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ABSTRACT
In this article, a novel public key cryptosystem is introduced
by using an abelian subgroup of GL(k,Zn) where n and k
are positive integers. Instead of exponentiation, the conjugation
automorphisms are mainly used to define the public and pri-
vate keys. This allows the calculations to be fast and effective.
The security analysis of the cryptosystem is discussed and it is
shown that the cryptosystem is highly secure. Moreover, pro-
posed scheme also generalizes the main scheme given in [1].
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1. INTRODUCTION
The concept of public key cryptography has a vast history start-
ing with the scheme introduced by Deffie and Hellman [2] in
1976. Later, many different public key cryptosystems based on hard
mathematical problems were introduced by different authors. The
first practical public key cryptosystem (PKC) RSA was introduced
in 1978 by Rivest, Shamir and Adleman in [3]. Another practical
PKC was found by ElGamal in 1985 which was introduced in [4].
Many other PKCs were introduced by many authors which can be
seen in [5], [6], [7], [8], [9], and [10]. In many of these PKCs,
the integers modulo n was used where n is a certain integer. As
a different idea, in [1], the authors introduced a novel public-key
cryptosystem based on the abelian subgroup

K =

{[
a b
b a

]∣∣∣∣ a, b ∈ Zn with a2 − b2 ∈ Z∗n
}

of the general linear group GL(2,Zn) where Z∗n denotes the set of
the elements in Zn with a multiplicative inverse. In this cryptosys-
tem, the authors choose two random elements from K, and define
the encryption and decryption by using these two matrices. This is
one of the interesting cryptosystems which is based on a subgroup

of matrices. The authors showed that the system is secure and, the
executions of encryption and decryption are fast since they did not
use any exponentiation of matrices.
The following is the original scheme given in [1] by which this
paper was motivated.

2. ORIGINAL CRYPTOSYSTEM BY KHAN AND
SHAH

Key Generation

(1) Select random prime numbers r and s such that r 6= s and
compute n = rs or n = rl for l ≥ 2.

(2) Select four random integers a, b, c and d ∈ Zn such that a2 −
b2, c2 − d2 ∈ Z∗n.

(3) Form two matrices in the subgroup K from four integers se-
lected in step 2:

A =

[
a b
b a

]
, B =

[
c d
d c

]
(Note that A,B ∈ K ≤ GL(2,Zn)

by the choice of a, b, c, d.)
(4) Define two commutative inner product automorphisms of the

ring of 2× 2 matrices M2(Zn):
χ : V −→ A−1V A and δ : V −→ B−1V B for every V ∈
M2(Zn).
Note that since the matrices A and B commute, the automor-
phisms χ and δ commute.

(5) Compute the following automorphisms of M2(Zn) :
ρ = χ2δ and σ = χδ2 which are given by
ρ : V −→ (A2B)−1V (A2B), σ : V −→ (AB2)−1V (AB2).
Note that the automorphisms ρ and σ commute, and we have
ρ = χδ−1σ, σ = χ−1δρ.

(6) Select a random invertible matrix N ∈ GL(2,Zn), such that
N does not belong to group K.

(7) Compute the matrices N−1, ρ(N) and σ(N−1).
(8) The public key is (n, ρ(N), σ(N−1)) and the private key is

(A,B).

Encryption

(1) Represent the plaintext m as a 2 × 2 matrix over residue ring
Zn: m ∈M2(Zn).
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(2) Choose a random matrix Xm ∈ K. (Note that for every plain-
text, we choose a new random matrix.)

(3) Define the automorphism υ : V −→ X−1m V Xm, where V ∈
M2(Zn).

(4) Compute the matrices υ(ρ(N)), υ(σ(N−1)) and mυ(ρ(N)).
(5) Choose a random unit µ ∈ Z∗n and send the ciphertext:

C = (C1, C2) = (µ−1υ(σ(N−1)), µmυ(ρ(N))).

Decryption

(1) Compute d = χδ−1(C1) = χδ−1(µ−1υ(σ(N−1))) =
µ−1υ(ρ(N−1)).

(2) Compute C2d = (µmυ(ρ(N)))(µ−1υ(ρ(N−1))) = m.

In the following section, the main scheme, which forms the center
of this paper, is proposed.

3. PROPOSED SCHEME
In the proposed PKC, the previous cryptosystem is generalized by
using a subgroup ofGL(k,Zn) where k and n are any two positive
integers. Note that in the previous scheme, the size of a matrix is
2 × 2 and n is a product of two primes or a power of only one
prime. The proposed change will make a big improvement on the
original scheme in terms of security. As a start, consider the abelian
subgroup

H =





a1 0 0 0 . . . 0
a2 a1 0 0 . . . 0
a3 a2 a1 0 . . . 0
...

. . .
. . .

. . .
. . . 0

ak−1 . . . a3 a2 a1 0
ak ak−1 . . . a3 a2 a1



∣∣∣∣∣∣∣∣∣∣∣∣
ai ∈ Zn, a

k
1 ∈ Z∗n, 1 ≤

i ≤ k} of the general linear group GL(k,Zn). It is clear that H is
a subset of lower triangular matrices as well. Thus, this cryptosys-
tem can be formed similarly by using upper triangular matrices. It
can be easily proved thatH is abelian. Two random matrices will be
chosen fromH to define encryption. From the definition of the sub-
group, such a matrix is in GL(k,Zn) if and only if gcd(a1, n) = 1.
The following is the main scheme of the PKC proposed in this ar-
ticle.
Key Generation

(1) Choose two matricesA andB in the subgroupH withA 6= B.
(Note here that the verification ofA andB being inH is much
more easier than the original scheme.)

(2) Define two commutative inner product automorphisms of the
ring of k × k matrices Mk(Zn):
χ : V −→ A−1V A and δ : V −→ B−1V B for every V ∈
Mk(Zn).
Clearly χ and δ commute as A and B commute.

(3) Compute the following automorphisms of Mk(Zn) :
ρ = χ2δ and σ = χδ2 which are given by
ρ : V −→ (A2B)−1V (A2B), σ : V −→ (AB2)−1V (AB2).
Note that similar to the original scheme, ρ and σ commute, and
ρ = χδ−1σ, σ = χ−1δρ.

(4) Select a random invertible matrixN ∈ GL(k,Zn) which does
not belong to group H .

(5) Compute the matrices N−1, ρ(N) and σ(N−1).
(6) The public key is (n, ρ(N), σ(N−1)) and the private key is

(A,B).

Encryption

(1) Represent the plaintext m as a k × k matrix over the ring Zn,
that is, m ∈Mk(Zn).

(2) Choose a random matrix Xm ∈ H . (Similarly, we choose a
new random matrix for every plaintext.)

(3) Define the automorphism υ : V −→ X−1m V Xm, where V ∈
Mk(Zn).

(4) Compute the matrices υ(ρ(N)), υ(σ(N−1)) and υ(ρ(N)).
(5) Send the ciphertext:

C = (C1, C2) = (υ(σ(N−1)),mυ(ρ(N))).

Decryption

(1) Compute d = χδ−1(C1) = χδ−1(υ(σ(N−1))) =
υ(ρ(N−1)).

(2) Compute C2d = (mυ(ρ(N)))(υ(ρ(N−1))) = m.

Alternatively, someone can directly compute m = C2χδ
−1(C1).

THEOREM 1. The algorithm given in Section 3 works.

PROOF. Since the same automorphisms in [1] are used, the same
proof in [1, Theorem 1] is valid for this theorem. It can also be
clearly seen from part 2 of decryption algorithm.

Note that the unit µ is not included in the proposed scheme which
was used in the original scheme. As it will be seen in Security
Analysis section, using the unit µ in any of the schemes does not
increase the security level.

4. AN EXAMPLE
The following is an example in the 3× 3 case, that is, when k = 3.
Key Generation

(1) Let k = 3, n = 26. Choose a1 = 5, a2 = 6, a3 = 7, b1 =
3, b2 = 1 and b3 = 6 ∈ Z26 so that

A =

 5 0 0
6 5 0
7 6 5

, B =

 3 0 0
1 3 0
6 1 3

.

Note that detA ≡ 125 ≡ 21 (mod 26) and detB ≡ 27 ≡ 1
(mod 26), hence A,B ∈ H .

(2) Define the following automorphisms of the ring M3(Z26):
χ : V −→ A−1V A
δ : V −→ B−1V B for every V ∈M3(Z26).

(3) Compute the following automorphisms:
ρ = χ2δ, σ = χδ2 which are given by
ρ : V −→ (A2B)−1V (A2B)
σ : V −→ (AB2)−1V (AB2).

(4) Choose a random invertibleN =

 3 5 7
2 11 17
1 13 4

which clearly

does not belong to H .

(5) Compute the matrices N−1 =

 15 5 24
1 15 19
19 2 17

, ρ(N) = 23 25 7
6 3 23
23 5 18

, σ(N−1) =

 8 3 24
18 5 21
5 22 8

.

(6) Public key is (n = 26, ρ(N), σ(N−1)) and the private key is
(A,B).
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Encryption

(1) Represent the plaintext m =

 11 3 7
9 3 6
6 5 19

.

(2) Choose a random matrix Xm =

 15 0 0
1 15 0
0 1 15

 ∈ H . Note

that for a different message, a different random matrixXm can
be used.

(3) Define the automorphism υ : V −→ X−1m V Xm, where V ∈
M3(Z26).

(4) Compute the matrices υ(ρ(N)) =

 9 2 7
5 12 20
22 21 23

,

υ(σ(N−1)) =

 19 17 24
1 3 7
21 12 25

.

(5) The ciphertext is C = (C1, C2) where

C1 = υ(σ(N−1)) =

 19 17 24
1 3 7
21 12 25

,

C2 = mυ(ρ(N)) =

 8 23 12
20 24 1
3 3 6

.

Decryption

(1) Compute

m = C2χδ
−1(C1) =

 11 3 7
9 3 6
6 5 19

.

5. SECURITY ANALYSIS
5.1 A Chiphertext Only Attack
Assume that (C1, C2) is the ciphertext of the plaintext m. So, the
attacker needs to solve the system
C1 = X−1m σ(N−1)Xm

C2 = mX−1m ρ(N)Xm.
In the original scheme given in [1], the authors used a unit µ to
increase the security. However, attacker can compute C2C1 =
mX−1m ρ(N)σ(N−1)Xm, and more conveniently, try to solve this
system forXm andm instead of solving two systems separately for
Xm, µ and m as stated in [1]. Hence, in the proposed system, the
unit µ is not used which has no effect on the security, but increases
the computation time.
Note that there are φ(n) possibilities for the diagonal entry of Xm,
and nk−1 possibilities for the remaining lower diagonal entries of
Xm. Hence, there are φ(n)nk−1 possible tries for the solution of
the system. Thus, if n and k are chosen large enough, then it is
infeasible to compute Xm, and hence m.
Here, if it is compared with the scheme given in [1], the security in
the proposed scheme increases significantly as any size of matrices
can be chosen which will increase the dimension of the system.

5.2 A Known-Plaintext Attack
Note that for each plaintext m, a specific matrix Xm is used in
the scheme. Hence, it does not matter how many pairs of plaintexts

and ciphertexts someone knows, it is infeasible to obtain a plain-
text from a corresponding ciphertext. Thus, this attack will not be
efficient as well.

5.3 A Chosen Chiphertext Attack
By using this attack, someone can obtain an unknown plaintext.
Assume that C = (C1, C2) is the corresponding ciphertext of the
desired plaintext m. The attacker can choose a random invertible
matrix m̃ and be given access to the plaintext of the ciphertext
(C1, m̃C2) which is m̃m. Then the attacker obtains (m̃)−1m̃m =
m.
However, an elementary modification on the proposed system can
be used in order to prevent this type of attack. It is the same idea
given in [1]. This problem can be solved by the change C2 =
X−1m ρ(N)XmmX

−1
m ρ(N)Xm. In decryption, the plaintext can be

obtained by m = dC2d with d = χδ−1(C1). This change will pre-
vent the proposed system from this type of attack since the matrices
m and Xm do not commute in general.
Note that this type of attack could even brake famous systems such
as RSA and ElGamal. In this case, an elementary modification can
fix this problem which shows the significance of the proposed ele-
mentary change.

6. CONCLUSION
In this article, the public key cryptosystem given in [1] is gener-
alized by using a bigger matrix group. It can clearly be seen that
the generalized scheme is more secure than the original one with
respect to various attacks as a result of the increase in the size of
the matrices. Although the computation time will decrease, some-
one can choose the best size for the security and computation time
depending on the needs. Also, since exponentiation is not used, the
encryption and decryption will be more simple and faster. This sys-
tem can be efficiently used in key exchange protocols for symmet-
ric schemes. In this case, someone can choose large size matrices
to keep the exchange secure. This can not be done for the scheme
given in [1]. Moreover, a simple numerical example is given in Sec-
tion 4.
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