
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 41, February 2019

36

Android Memory Optimization

Kashif Tasneem
Department of Computer Science

and Engineering
University of Engineering and

Technology Lahore

Ayesha Siddiqui
Department of Computer Science

and Engineering
University of Engineering and

Technology Lahore

Anum Liaquat
Department of Computer Science

Virtual University of Pakistan

ABSTRACT

Android is the most widely used smartphone OS, but it has

always lacked behind iOS due to poor memory management.

Many memory management techniques have been proposed

until now such as Managing GPU Buffers, Detecting and

Fixing Memory Duplications, Dynamic Caching etc. All of

these techniques revolve around Android’s current memory

structure which is Garbage Collector. In this paper, instead of

improving the current structure, a different structure for

memory management which is used in iOS known as

Automatic Reference Counting (ARC) is proposed.

General Terms

Operating System, Memory Optimizations, Cache, Android,

iOS.

Keywords

Main Memory, Operating System, OS, Android, iOS,

Memory, Optimization, Cache, Pages, Paging, Garbage

Collector, GC, ARC, Automatic Reference Counting

1. INTRODUCTION
Now-a-days, smartphones have become a necessity for

everyone. Most of us are too much dependent on smartphones

to complete our daily tasks. In certain aspects, they have

replaced our computers. With time, smartphones are evolving

into much more powerful devices.

Android is the most commonly used Smartphone OS today

because it’s Open Source and manufactures can easily

integrate it into their hardware, making Android devices

cheaper than their competitor iOS. Having the positives, it

also has its negatives. One of the major problems faced by

Android users are unexpected crashes and slowing down of

devices with time. Such issues are mainly caused when your

device runs out of memory. Phone makers keep on increasing

the main memory to compensate but this is not the solution

[12].

Currently, Android OS runs on memory structure known as

Garbage Collector. Garbage Collector is a Java Memory

Management tool as Android is built on Java Virtual Machine

(JVM). Garbage Collector tracks and identifies dead objects

and reclaims the space when they are no more needed. It can

free the memory basically in two ways. First by periodically

checking the dead objects and freeing their memory, second,

immediately freeing the memory when it has some allocation

to do which is greater than the free memory available. Let us

suppose, we have an Android smartphone with a main

memory of 1 GB. Now, there are three objects as a, b and c

and when they are created, memory is allocated to each of

these objects as per their requirement. When these objects are

destroyed after serving their purpose, they are marked as dead

but still memory is not freed completely. In this situation, if

some new object is to be allocated some memory and its

allocation size is greater than free memory available then a

crash will occur. This happens due the reason that Garbage

Collector have not claimed the dead space through its periodic

cycle until now. When it will claim the dead space

immediately after receiving a new object of higher demands,

it will cause a jerk and a poor user experience. Furthermore,

JVM copies objects from one place to another during Garbage

Collection and does not overwrite the old collected data. This

can lead to privacy leaks and personal data to be compromised

[11].

To solve such problems and improve memory management,

various solutions have been proposed by keeping extra

memory free by using GPU Buffers [1], Adaptive Background

App Management [3], applying micro-optimisations [13],

avoiding Memory Duplication [2][4], detecting bad

programming practices and fixing those [14] etc. All of these

techniques provide optimizations in current memory

management system which is Garbage Collector. The main

problem still remains that is how the Garbage Collector frees

up memory of dead objects.

Purpose of the study is to propose a totally different approach

to handle this problem. Use of Automatic Reference Counting

(ARC) in Android devices instead of Garbage Collector can

be a way towards improvement of memory issues.

2. RELATED WORK
All proposed techniques until now, revolve around the same

Garbage Collector. So, first, problems related to Android

memory are discussed due to which Android shows poor

performance. After that, suggested techniques of improving

those problems will be discussed in detail.

2.1 Memory Leaks
Android runs on a Customized Linux Kernel which controls

the hardware such as Memory and CPU and allows

communication b/w hardware and user [1]. Two main

components of Android application are Activities and

Fragments [5]. Non-optimized code for these components

which is most of the times mismanagement of resources [7],

can lead to various memory leaks and hence memory issues.

Details of these components are discussed below:

Activities are basic components of any Android OS. They

basically represent a View Controller. A single view in an

application is an Activity. Whenever, a new view is shown,

it’s a new activity, when that view is dismissed, the activity is

dismissed.

Fragments are pieces of UI. They are reusable components

which can be used in various activities. Their life is dependent

on the life of an activity. When an activity is created,

fragments are created. When an activity is destroyed,

fragments are also destroyed.

Most of the memory leaks are caused in non-optimized code

of Activities and Fragments such as forgetting to recycle

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 41, February 2019

37

bitmap instances, unregister click handler events [5][6],

closing cursor instances after accessing database and

referencing objects from static classes or marking objects as

static [5].

2.2 Controlling Memory Leaks
Various methods have been proposed to reduce and eliminate

memory leaks such as use of LeakDAF [5], creating test cases

to identify and fix memory leaks [6][7][8] by following

certain programming guidelines.

LeakDAF uses UI test techniques to run the app and analyse

memory dump files to identify leaked activities and

fragments.

Test Cases technique to identify and fix memory leaks have

been proposed by researchers in two separate ways which are

as follows:

2.2.1 Prioritize Test Cases
 Use an approach to prioritize test cases and run those cases in

specific order instead of running all the test cases as they can

be expensive and results in putting a lot of load on the CPU.

The priority of the test cases is determined by implementing

machine learning algorithms which predict accuracy of a test

case to determine a memory leak [8].

2.2.2 Test Generation for Detection of Leaks
Proposes a technique which determines a natural sequence of

GUI events such as app launch and close. Repetition of such

events should not increase memory usage if there are no

memory leaks. If there are leaks, memory will keep on

increasing [7][8].

2.3 Managing GPU Buffers
GPU is Graphical Processing Unit just like CPU but is used

for the processing of graphics. With time, apps and games are

evolving and becoming graphics intense, so need of a

dedicated GPU is required. Smartphone devices are equipped

with GPU just like desktop computers but there is a big

difference between their GPUs. Desktop class GPUs have

dedicated memory but due to the small size and portability of

smartphone devices, smartphone GPUs don’t have dedicated

memory but share memory with the main memory. This

sharing decreases the available main memory [1].

Android caches the apps so that they are quickly launched the

next time [1] they are called. When cached, GPU buffers are

also cached because apps contain graphics. When app is

terminated, its cached data still remains inside main memory,

hence increasing memory usage and reducing available

memory.

One of the current solutions is to compress the GPU buffers

memory when app is sent to background and un-compress

when it comes to foreground. Compressed memory will take a

lot less space and will improve the overall performance of the

device [1]. This compression and de-compression will

increase access time which makes this solution less optimized.

2.4 Avoiding Memory Duplication
Memory Duplication is a process in which same memory

pages are placed in the main memory more than once [2]. By

using this duplication technique, when Garbage Collector

frees up space, it takes a lot of CPU cycles which causes lags

and even app crash sometimes. So, page duplication must be

avoided so that Garbage Collector does not destroy the same

content several times. To fix such problems, Android have

introduced several mechanisms such as zRAM and Kernel

Same-Page Merging (KSM). KSM merges duplicated pages

into one. zRAM uses a special allocated area in main memory

known as the swap area, where it compresses the stored pages

which need to be swapped out [2]. Both these mechanisms

reduce memory usage but consume greater number of CPU

cycles and power.

Memscope is a tool which can be used to avoid such

problems. It takes memory snapshots at fixed time intervals. It

identifies duplicate frames which may exist in a particular

time and how will they change over the life cycle of the app.

It analyses the snapshots and figures out the frames which

have chances to duplicate and focuses on those frames to

avoid duplication [2].

Another Method currently used to reduce and eliminate

Memory Duplication is Selective Memory Duplication.

Instead of scanning the entire memory, it scans certain

memory pages for duplications reducing CPU usage and

power. This mechanism scans memory pages of the apps in

background only once until they are brought in the foreground

again because it’s highly unlikely that memory footprints will

change for applications in background [4].

2.5 Adaptive Background App

Management
Tang Android OS keeps recently used applications in memory

cache to reload them faster which decreases launch times and

power consumption. When an app is launched and when it is

stopped, both of these states are different. In Android OS, its

built in Zygote process is responsible for launching apps,

receiving and responding to user events. This process is also

used for memory management in Android. When devices go

to low memory stage, Low Memory Killer (LMK) starts to act

and kills the least recent used (LRU) app. If the app to be

killed is larger in size, it will take time to free the memory as

well as when next time it is launched. Another technique is

Out of Memory Killer (OOMK) which kills apps having low

priority. It basically kills multiple apps at once to free the

memory which will have bad consequences on these apps. In

short, such mechanisms have these basic problems:

1. High Memory using apps have high priority to be

killed.

2. Launch time of apps is not considered when victims

are selected.

3. Reclamation of memory is on demand process and it

has to make a decision quickly, so, an optimised

algorithm can lead to wrong apps to be terminated

[12].

Activity Manager Service (AMS) is responsible for handling

user requests. It keeps the apps in cache using priority which

is determined in the following order:

1. Application on the foreground.

2. A process bound to a foreground application.

3. A process bound to a background application.

4. Hidden process presents on device but not visible.

5. Content providing applications such as calendar,

email.

6. Empty processes that are cached for faster loading

[9].

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 41, February 2019

38

Current caching policies are somewhat static and do not

change depending upon the user’s preference of using apps.

Researchers have proposed a better solution which takes into

account the reusability of apps to determine dynamic number

of apps to be cached. This technique allows to effectively

manage main memory for better caching and thus improving

overall performance of the device [3][9].

One proposal suggested is to use a tool called SmartLMK. It is

a dynamic process which is basically a low memory app

running in background. It keeps track of app’s launch time,

usage data and other characteristics. Using these statistics, it

calculates a temporal penalty and used it to terminate an app

[12].

2.6 Applying Micro-Optimizations
Micro optimisations must be applied on smartphone apps as

they are more prone to performance issues. Micro

optimisations should be applied at the start of life cycle of app

as it’s easy to optimise when structure is being written as

compared to when its completely written. According to the

findings, removing unused variables and private methods

improves performance as it reduces the memory footprint.

Normally developers do not apply micro optimisations

because:

1. Most of them do not know about this.

2. They think app is too small to apply any

optimisation.

3. They don’t think spending time on micro

optimisations is worthy.

4. They don’t believe that micro optimisations will

help their apps.

The results are found using static analysis which is done by

using tools such as FindBugs, PMD and LINT which provide

warnings to improve code. One of the most useful

optimizations found is the removal of unused code. But such

tools and techniques are prone to faults and can’t be trusted

completely [13].

2.7 Detecting Bad Programming Practices
Another solution proposed by researchers is CheckDroid tool

which is used to identify bad programming practices. Fixing

these can improve app performance and overall memory of

Android OS. Such a tool is needed because bad practices are

not normally identified and reported by the IDE. Most of the

tools and techniques applied are to detect memory and

performance leaks but bad practices have not been worked on.

Some of the Performance recommendations after analysis are:

1. Verbose logging should not be left in live

applications.

2. Long running tasks should be divided into sub

threads.

3. These sub threads should have low priority than

main thread.

Some of the main optimisations suggested are:

1. References to contexts should not be stored in static

variables.

2. Threads created should be destroyed [14].

2.8 Partitioning Memory
Another proposal is to partition the main memory because

Android uses LMK and OOMK to free up memory by killing

victim processes which is not very efficient. So, a memory

partitioning technique is proposed which divides memory in

two virtual nodes.

1. Virtual Node 0 used for reliable applications.

2. Virtual Node 1 used for unreliable applications.

If memory runs out of one node, memory of only that node

will be freed up. Normally, unreliable apps take up a lot more

memory than reliable apps. By following this methodology,

memory can be saved somewhat from running out [15].

2.9 Handling Low Memory Using Logs
This technique proposes using the generated logs to determine

user interactions and time spent on apps to dynamically

change the priority of apps. This will allow to keep the high

priority apps in cache and only kill low priority apps when

low memory issue occurs [16].

2.10 Detecting Anti-Patterns
In trying to develop apps more quickly, developers nowadays

tend to deviate from the programming patterns known as anti-

patterns which result in poor designs and hence poor

performance of apps. Paprika is a tool proposed which

analyses code to identify anti-patterns and proposes the

solutions to fix it. OOP is the basic building block of

developing any kind of app, it provides reusability and other

functionalities which were not possible before.

Android apks contain .dex file which contains compiled java

classes. Android runs on Darvik Virtual Machine and its

bytecode is different from Java. Numerous tools are available

to reverse engineer .dex files.

Paprika first extracts metadata from the apk such as app

name, bundle identifier and user reviews and then code

entities such as classes, methods and variable names are also

extracted. By using the extracted entities, a code model is

computed as a graph with raw values. This model is stored in

a graph database and then this database is queried to detect

anti-patterns. These anti-patterns when fixed can lead to quite

a bit of memory to be freed [17].

2.11 Limiting Software Aging
Software aging is a process in which performance of OS and

apps degrade with time. Most of all the problem is memory

leaking. With aging, free memory is reduced so less apps are

cached and when new app is launched, memory needs to be

freed up which will cost CPU cycles and battery. To detect

and identify aging, resource utilization stats needs to be kept.

To investigate memory leaks, device needs to be tested under

severe conditions where it is prone to failure. For this,

Exerciser Monkey was used by researchers which simulated

touch events, mouse clicks and other common Android

events. Tests were divided into sub tests with each test

dependent on output of previous one. If aging was detected,

next test was to be run for a longer time.

These tests helped identify extent of memory leaks in various

applications [18].

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 41, February 2019

39

2.12 Non-Blocking Garbage Collector
Garbage Collector works on the principle of “stop the current

execution, mark the objects to clear and sweep them out of

memory” which can lead to unresponsive behaviours and even

crashes. To fix these problems, a Real-Time Garbage collector

is proposed by researchers which has the following two

characteristics:

1. This GC will work incrementally with short

blocking phase.

2. The speed of GC should be in accordance to the

garbage created by the OS in order to avoid Out of

Memory situations.

This will allow to free memory quickly as compared to a non-

blocking Garbage Collector and will improve the overall

performance of Android OS [19].

2.13 Use of Non-Volatile Memory
According to a study most of the users have app sessions less

than 10 seconds and, in such case, shorter app loading time is

necessary. Many solutions have been suggested for improving

app launch times but most of the solutions are not hardware

based. The solution suggested by researches is to use Non-

Volatile Memory (NVM) or more specifically Phase Change

Memory (PCM) as backup of main memory. NVM Memory is

popular because it consumes less power. PCM is fast, very

energy efficient for reading operations but consumes a lot of

power in write operations and is very slow. Hence a DRAM-

PCM hybrid solution is proposed to improve application

launch times.

A study was conducted to analyse apps based on memory and

it was found that apps fall in two types of categories:

1. Stable apps where memory increases up to first 10

seconds then gets stable.

2. Unstable apps where memory keeps on increasing

with time and never stabilises.

Keeping both types of apps in mind the solution proposed is

the use of NVM as backup of main memory. When GC kicks

in and removes the data from main memory, the data is

migrated to NVM. Special regions are assigned to NVM

which store data of mostly used apps and common shared

libraries. This will allow better launch times even when apps

are not cached in main memory, but they will be present in

backup memory [20].

All of these solutions are more or less about optimizing

caching and memory management systems already present in

Android but none of them truly handle these problems with a

proper and well-defined solution.

3. PROPOSED SOLUTION
An entirely different approach to replace Android’s Garbage

Collector system with iOS’s Automatic Reference Counting

(ARC) system is proposed.

So, what is ARC? ARC is a system in which each created

object is assigned an integer data member named

“referenceCount”. This count is incremented by 1 when a

reference to this object is made and is decremented by 1 when

a reference to this object is destroyed. When referenceCount

reaches zero, the object is destroyed, and its memory is freed.

There is no need to recycle references and unregister events as

in Garbage Collector. When object is destroyed, all things

related to it are destroyed and hence freeing memory on its

own. This mechanism of ARC is shown in figure 1.

Fig 1: ARC Representation

The biggest difference between ARC and Garbage Collector

is that the ARC releases the memory instantly when object is

freed. While Garbage Collector, marks the freed objects and

cleans up memory after periodic intervals or when OS runs

out of memory.

Fig 2: Android ImageView loading

Now let’s discuss some code examples of memory

management in Garbage Collector and ARC to further clarify

the difference between these two approaches. For the code

examples, ARC is used in Swift Language on Xcode.

Fig 3: iOS ImageView loading

IDE and Garbage Collector is used in Java Language on

Android Studio ODE. First, both in iOS (ARC) and Android

(Garbage Collector), let us assign image references to

ImageView objects created in their respective UI resource

files in figures 2 and 3.

In figure 2 & 3, ImageViews with some test images in both

memory systems are initialized. Android recycles the

imageView’s reference of imageResource when parent class

onDestroy is called and also make the imageView reference

null to avoid causing memory leak. This means that even if

you have not created a reference object dynamically, you still

need to assign it null to mark it removable for Garbage

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 41, February 2019

40

Collector. While iOS do not need to do anything like this.

When parent class is destroyed, referenceCount of

myImageView object is decreased and it reaches zero, hence

it is destroyed, and memory is freed automatically. Here,

another example is shown in figure 4.

Fig 4: Dynamic Creation of a reference Object in iOS

In Figure 4, a reference object (secondImageView of type

UIImageView) is created dynamically and added to parent

view. When parent view is destroyed, referenceCount of

secondImageView become zero and is destroyed

automatically. This shows that even for dynamically created

objects, there is no need to assign null reference when parent

view is deallocated. This is a huge performance gain as

compared to Garbage Collector which requires that you assign

null to references to mark them for Garbage Collection.

Fig 5: Android Button Registering and Unregistering

event

Now let’s consider another common example of registering

button event in both memory models as shown in figures 5

and 6.

Fig 6: iOS Button Registering event

In case of Android (figure 5), after registering for click event

of a button, it is must to unregister it else it will cause memory

leak. However, nothing like this is needed in iOS. In iOS

(figure 6), when parent class is destroyed, referenceCount of

myButton_ object is decreased and it reaches zero, hence it is

destroyed, and memory is freed automatically.

After comparing both ARC and Garbage Collector, let us see

ARC in bit of more detail.

In ARC, references are bound to scopes. Scopes can be

global, they can also be local. For example, objects created

with in a block are deallocated automatically when the block

execution is complete. Such an example is shown in figure 7.

Fig 7: ARC Local Scope Example

When ending brace of do is done, object person is released,

and memory is released automatically. Same holds for global

scope variables. In that case, when parent object is destroyed,

child objects get out of scope, their referenceCount becomes

zero, they are destroyed, and memory is freed. Figure 8

illustrates this example.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 41, February 2019

41

Fig 8: ARC Global Scope Example

 In the above-mentioned example, pet is data member of

Person class, when Person class is destroyed, there is no need

to assign null to its data member pet as pet is deallocated

automatically.

After going through the examples, it is evident that Garbage

Collector is more prone to memory leaks whereas ARC

handles memory automatically in a more efficient way.

Summary of main advantages of ARC over Garbage

Collection is as follows:

1. ARC frees up memory instantly when object is

destroyed unlike Garbage Collector’s sweep and

mark approach.

2. Variables don’t need to be marked null or recycled

and click events don’t need to be removed to avoid

memory leaks.

3. Objects are destroyed automatically when get out of

scope.

It is due these facts that iOS devices perform much better than

their Android counterparts and due to this reason iOS devices

possess almost 1/3rd less memory as compared to a same

performance Android device.

4. CONCLUSION
After running same basic actions on both Android’s Garbage

Collector and ARC of iOS, it is concluded that ARC model

significantly reduces chances of Memory Leaks and should be

adopted as the default memory system of Android. As most of

the apps running on any smartphone are from 3rd party

developers, the IDEs must also introduce a feature which

shows all the references of a particular object so that it’s easy

for developers to detect memory leaks. Furthermore, in the

near future, a modern language such as Swift should be used

in Android development as such a language can decrease

chances of memory leaks, hence providing smooth app

experience and low usage of main memory.

5. FUTURE WORK
ARC is a very good approach to handle memory in a much

efficient way and should be adopted by Google for Android.

But one important thing still remains which is the language

itself that is Java. Java has become quite an old language and

is not keeping up with latest trends and features of modern

development languages. Java was a very good choice of

language when Android OS was launched but after all these

years, it looks obsolete. There is need to adopt a modern

language with advanced features which help in better code

structure and contains micro-optimizations within itself.

Modern languages now contain built-in memory optimization

tips which are reported by the compiler at run time which can

greatly optimise the code written and use less memory. For

instance, let us see some features of the Swift language.

5.1 Mutable Vs Immutable Objects
Immutable object is like a constant object whose value can be

assigned only once. While mutable objects can be assigned

values more than once. Swift uses this concept very

powerfully and through warnings indicates to the programmer

where to use immutable and where to use mutable objects.

This can help a lot in decreasing memory usage as immutable

objects take less memory than mutable objects. An example is

shown in figures 9 and 10.

Fig 9: Error assigning to an immutable object

Fig 10: Warning when mutable object is not overwritten

5.2 Optimizing Loops
Loops are basic part of any programming language and are

used quite frequently. In modern programming languages

such as Swift, memory can be saved even from loops.

Consider a for loop which iterates from start value to end

value. A variable is assigned to it which increments it and

then iterates as shown in figure 11.

Fig 11: For loop in java

Fig 12: For Loop in Swift with a warning

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 41, February 2019

42

Here even though the value of variable “i” is not needed with

in the loop, it is still being manipulated. Swift proposes a

better solution which is the removal of variable “i” when it’s

not required to save memory as shown in Figures 12 and 13.

Fig 13: For Loop with no warning in Swift

5.3 Use of Tuples
Swift has introduced another very important data type called

Tuples which has allowed programmers to use objects having

different data members without creating new class or

structure. Tuple groups multiple values into one compound

value instead of creating a new class or structure which saves

memory. For example, multiple values are needed to return

from a method. In traditional programming languages, a

custom class is needed to create or structure or dictionary to

return these values as shown in figure 14.

Fig 14: Traditional Language Complex Object Example

Now let’s see an example of tuple as shown in figure 15:

Fig 15: Tuple Example

As it can be seen from above figure, just creating a tuple with

different data types and returning its object can make it

accessible as shown in figure 16.

Fig 16: Tuple element access Example

With the above-mentioned examples, it can be deduced that a

modern language can decrease memory consumption quite a

bit. These are just few examples of memory management

improvement. There are many other aspects which can be

considered to uplift the smartphone OS development.

6. ACKNOWLEDGMENTS
We are greatly thankful to the department of computer science

and engineering, UET Lahore for giving us this opportunity to

do research in different areas.

7. REFERENCES
[1] Kwon, S., Kim, S. H., Kim, J. S., & Jeong, J. (2015,

October). Managing GPU buffers for caching more apps

in mobile systems. In Proceedings of the 12th

International Conference on Embedded Software (pp.

207-216). IEEE Press.

[2] Lee, B., Kim, S. M., Park, E., & Han, D. (2015, July).

Memscope: Analyzing memory duplication on android

systems. In Proceedings of the 6th Asia-Pacific

Workshop on Systems (p. 19). ACM.

[3] Baik, K., & Huh, J. (2014, June). Balanced memory

management for smartphones based on adaptive

background app management. In Consumer Electronics

(ISCE 2014), The 18th IEEE International Symposium on

(pp. 1-2). IEEE.

[4] Kim, S. H., Jeong, J., & Lee, J. (2014). Selective

memory deduplication for cost efficiency in mobile

smart devices. IEEE Transactions on Consumer

Electronics, 60(2), 276-284.

[5] MA, J., LIU, S., YUE, S., TAO, X., & LU, J. LeakDAF:

An Automated Tool for Detecting Leaked Activities and

Fragments of Android Applications.

[6] Shahriar, H., North, S., & Mawangi, E. (2014, January).

Testing of memory leak in Android applications. In

High-Assurance Systems Engineering (HASE), 2014

IEEE 15th International Symposium on (pp. 176-183).

IEEE.

[7] Zhang, H., Wu, H., & Rountev, A. (2016, May).

Automated test generation for detection of leaks in

Android applications. In Automation of Software Test

(AST), 2016 IEEE/ACM 11th International Workshop in

(pp. 64-70). IEEE.

[8] Qian, J., & Zhou, D. (2016). Prioritizing Test Cases for

Memory Leaks in Android Applications. Journal of

Computer Science and Technology, 31(5), 869-882.

[9] Vimal, K., & Trivedi, A. (2015, December). A memory

management scheme for enhancing performance of

applications on Android. In Intelligent Computational

Systems (RAICS), 2015 IEEE Recent Advances in (pp.

162-166).

[10] Yan, D., Yang, S., & Rountev, A. (2013, November).

Systematic testing for resource leaks in Android

applications. In Software Reliability Engineering

(ISSRE), 2013 IEEE 24th International Symposium on

(pp. 411-420). IEEE.

[11] Pridgen, A., Garfinkel, S., & Wallach, D. S. (2017).

Picking up the trash: Exploiting generational GC for

memory analysis. Digital Investigation, 20, S20-S28.

[12] Aponso, G. C. A. L. (2017). Effective Memory

Management for Mobile operating Systems. American

Journal of Engineering Research (AJER), 246.

[13] Linares-Vásquez, M., Vendome, C., Tufano, M., &

Poshyvanyk, D. (2017). How developers micro-optimize

Android apps. Journal of Systems and Software, 130, 1-

23.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 41, February 2019

43

[14] Yovine, S., & Winniczuk, G. (2017, May). CheckDroid:

a tool for automated detection of bad practices in

Android applications using taint analysis. In Proceedings

of the 4th International Conference on Mobile Software

Engineering and Systems (pp. 175-176). IEEE Press.

[15] Lim, G., Min, C., & Eom, Y. I. (2013, January).

Enhancing application performance by memory

partitioning in Android platforms. In Consumer

Electronics (ICCE), 2013 IEEE International Conference

on (pp. 649-650). IEEE.

[16] Prodduturi, R., & Phatak, D. B. (2013). Effective

handling of low memory scenarios in android using logs.

Indian Institute of Technology.

[17] Hecht, G., Rouvoy, R., Moha, N., & Duchien, L. (2015,

May). Detecting antipatterns in android apps. In

Proceedings of the Second ACM International

Conference on Mobile Software Engineering and

Systems (pp. 148-149). IEEE Press.

[18] Araujo, J., Alves, V., Oliveira, D., Dias, P., Silva, B., &

Maciel, P. (2013, October). An investigative approach to

software aging in android applications. In Systems, Man,

and Cybernetics (SMC), 2013 IEEE International

Conference on (pp. 1229-1234). IEEE.

[19] Gerlitz, T., Kalkov, I., Schommer, J. F., Franke, D., &

Kowalewski, S. (2013, October). Non-blocking garbage

collection for real-time android. In Proceedings of the

11th International Workshop on Java Technologies for

Real-time and Embedded Systems (pp. 108-117). ACM.

[20] Kim, H., Lim, H., Manatunga, D., Kim, H., & Park, G.

H. (2015). Accelerating Application Start-up with

Nonvolatile Memory in Android Systems. IEEE Micro,

35(1), 15-25.

IJCATM : www.ijcaonline.org

