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ABSTRACT 

The travelling salesman problem (TSP) is widely studied in 

computer science. There is a practical importance, and can be 

applied to solve many practical daily lives problems, so many 

algorithms developed to solve this problem, each with its 

efficient. Insertion, genetic, greedy, greedy 2-opts and nearest 

neighbor, are all algorithms used to solve (TSP). This paper 

will study these algorithms and present the main diff erences 

between these algorithms according to its complexity, and 

which one is the most efficient to solve the (TSP) 
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1. INTRODUCTION 
The traveling salesman (TSP) problem is an important famous 

optimization problem, appeared in research area in 1920’s. [8] 

The main idea of (TSP) is a traveling salesman wants to visit 

each of n cities exactly once and return to his starting city. In 

which order should he visit these n cities to minimizing the 

total distance travelled. Since the (TSP) have both practical 

and theoretical importance, many algorithms have been 

developed to produce solutions near to the optimal one for 

(TSP), but we looking for the efficient algorithm that solve 

this problem and produce the nearest solution to the optimal. 

This paper will present a detailed comparative study on results 

of these algorithms that solve (TSP), and which of these 

algorithms the efficient one is. The rest of this paper is 

organized as follow: we will explain some of previous works 

that done to solve (TSP) in order to understand the growth of 

solutions that achieved; this will be introduced in the related 

work section. In the experiments section we will introduce 

some algorithms that solve (TSP), in order to facilitate 

comparisons and results in the result section. The last section 

will conclude our studying and analysis on this paper. 

2. RELATED WORK 
From 1920’s until now diff erent works have been done to 

solve (TSP), Hmaifar introduced the straight forward way to 

solve the (TSP) which examine all possible tours and 

evaluating their corresponding tour length. The tour with 

smallest length is selected as the best, which is guaranteed to 

be optimal. Hmaifar, said that” one approach would certainly 

find the optimal solution of any (TSP) is the application of 

exhaustive enumeration and evaluation”. [1] Fischer and 

Richer (1982) used a branch and bound approach to solve a 

(TSP) with two (sum) criteria. Gupta and Warburton (1986) 

used the 2-and 3-opt heuristics for the max ordering (TSP). 

Sigal (1994) proposed a decomposition approach for solving 

the (TSP) with respect to the two criteria of the route length 

and bottlenecking, where both objectives are obtained from 

the same cost matrix. [3] Tung (1994) used a branch and 

bound method with a multiple labeling scheme to keep track 

of possible Pare to optimal tours. Melamed and Sigal (1997) 

suggested an e-constrained-based algorithm for bi-objective 

(TSP). Ehrgott (2000) proposed an approximation algorithm 

with worst case performance bound. Hansen (2000) applied 

the tabu search algorithm to multi objective (TSP). Borges 

and Hansen (2002) used the weighted sums program to study 

the global convexity for multi-objective (TSP). Jaszkiewicz 

(2002) proposed the genetic local search which combines 

ideas from evolutionary algorithms, local search with 

modifications of the aggregation of the objective functions. 

Paquete and Stuzle (2003) proposed the two-phase local 

search procedure to tackle bi-objective (TSP). During the first 

phase, a good solution to one single objective is found by 

using an eff ective single objective single objective algorithm. 

This solution provides the starting point for the second phase, 

in which a local search algorithm is applied to a sequence of 

diff erent aggregations of the objectives, where each 

aggregation converts the bi-objective problem into a single 

objective one. Yan et al (2003) used an evolutionary 

algorithm to solve multi objective (TSP). Angel, Bampis and 

Courves (2004) proposed the dynasearch algorithm which 

uses local search with an exponential sized neighborhood that 

can be search in polynomial time using dynamic programming 

and rounding technique. Paquete, Chiarandini and Stutzle 

(2004) suggested a Pareto local search method which extends 

local search algorithm for the single objective (TSP) to bi-

objective case. This method uses an archive to hold non-

dominated solutions found in the search process. 

3. EXPERIEMENTS 
The traveling salesman problem can be expressed 

mathematically as follows:If we have a graph G = (v,e) and 

the weight Cij on the edge between nodes i and j is a non-

negative value. Find a tour of minimal cost. The first method 

was known to optimally solve the travelling salesman problem 

of any size, was by enumerating each possible tour and 

searching for the tour with smallest cost. Each tour has a size 

of 1 2 3... N, where n is the number of cities, so the number of 

tours will be n! If N is large, it becomes impossible to find the 

cost of every tour. If we could identify and evaluate one tour 

per nanosecond (on one billion tours per second), it would 

require almost ten million years (number of possible tours = 

3.2∗1023) to evaluate all of the tours in a 25-city (TSP). 

3.1 (TSP) Algorithms 

3.1.1 Insertion Algorithm 
All insertion algorithms start with a tour consisting of an n 

city then in each step chooses a city k not in the tour. This city 

is inserted between two cities i and j such that the insertion 

cost d(i,k) + d(k,j) = d(i,j) is minimized. This algorithm stops 

when all cities are in the tour. Insertion Algorithm Code:  

begin  

min = ∞ 

 for m = 1, ......n.do  

begin  

Tm = φ; Cm=m  

while Cm 6= N do  

begin Step A: let k1 = min (k, (n−Cm));  

let ∆(s∗) =min(∆(s): s⊆ N-Cm and s=k1); Cm=Cm+S*;  
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If min> d(Tm) then min=d(Tm);  

T: =Tm  

end  

end  

Insertion algorithm has a time complexity of O(n2k+2). 

3.1.2 Greedy Algorithm  
Greedy algorithm is the simplest improvement algorithm. It 

starts with node 1. Then the algorithm calculates all the 

distances to other n-1 nodes. Go to the next closest node. Take 

the current node as the departing node, and select the next 

nearest node from the rest n-2 nodes. This process continues 

until all the nodes are visited once and only once then back to 

node 1. when the algorithm is finished the sequence is 

returned as the best tour. This algorithm is useful because of 

its simplicity to implement and understand. When the problem 

size is small it leads to a good solution. It saves much 

computational time because it doesn't’t make any exchange of 

nodes. begin  

T: = φ  

while T is not a tour do  

begin d(e)=min(d(f): f ∈ n2 and T ∪f is contained in at least 

one tour T: = T ∪e  

end  

end 

 Greedy algorithm has a time complexity of θ (log n). 

3.1.3 Greedy 2-opt algorithm 
The greedy 2-opt algorithm consists of three steps: Step1: Let 

S be the initial solution provided by the user and Z Its 

objective function value. Set S*=s, Z*=z, i=1 and j=i+1=2. 

Step2 Transpose Node i and Node j, i¡j. Compare the result z 

with Z*.If z¿=Z*,set S*=s, Z*=z, i=1, j=i+1=2 and go to step 

2.If z ¿=Z*and j=n, set i=i+1,j=j+1 and repeat step 

2.otherwise, output S* as the best solution and terminate the 

process. Greedy 2-opt algorithm also considers pair wise 

exchanges. Initially, it transposes nodes 1 and 2. If the result 

is less than the previous one, two nodes are immediately 

transposed. Else the algorithm will go on to node 3 and 

evaluate the exchange, and so on. Instead of adding one node 

at a time, one added the minimum length set of k nodes at 

each stage, in this case the time complexity will be O(n).  

3.1.4 Genetic Algorithm 
Genetic Algorithms consists of the following steps: 1. Choose 

initial population randomly. 2. Evaluate the fitness of each 

individual in the population. 3. Repeat until termination. 4. 

Select individuals to reproduce. 5. Create new generation 

throw crossover or/and mutation and give off spring. 6. 

Evaluate the individual fitness of the off spring. 7. Replace 

worst part of population with off spring. Genetic algorithm has 

a time complexity of O (log n). 

3.1.5 nearest neighbor algorithm 
This algorithm is like the greedy. For a simple path P, we 

consider i(p), j(p) the initial and the terminal nodes of P. We 

allow a single ton node to be a path with no edges[?].  

begin  

min: =∞  

for m=1, ........n do  

begin Tm: =φ; i(Tm): =j;(Tm): =m;  

while Tm< n-1 do  

begin  

d(e)= min (d (x, y)) = x is not Tm and y=i(Tm) or y is not Tm 

and x=j(Tm)  

Tm: = Tm+ e  

end  

Tm: =Tm+(j(Tm), i(Tm));  

if d(Tm)<min then T: =Tm; Min: =d(Tm)  

end  

end. 

4. RESULTS AND CONCLUSION 
In this section we present some results obtained from 

experiments section. Algorithm complexity identifies the time 

and space that algorithm needs to accomplish its work. So 

genetic and greedy algorithm have the best complexity which 

is O (log n), but when the problem size is very large it is 

suitable to use greedy algorithm more than using genetic, 

because genetic will be complex to be applied. Then the 

greedy 2-opt which need O (n) is better than insertion 

algorithm that need O(n2k+2). 
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