requests, all datacenters may differ widely in

there load.

Weighted Round Robin load balancing technique is one in

which weight is allotted to datacenters which helps in taking

decision for choosing datacenter for current request. For

weight allotment, they have considered various parameters

like capacity of server, distance from user and many more.

This approach follows principle of basic Round Robin

algorithm with weight considerations. It is much better than

pure round-robin and assigned higher weights to servers with

better performance, thus making them more likely to be

chosen results in improved system performance.

Least Connection load balancing algorithm is one in which

datacenter which have to serve the request is chosen on the

Broker

Datacenter 1

Host

 1

Host
m

Datacenter 2

Host
1

Host
n

Datacenter n

Host
1

Host
o

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 37, January 2019

58

basis of number of connections linked to that datacenter.

Datacenter with least number of connections implies that it is

serving least number of requests so that datacenter is chosen

to serve next request. It dynamically counts the connections

which are linked to each server and reports the one with least

count. Least connection load balancing algorithm faces

problem in case two or more datacenters have same number of

connections. For tiebreaking “weighted least connection” load

balancing approach has been used. In this weight is allotted to

each datacenter on the basis of remaining capacity and one

with more weight is chosen to serve the request. It also count

connections of each server but returns appropriate server

based on the result of multiplication of a server weight and its

connection count. In shortest expected delay load balancing

approach, whenever a request arrives expected delay is

calculated for all available datacenters, and the one which

gives minimum expected delay will be chosen to serve the

request. Here delay is a variable quantity that depends on

various parameters like actual distance between datacenter

and user, processing time for serving this request at datacenter

and many more. It keeps record of previous response time

taken by each server and returns the quickest one as the next

appropriate server. All tactics mentioned above gives load to

that datacenter which is least loaded, calculated on the basis

of already issued workload to them but have not shown any

concern about remaining capacity of server. It is totally unfair

as two servers with same workload may widely differ in their

capacity to consume more loads depending on their total

capacity. Only way to avoid this scenario is to assume

homogeneous environment as there all datacenters with same

load have same remaining capacity but this is not a practical

solution. Thus researchers now start focusing on load

balancing algorithms that can work smoothly in

heterogeneous environment.

Some other load balancing algorithm includes server load-

based algorithm [13] and hash-based algorithms [14] [15].

Now a day’s load balancing is not confined to just server but

start taking into account network links and other parameters

for providing better results. Buyya and Pathan have their work

published in the field of network load balancing for content

delivery systems [16]. Dynamic load balancing for content

delivery system chooses nodes on the basis of current system

condition [17] [18]. While static load balancing for these

systems use some heuristics for selecting nodes [19].

Load balancing can be performed at different levels like (i)

broker level-for choosing efficient datacenter, (ii) datacenter

level-for choosing efficient host at particular datacenter to

serve the request and (iii) host level- for choosing efficient

virtual machine to finally process the request. In this paper,

we focus on broker level load balancing technique.

4.1 Broker Level Load Balancing

Algorithms
Some of the broker level load-balancing algorithms are

Service proximity based routing [20], performance optimized

routing [20] and cloud based multimedia load balancing [21].

4.1.1 Service proximity based routing load

balancing algorithm
In this policy a table is maintained that keeps list of all

available datacenters. Whenever there is new request, service

broker proximity server queries datacenter controller of

destination which has the sole responsibility of returning back

datacenter ID where request is to be processed. Initially

datacenter controller finds the region from where request is

generated. Now a list is prepared that keep datacenter IDs

lying in the same region as user in ascending order of their

latency with user. Now request is sent to first datacenter in

this list.

Drawback with this policy is consideration of only one

parameter i.e. latency for choosing datacenter to serve the

request. It is unaware of the actual load on that datacenter, a

deciding parameter for response time calculation. Thus this is

not the best choice for efficient load balancing.

4.1.2 Performance optimized routing load

balancing algorithm
In this policy whenever a user request arrives, it find

datacenters which are in the same region as the user. Now

estimated response time for all those datacenters is calculated,

and request is given to datacenter with minimum estimated

value of response time.

Drawback of this method is that response time is calculated on

the basis of processing time taken by the datacenter for

serving previous request. It is not an effective way of

calculating estimated response time for present request, as it

may differ from previous one in some parameter like length

which is deciding factor in response time calculation.

4.1.3 Cloud Based Multimedia Load Balancing

(CMLB) algorithm
Assumptions –

[1] Dynamically changing network topology- user and

datacenters can change their geographic location.

[2] Homogeneous configuration for datacenters.

Steps-

[1] On arrival of new user request network link latency of user

from each landmark node is calculated.

[2] Order of user from each landmark node is calculated.

[3] Similarly order of all available datacenters from each

landmark nodes is calculated.

[4] Now Compare order of user with all datacenters, if

matched then place all those in a list. Now load is calculated

for all datacenters in this list in accordance with the following

formula-

 (1)

Where lij = Load of ith datacenter at the time of jth request.

K= set of hosts in datacenter

Uik = Host utilization, 1 for power-on host and 0 for power-

off host

Sik = Host capacity

[5] Next step is to calculate cost of each link from user to

datacenters, for which load is calculated by this formula

 (2)

Where Cij= Cost of link between ith datacenter and jth user

dij= network proximity between datacenter and user

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 37, January 2019

59

Now choose datacenter with minimum calculated cost to

handle the request.

5. PROPOSED WORK
In this section, we have draw attention about the drawback of

the Cloud Based Multimedia Load Balancing (CMLB)

algorithm and at the same time suggested the improvement

which is to be carried out in our proposed algorithm improved

load balancing technique for multimedia system called

ILBTM.

5.1 Drawback of CMLB and improvement

carried out in proposed algorithm ILBTM
[1] CMLB considers homogeneous datacenter

configuration provide simplicity in calculation, but

in real world datacenters have heterogeneous

configuration. In our proposed work, we have

considered heterogeneous environment.

[2] If no datacenter comes in the same region as the

user, then said request is rejected and therefore

degrades the throughput in CMLB. In our proposed

algorithm, we have given such requests to some

datacenter. However, it is not in same region but

can fulfill the request in given SLA limit.

[3] In CMLB, Latency is the main parameter for

calculation of network proximity and value is

estimated on the basis of distance between user and

datacenter. In our work, we have taken one more

parameter i.e. bandwidth for calculation of latency.

[4] Load calculation considers only one parameter i.e.

number of processing elements for calculating

server capacity which leads to failure of virtual

machine allotment due to some other parameters

like RAM, Storage capacity etc resulting in more

delay and thus larger response time in case of

CMLB. Whereas, our proposed algorithm first

check availability of RAM at host before allotting

virtual machine and therefore decreasing chance of

failure after allotment.

5.2 Assumptions
[1] Dynamically changing network topology - users and

datacenters can change their geographic location.

[2] Users and datacenters are assumed to be steady

during processing of a request. However, they are

mobile.

[3] Each user request is served by exactly one virtual

machine.

[4] We consider two landmark nodes for distance

calculation in our work.

We propose improved load balancing technique for

multimedia system called ILBTM in cloud environment to

minimize response time. To begin with this algorithm, we

have to find the order of user and datacenter with respect to

landmark nodes. For this ordering, we use a binning scheme

and for that purpose latency of user with each landmark is

found and kept in a bin which is a collection of some values.

For example, if distance between user and landmark nodes is

40 and 7 respectively then we can quantify these values by

giving them an order like 0 for distance between 0 to 30, 1 for

distance between 31 to 60 and 2 for distance above 60. So

order of user with reference to landmark locations will be (1,

0), now datacenters having same order as user will be kept in

same bin.

To present the work we consider set of datacenters that serve

the request denoted as Ndc, set of users that generate request

denoted as Nuser and set of links between Ndc and Nuser

denoted by E. Now we have to calculate

Cost in terms of response time for link between user and

particular datacenter, which finally serves the request. This

calculation considers current load on datacenter (L) and data

transmission delay (T).

Cost of link(C) can be calculated as

Cost of link (C) = T*L (3)

Where T= Data transmission delay

L= Current load on datacenter

Data transmission delay (T) is calculated as

Ttotal= Tlatency + Ttransfer (4)

Tlatency= Dact / BW (5)

Where Dact = Actual distance between user and datacenter

BW= Available bandwidth

Ttransfer = Size of single request/ Available Bandwidth (6)

Load on a datacenter is calculated as

 (7)

 Where Rpe= required processing element

 Tpe= Total processing element
MAXload is a large value which is given to datacenter so that

it cannot be chosen as it is unable to serve the request. Since

our aim is to get minimum response time and therefore we

have tried to get datacenter which has least load on it, so that

it will takes minimum time for processing the request.

Datacenter which is finally chosen is the one that has

minimum cost. Flow chart for proposed work is given in

figure 3 and shows the flow of simulation, whenever new

request arrives in the system.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 37, January 2019

60

Fig 2: Flow chart for proposed methodology

Initially, we try to fetch location of request generator i. e.

user. Then, we find distance between user location and

landmark nodes. After quantifying this distance with binning

scheme, we keep this order in an array called bin-user.

Similarly, we calculate order of all available datacenters and

store them in an array named bin-dc. Now check is applied,

which filters out all datacenters that matches with user order.

Matched datacenter ID’s are kept in a list called

same_bin_dc_list and unmatched will be kept in a list denoted

as other_region_dc list. After this, load is calculated for all

datacenters in same_bin_dc_list and request is allotted to one

with minimum load. In case, same_bin_dc_list is empty, it

means there is no datacenter available in user region to serve

the request. In such situation load is calculated for datacenters

from other_region_dc list and request is allotted to minimum

loaded datacenter among them without violating SLA.

ILBTM is a load balancing algorithm that serves multimedia

requests in minimum possible time. This algorithm helps us in

finding minimum loaded datacenter for allocation of request.

Whenever a new request arrives, first we find region from

where request is generated. Then we check whether datacenter

and user belong to same region or not. If they belong to same

region then request is allotted to minimum loaded datacenter

which has minimum calculated cost. Cost calculation is

carried out with the help of eq. (3). If there is no datacenter in

same region as user, then request is served by datacenter of

other region.

6. PROPOSED ALGORITHM- ILBTM
1. for all available datacenters do

2. Calculate order of datacenters with respect to landmark

nodes.

3. end for

4. for each user request do

5. Find order of user from landmark nodes.

6. for all datacenters currently available do

7. if order-user= order-datacenter then

8. Calculate data transmission delay (T)

9. Calculate current load on system (L)

10. Calculate Cost (C) = T*L

11. else

12. Cost (C) = MAXload

Yes

No

Calculate load for all dc in this list and sort

in ascending order

Same_bin_dc

list not empty

Keep datacenter in same_bin_dc_list

New Request

User location is tracked and bin is created w.r.t landmark

nodes.

Bin is calculated for all available datacenters w.r.t same landmarks nodes

For all dc

binuser=bindc

Keep dc in

other_region_dc

list

Yes

Send request to top most datacenter in this

sorted list.

Send request to

datacenter from

other_region_dc

list

No

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 37, January 2019

61

13. end if

14. end for

15. Choose datacenter which has minimum cost value

16. end for

7. SIMULATION CONFIGURATION

AND RESULTS
For testing this algorithm we have used Cloudsim simulator

toolkit. A hypothetical configuration has been generated on

the basis of results of reference taken for this work.

7.1 Simulation configuration
In this work we have used heterogeneous environment, thus

have variable configuration for datacenters, hosts and virtual

machines. Table 1 shows datacenter configuration. We have

simulated 20 datacenters with variable number of hosts

(ranges from 4 to 6) and processing elements (varies from 24

to 27). Table 2 gives configuration of host in a datacenter.

Each host differs from other on the basis of two parameters

namely (i) RAM capacity and (ii) number of processing

elements. These parameters have direct impact on number of

requests that a host can fulfill successfully. Table 3 gives

configuration of virtual machine. Response time of any

request depends mainly on VM’s MIPS i.e. how many

instructions a VM can process per second. Response time will

be less for VM with large MIPS. In this work we have taken

MIPS value from 2000 to 5000.

Table 1. Configuration of Datacenters

Object

Name

Number

of

replicas

Number of

host in each

Datacenter

Total processing

element in each

datacenter

Datacenter 20 40-50 24-28

Table 2. Configuration of Hosts in each datacenter

Object

name

RAM capacity Number of processing

elements

Host 2000-5000 5-7

Table 3 Configuration of Virtual machines

Object

name

Total

number

user in

simulation

Required

Processing

element

Million

instructions

per second

Virtual

Machine

5-40 1 2000-5000

7.2 Simulation Result and Analysis
Experiment with specific simulation configuration is repeated

5 times to obtain the consistency in results. In our experiment,

we have considered response time and processing time matrix

for performance measurement. To obtain the results, we test

our algorithm initially with 5 user requests from different

geographic location to datacenter location generated once for

each set of request, then for 10 user requests with same

scenario and so on in the multiples of 5 up to 50 user requests.

7.2.1 Comparison of Response Time
Effectiveness of Proposed algorithm (ILBTM) can be

measured in terms of response time with number of user

requests. Figure 4 shows the comparison between ILBTM and

CMLB which proves that our proposed method outperforms

the existing one by notably lowering down response time of

the system. As stated in literature [19] by H.Wen, CMLB

already surpassed the results of other traditional algorithms

like Round Robin and number of connection to give better

response time. Variation of Average response time with

increasing number of user requests for CMLB and ILBTM is

presented in Table 4 below:

Table 4: Average Execution Time

Number of

User

Requests

Average Execution Time (sec)

CMLB ILBTM

5 2.63 0.934

10 2.73 1.123

15 2.96 1.171

20 2.78 1.682

25 3.23 2.069

Fig 3: Response time

7.2.2 Effect of Cloud Environment
Since CMLB is operational in Homogeneous Cloud

environment, it had same configuration for all datacenters,

hosts, VMs and requests. This result in equal processing time

for all arriving requests at server, but it is far from real cloud

scenario, which is heterogeneous in nature. Hence in this

paper proposed algorithm ILBTM, we have considered this

issue by assigning distinct configuration for all entities.

In this paper proposed method also provide better throughput

than CMLB approach because we had tried to avoid request

rejection. It is the issue that was not handled by CMLB. In

CMLB approach, if requesting region do not have any

datacenter in same region then that request is rejected. But in

this paper serve these requests by allocating them on

datacenters of some other regions. In this paper not considered

migration in because migration takes time, which will

eventually increase response time of the request.

0

2

4

5 10 15 20 25

CMLB

ILBTM

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 37, January 2019

62

8. CONCLUSION AND FUTURE WORK
In this paper, proposed a balancing technique for multimedia

system called ILBTM in heterogeneous cloud environment

considering dynamic network topology. Using this algorithm,

user can effectively perform resource allocation and QoS

provisioning for multimedia systems. In this experimental set

up, used three level cloud architecture for better

understanding of cloud working. Experimental results show

that proposed approach outperforms existing algorithms in

multimedia load balancing.

Although proposed algorithm provides good result for

response time, but there is some scope to improve its

efficiency by trying some different method of load

calculation. It may consider more parameters than just number

of CPUs and available RAM for calculation of load. Hence, in

future one can try to add some more parameters for load

calculation to improve the results.

9. REFERENCES
[1] Jie Tao, Holger Marten, David Kramer and Wolfgang

Karl, “An Intuitive Framework for Accessing Computing

Clouds”, ELSEVIER International Conference on

Computational Science (ICCS), pp. 2049–2057, April

2011.

[2] Tarun Goyal, Ajit Singh, Aakansha Agrawal, “Cloudsim:

simulator for cloud computing infrastructure and

modeling”, ELSEVIER International Conference on

modeling, optimization and computing (ICMOC), vol.

38, pp. 3566-3572, 2012.

[3] D. Lea, “Concurrent Programming in JavaTM: Design

Principles and Patterns”, Second Edition, Oct. 1999.

[4] W. Hui; C. Lin; Y. Yang, “Mediacloud: a new paradigm

of multimedia computing”, KSII Transactions on Internet

& Information Systems, vol. 6 issue 4, pp. 1153, April

2012.

[5] Rodrigo N. Calheiros, Rajiv Ranjan, César A. F. De

Rose, and Rajkumar Buyya, “Cloudsim: a toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource provisioning

algorithms”, ACM journal of Software-Practice &

Experience, vol.41 issue 1, pp. 23-50, Jan. 2011.

[6] S. Wang, K. Yan, W. Liao and S. Wang, “Towards a

Load Balancing in a three-level cloud computing

network”, 3rd IEEE International Conference on

Computer Science and Information Technology

(ICCSIT), vol. 1, pp. 108-113, 2010.

[7] R. Lee, B. Jeng, “Load-Balancing Tactics in Cloud”,

IEEE International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery, pp.

447-454, 2011.

[8] T. Casavant and J.G Kuhl, “Taxonomy of scheduling in

general-purpose distributed computing systems”, IEEE

Transaction on Software Engg., vol. 14, issue 2, pp. 141-

154, Feb. 1988.

[9] C. Sundaram, Y. Narahari, “Analysis of dynamic load

balancing strategies using a combination of stochastic

petri nets and queuing networks”, SPRINGERLINK

Application and Theory of Petri Nets: Lecture Notes in

Computer Science, vol. 691, pp. 397-414, 1993.

[10] Saeed Iqbal, Graham F. Carey, “Performance analysis of

dynamic load balancing algorithms with variable number

of processors”, ACM Journal of Parallel and Distributed

Computing, vol. 65, pp. 934-948, Aug 2005.

Jie Tao, Holger Marten, David Kramer and Wolfgang Karl,

“An Intuitive Framework for Accessing Computing Clouds”,

ELSEVIER International Conference on Computational

Science (ICCS), pp. 2049–2057, April 2011.

[11] Jie Tao, Holger Marten, David Kramer and Wolfgang

Karl, “An Intuitive Framework for Accessing Computing

Clouds”, ELSEVIER International Conference on

Computational Science (ICCS), pp. 2049–2057, April

2011.

[12] Tarun Goyal, Ajit Singh, Aakansha Agrawal, “Cloudsim:

simulator for cloud computing infrastructure and

modeling”, ELSEVIER International Conference on

modeling, optimization and computing (ICMOC), vol.

38, pp. 3566-3572, 2012.

[13] D. Lea, “Concurrent Programming in JavaTM: Design

Principles and Patterns”, Second Edition, Oct. 1999.

[14] W. Hui; C. Lin; Y. Yang, “Mediacloud: a new paradigm

of multimedia computing”, KSII Transactions on Internet

& Information Systems, vol. 6 issue 4, pp. 1153, April

2012.

[15] Rodrigo N. Calheiros, Rajiv Ranjan, César A. F. De

Rose, and Rajkumar Buyya, “CloudSim: a toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource provisioning

algorithms”, ACM journal of Software-Practice &

Experience, vol.41 issue 1, pp. 23-50, Jan. 2011.

[16] S. Wang, K. Yan, W. Liao and S. Wang, “Towards a

Load Balancing in a three-level cloud computing

network”, 3rd IEEE International Conference on

Computer Science and Information Technology

(ICCSIT), vol. 1, pp. 108-113, 2010.

[17] R. Lee, B. Jeng, “Load-Balancing Tactics in Cloud”,

IEEE International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery, pp.

447-454, 2011.

[18] T. Casavant and J.G Kuhl, “Taxonomy of scheduling in

general-purpose distributed computing systems”, IEEE

Transaction on Software Engg., vol. 14, issue 2, pp. 141-

154, Feb. 1988.

[19] C. Sundaram, Y. Narahari, “Analysis of dynamic load

balancing strategies using a combination of stochastic

petri nets and queuing networks”, SPRINGERLINK

Application and Theory of Petri Nets: Lecture Notes in

Computer Science, vol. 691, pp. 397-414, 1993.

[20] H. Wen, Y. Yang, “Effective Load Balancing for Cloud-

based Multimedia System”, IEEE International

Conference on Electronic and Mechanical Engineering

and Information Technology, vol. 1,pp. 165-168, 2011.

IJCATM : www.ijcaonline.org

