
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 43, March 2019

29

Traveling Salesman Algorithms Complexity

Fatima Thaher Aburomman
Al-Balqa Applied University,

Salt, Jordan

ABSTRACT

The travelling salesman problem (TSP) is widely studied in

computer science. There is a practical importance, and can be

applied to solve many practical daily lives problems, so many

algorithms developed to solve this problem, each with its

efficient. Insertion, genetic, greedy, greedy 2-opts and nearest

neighbor, are all algorithms used to solve (TSP). This paper

will study these algorithms and present the main diff erences

between these algorithms according to its complexity, and

which one is the most efficient to solve the (TSP)

Keywords

TSP complexity using Insertion, TSP using Greedy, TSP

using Genetic

1. INTRODUCTION
The traveling salesman (TSP) problem is an important famous

optimization problem, appeared in research area in 1920’s. [8]

The main idea of (TSP) is a traveling salesman wants to visit

each of n cities exactly once and return to his starting city. In

which order should he visit these n cities to minimizing the

total distance travelled. Since the (TSP) have both practical

and theoretical importance, many algorithms have been

developed to produce solutions near to the optimal one for

(TSP), but we looking for the efficient algorithm that solve

this problem and produce the nearest solution to the optimal.

This paper will present a detailed comparative study on results

of these algorithms that solve (TSP), and which of these

algorithms the efficient one is. The rest of this paper is

organized as follow: we will explain some of previous works

that done to solve (TSP) in order to understand the growth of

solutions that achieved; this will be introduced in the related

work section. In the experiments section we will introduce

some algorithms that solve (TSP), in order to facilitate

comparisons and results in the result section. The last section

will conclude our studying and analysis on this paper.

2. RELATED WORK
From 1920’s until now diff erent works have been done to

solve (TSP), Hmaifar introduced the straight forward way to

solve the (TSP) which examine all possible tours and

evaluating their corresponding tour length. The tour with

smallest length is selected as the best, which is guaranteed to

be optimal. Hmaifar, said that” one approach would certainly

find the optimal solution of any (TSP) is the application of

exhaustive enumeration and evaluation”. [1] Fischer and

Richer (1982) used a branch and bound approach to solve a

(TSP) with two (sum) criteria. Gupta and Warburton (1986)

used the 2-and 3-opt heuristics for the max ordering (TSP).

Sigal (1994) proposed a decomposition approach for solving

the (TSP) with respect to the two criteria of the route length

and bottlenecking, where both objectives are obtained from

the same cost matrix. [3] Tung (1994) used a branch and

bound method with a multiple labeling scheme to keep track

of possible Pare to optimal tours. Melamed and Sigal (1997)

suggested an e-constrained-based algorithm for bi-objective

(TSP). Ehrgott (2000) proposed an approximation algorithm

with worst case performance bound. Hansen (2000) applied

the tabu search algorithm to multi objective (TSP). Borges

and Hansen (2002) used the weighted sums program to study

the global convexity for multi-objective (TSP). Jaszkiewicz

(2002) proposed the genetic local search which combines

ideas from evolutionary algorithms, local search with

modifications of the aggregation of the objective functions.

Paquete and Stuzle (2003) proposed the two-phase local

search procedure to tackle bi-objective (TSP). During the first

phase, a good solution to one single objective is found by

using an eff ective single objective single objective algorithm.

This solution provides the starting point for the second phase,

in which a local search algorithm is applied to a sequence of

diff erent aggregations of the objectives, where each

aggregation converts the bi-objective problem into a single

objective one. Yan et al (2003) used an evolutionary

algorithm to solve multi objective (TSP). Angel, Bampis and

Courves (2004) proposed the dynasearch algorithm which

uses local search with an exponential sized neighborhood that

can be search in polynomial time using dynamic programming

and rounding technique. Paquete, Chiarandini and Stutzle

(2004) suggested a Pareto local search method which extends

local search algorithm for the single objective (TSP) to bi-

objective case. This method uses an archive to hold non-

dominated solutions found in the search process.

3. EXPERIEMENTS
The traveling salesman problem can be expressed

mathematically as follows:If we have a graph G = (v,e) and

the weight Cij on the edge between nodes i and j is a non-

negative value. Find a tour of minimal cost. The first method

was known to optimally solve the travelling salesman problem

of any size, was by enumerating each possible tour and

searching for the tour with smallest cost. Each tour has a size

of 1 2 3... N, where n is the number of cities, so the number of

tours will be n! If N is large, it becomes impossible to find the

cost of every tour. If we could identify and evaluate one tour

per nanosecond (on one billion tours per second), it would

require almost ten million years (number of possible tours =

3.2∗1023) to evaluate all of the tours in a 25-city (TSP).

3.1 (TSP) Algorithms

3.1.1 Insertion Algorithm
All insertion algorithms start with a tour consisting of an n

city then in each step chooses a city k not in the tour. This city

is inserted between two cities i and j such that the insertion

cost d(i,k) + d(k,j) = d(i,j) is minimized. This algorithm stops

when all cities are in the tour. Insertion Algorithm Code:

begin

min = ∞

 for m = 1,n.do

begin

Tm = φ; Cm=m

while Cm 6= N do

begin Step A: let k1 = min (k, (n−Cm));

let ∆(s∗) =min(∆(s): s⊆ N-Cm and s=k1); Cm=Cm+S*;

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 43, March 2019

30

If min> d(Tm) then min=d(Tm);

T: =Tm

end

end

Insertion algorithm has a time complexity of O(n2k+2).

3.1.2 Greedy Algorithm
Greedy algorithm is the simplest improvement algorithm. It

starts with node 1. Then the algorithm calculates all the

distances to other n-1 nodes. Go to the next closest node. Take

the current node as the departing node, and select the next

nearest node from the rest n-2 nodes. This process continues

until all the nodes are visited once and only once then back to

node 1. when the algorithm is finished the sequence is

returned as the best tour. This algorithm is useful because of

its simplicity to implement and understand. When the problem

size is small it leads to a good solution. It saves much

computational time because it doesn't’t make any exchange of

nodes. begin

T: = φ

while T is not a tour do

begin d(e)=min(d(f): f ∈ n2 and T ∪f is contained in at least

one tour T: = T ∪e

end

end

 Greedy algorithm has a time complexity of θ (log n).

3.1.3 Greedy 2-opt algorithm
The greedy 2-opt algorithm consists of three steps: Step1: Let

S be the initial solution provided by the user and Z Its

objective function value. Set S*=s, Z*=z, i=1 and j=i+1=2.

Step2 Transpose Node i and Node j, i¡j. Compare the result z

with Z*.If z¿=Z*,set S*=s, Z*=z, i=1, j=i+1=2 and go to step

2.If z ¿=Z*and j=n, set i=i+1,j=j+1 and repeat step

2.otherwise, output S* as the best solution and terminate the

process. Greedy 2-opt algorithm also considers pair wise

exchanges. Initially, it transposes nodes 1 and 2. If the result

is less than the previous one, two nodes are immediately

transposed. Else the algorithm will go on to node 3 and

evaluate the exchange, and so on. Instead of adding one node

at a time, one added the minimum length set of k nodes at

each stage, in this case the time complexity will be O(n).

3.1.4 Genetic Algorithm
Genetic Algorithms consists of the following steps: 1. Choose

initial population randomly. 2. Evaluate the fitness of each

individual in the population. 3. Repeat until termination. 4.

Select individuals to reproduce. 5. Create new generation

throw crossover or/and mutation and give off spring. 6.

Evaluate the individual fitness of the off spring. 7. Replace

worst part of population with off spring. Genetic algorithm has

a time complexity of O (log n).

3.1.5 nearest neighbor algorithm
This algorithm is like the greedy. For a simple path P, we

consider i(p), j(p) the initial and the terminal nodes of P. We

allow a single ton node to be a path with no edges[?].

begin

min: =∞

for m=1,n do

begin Tm: =φ; i(Tm): =j;(Tm): =m;

while Tm< n-1 do

begin

d(e)= min (d (x, y)) = x is not Tm and y=i(Tm) or y is not Tm

and x=j(Tm)

Tm: = Tm+ e

end

Tm: =Tm+(j(Tm), i(Tm));

if d(Tm)<min then T: =Tm; Min: =d(Tm)

end

end.

4. RESULTS AND CONCLUSION
In this section we present some results obtained from

experiments section. Algorithm complexity identifies the time

and space that algorithm needs to accomplish its work. So

genetic and greedy algorithm have the best complexity which

is O (log n), but when the problem size is very large it is

suitable to use greedy algorithm more than using genetic,

because genetic will be complex to be applied. Then the

greedy 2-opt which need O (n) is better than insertion

algorithm that need O(n2k+2).

5. REFERENCES
[1] Abdullah Homaitor Shanyunchauna,and Gunar

E.liepins.Scherna analysis of the travelling salesman

problem using genetic algorithms,complex system.

[2] Fisher,R,Richter,K..Solving amulti objective Travelling

Sales man problem by dynamic programming.

[3] Hansen,M.Puse of substitute Scalarizing functions to

guide alocal search based heuristics the case of

MOTSP.Journal of Heuristics6(2000)419-431

[4] Yan,Zhang L.kang Anew MOEA for multi-objective

TSP and it’s convergence property analysis.

[5] Alba, E. Parallel Metaheuristics: A New Class of

Algorithms. Wiley Series on Parallel and Distributed

Computing. Wiley-Interscience, Hoboken, NJ, 2005.

[6] Gutin G., A. Punnen. The Traveling Salesman Problem

and Its Variations, Kluwer Academic Publishers, 2004.

[7] Reeves C., J. Rowe, Genetic Algorithms . Principles and

Perspectives: A Guide to GA Theory, Springer, 2002.

[8] G. Bendall and F. Margot, Greedy Type Resistance of

Combinatorial Problems, Discrete Optimization 3

(2006), 288298.

[9] P. H. Chen, S. Malkani, C.-M. Peng, and J. Lin. Fixing

antenna problem by dynamic diode dropping and jumper

insertion. In Proc. of ISQED, 2000.

IJCATM : www.ijcaonline.org

