
International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.44, March 2019

Improved PSO Algorithm for Training of Neural Network
in Co-design Architecture

Tuan Linh Dang
Hanoi University of Science and Technology

Hanoi City
100000, Vietnam

Yukinobu Hoshino
Kochi University of Technology

Tosayamada, Kami City
Kochi 782-8502, JAPAN

ABSTRACT
This paper proposes a new version of the standard particle swarm
optimization (SPSO) algorithm to train a neural network (NN).
The improved PSO, called the wPSOd−CV algorithm, is the im-
proved version of the PSOd−CV algorithm presented in a previous
study. The wPSOd−CV algorithm is introduced to solve the issue
of premature convergence of the SPSO algorithm. The proposed
wPSOd−CV algorithm is used in a co-design architecture. Exper-
imental results confirmed the effectiveness of the NN trained by
the wPSOd−CV algorithm when compared with the NN trained by
the SPSO algorithm and the PSOd−CV algorithm concerning the
minimum learning error and the recognition rates.

General Terms
Neural network, Particle swarm optimization, co-design architecture

Keywords
Neural network, Particle swarm optimization, FPGA, ARM, co-
design architecture

1. INTRODUCTION
Today, a neural network (NN) has become a hot topic in the re-
search. Many studies focus on the using of NN in different as-
pects [1, 2].
The NN is invented to represent a human brain. In order to be
used in the testing phase, the NN need to be trained in the training
phase [3–5]. The back-propagation (BP) algorithm has investigated
in previous studies. However, the PSO algorithm has shown the ad-
vantages in the training of the NN compared with the using of BP
to train the NN. The NN trained by the PSO algorithm had obtained
higher accuracy concerning the learning error and the recognition
rate than the NN trained by conventional BP algorithm [6–9].
The PSO is the algorithm based on the social behavior of a swarm.
During the operation, when one particle p in the swarm found a
better location than existing locations, all particles in the swarm
will follow this particle p [10, 11].
The previous has investigated the NN trained by the PSO algorithm.
However, normally the previous studies have used only the standard
PSO (SPSO) algorithm that could stick to a local minimum to train

the NN. In this case, the NN will have a low recognition rate in the
testing phase and higher learning error in the training phase.
The classification tasks of the NN trained by PSO (NN-PSO) have
been investigated in previous studies. However, these studies used
only standard PSO (SPSO) that may easily stick to a local mini-
mum during the training phase [12–14]. In this situation, the train-
ing phase will be stopped immediately. This leads to a very high
learning error and a low recognition rate. Therefore, it is necessary
to have a PSO algorithm that solves the premature convergence of
the SPSO algorithm.
In the previous research, a new architecture for co-design between
hardware and software was proposed. This architecture had not
only the advantages of the software side but also the advantage
of the hardware side. In this architecture, the PSO is implemented
in software. Thus, in the training phase, it is very easy to modify
the parameters of the PSO algorithm. In addition, the PSO is not
needed in the testing phase. So, the operating speed of the testing
phase is not affected by the software side. On the other hand, the
NN is implemented in FPGA to increase the operation speed. The
NN is implemented in FPGA so that the hardware speed could be
maintained [15–17].
In the previous study, an improved version of the SPSO was
proposed to solve the problem of the local minimum called the
PSOd−CV algorithm. Experimental results demonstrated that the
PSOd−CV algorithm achieved better accuracy than the SPSO al-
gorithm. This algorithm has a big jump to help the particle can be
moved out of the local minimum. However, the inertia weight in the
PSOd−CV algorithm is fixed. The inertia weight is the trade-off be-
tween the exploration and the exploitation. With the high value of
inertia weight, the algorithm will focus on the exploitation task to
search in the global area. On the other hand, with the lower value of
the inertia weight, the exploration task will be conducted to focus
on the local area [16, 18].
The main contribution of this paper is to propose an improved
version of the PSOd−CV algorithm called the wPSOd−CV algo-
rithm to solve the premature convergence of the SPSO algorithm.
All three algorithms (SPSO, PSOd−CV, and wPSOd−CV) will be
investigated in the experiments with several publicly recognized
databases.
The paper is presented as follows. Sections 2 presents the NN-
wPSOd−CV system which has a neural network trained by parti-
cle swarm optimization algorithms. The wPSOd−CV is also pro-
posed in this section. The NN-wPSOd−CV is based on the NN-
PSO framework presented in the previous papers [15–17]. Section

1



International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.44, March 2019

3 details the experiments in NN-wPSOd−CV along with results.
Section 4 concludes this paper.

2. NN-wPSOd-CV
2.1 Neural network
The neural network was invented to represent the human brain.
Normally, the NN has three different of layers called the input
layer, the output layer, and the hidden layer [3–5]. The D number
of weights and biases of the NN can be seen in Eq. (1).
The outputs the input layer will become the input of the hidden
layer, and the output of the hidden layer will become the input
of the output layer through the activation function. The activation
function will fire or the output has the value of one if the input if
the input is higher than threshold [3–5]. The conventional activation
function is the Sigmoid function as can be seen in Eq. (2).

D = (NI+1)×NH+(NH+1)×NH×NL+(NH+1)×NO (1)

where NI , NH , and NO are the numbers of the nodes in the input
layer, the hidden layer, and the output layer. NL is the number of
hidden layers as presented in Fig. 1.

Fig. 1: Neural network

S(data) =
1

1 + e−data
(2)

where data is the input data of the Sigmoid function, and S(data)
is the output of the activation function.

2.2 Neural network trained by standard PSO
To be used, the NN needs to be trained. A famous training method is
the back-propagation (BP) algorithm. However, the previous paper
mentioned the accuracy advantage of the NN trained by PSO when
compared with the NN trained by BP algorithm [6–9]. The previous
paper proposed a framework for the co-design of the NN trained by
PSO algorithm [15–17].
The original of the SPSO is from social behaviors. When one par-
ticle in the swarm found a better position than the current best po-
sition, the new best position is updated. In addition, other particles
in the swarm have the tendency to move to the position of new best
position [10, 11].
The operation of the NN trained by the SPSO (NN-PSO) algorithm
is based on the operations of the SPSO [10, 11]. The NN-PSO can
be detailed as follows.

(1) The weights and the biases of the neural network are encoded
into the PSO particles. The dimension of one particle equals
the number of weights and biases of the neural network. In
the initial phase at time t, the positions of all particles are ran-
domly generated. Thus it has:
—Position of particle p is xp(t)
—Velocity of particle p is vp(t)
—Best personal position of particle p is x−Pbestp(t)
—Best global position of all particles in the swarm is

x−Gbest(t)
—Fitness value for the best personal position of particle p is

Pbestp(t)
—Fitness value for the best global position of all particles is

Gbest(t)

(2) At next time t + 1, calculate the new velocity according to
Eq. (3)

vp(t+ 1) = w × vp(t) + c1 × r1(x−Pbestp(t)− xp(t))

+c2 × r2(x−Gbest(t)− xp(t))
(3)

where w is inertia weight, c1 and c2 are coefficients.
(3) The new position at time t + 1 is also evaluated based on

Eq. (4). Each position of a particle is considered as one set of
potential parameters for the NN. When the particle has a new
position, the corresponding weights and the biases of the NN
are also changed. Each particle has D dimensions. D is also
the size of the NN that can be calculated by Eq. (1).

xp(t+ 1) = xp(t) + vp(t+ 1) (4)

(4) The new fitness values Pbestp(t+1) and Gbest(t+1) at time
t+1 are calculated. The calculation of new fitness values uses
the output data from the NN. The parameters of the NN come
from the position of the PSO particles. The output data from
NN will be evaluated with the labeled data by mean squared
error function as seen in Eq. (5).
The minimum learning error of each particle (Pbest) and the
global minimum learning error (Gbest) of all particles are cal-
culated

fi =
1

T

T∑
j=1

(labeledj(k)− outputij(k))
2 (5)

where T is the number of training samples, labeled(k) and
output(k) are the kth component of the particle i in the la-
beled data and the output data of the NN.

(5) the stopping condition is checked.
—If the condition is satisfied, the training phase of the NN

trained by PSO is stopped, the final Gbest is found. Hence,
the final position x−Gbest(t) corresponds to the final
Gbest is also found. This final position corresponds to the
weights and biases of the NN after the training phase.

—If the condition is not satisfied. A new iteration of the train-
ing will be conducted. The training phase return to step 2.

2.3 Hardware implementation of the NN-SPSO
The framework for the hardware implementation of the NN-SPSO
is based on the previous studies. This is co-design architecture. One
part of the system is on the hardware side, another part is on soft-
ware side [15–17]. The system can be seen in Fig. 2.

2



International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.44, March 2019

Hardware side 
(Neural Network) 

Software side 
(PSO) 

Fig. 2: NN-PSO system

The PSO algorithm is implemented on the software side. The PSO
is only used in the training phase to determine the weights and the
biases of the NN. In addition, during the training, the software-
based PSO may easy to change the parameter such as the inertia
weight w, the coefficients c1, c2, or even the new PSO algorithm
can be used with the need to redesign or rebuild the FPGA side.
The NN is coded on the hardware side using SystemVerilog pro-
gramming language to take the speed advantage of the hardware-
based program when compared with the conventional software-
based program. The hardware-based normally has a higher operat-
ing speed thanks to the parallelism. The NN is the only component
used in the testing phase, therefore the speed of the software-based
algorithm does not affect the system.
In the training phase, the D weights and biases of the NN are en-
coded in the PSO particles. Each PSO particle is a D-dimensional
vector. As presented, D is calculated according to Eq. (1). The posi-
tion of each particle corresponds to a potential set of weights and bi-
ases for the NN. The PSO algorithm is conducted to find the Gbest
fitness value and also the corresponding position of the Gbest. The
found position of the particle is the trained weights and biases of
the NN. These trained parameters are sent to the hardware side (NN
module). The NN keeps the trained weights and biases and uses
these parameters in the testing phase.

2.4 Neural network trained by improved particle
swarm optimization

2.4.1 Linearly decreasing inertia weight. The linearly decreas-
ing inertia weight was presented to improve the performance of
the standard PSO algorithm by using a strategy for weight control.
This algorithm reduces the weights by iterations as can be shown
in equation 6. The linearly decreasing inertia weight strategy has
two tasks called the exploration and the exploitation, respectively.
The particles in the swarm do a global search at the beginning (the
exploitation). When inertia weight w is small, the particles conduct
the exploration. This inertia weight control has the possibility to
search and find the local solutions [19].

w = wmax − wmax − wmin

Niteration

× iteration (6)

where Niteration is the number of iterations, w is the inertia
weight.

2.4.2 Particle swarm optimization with control of velocity and in-
ertia weight. As described in the previous section, the PSOd−CV
algorithm always has the big jumps to explore a wide area in the

jumping phase. Therefore, this algorithm has the possibility to skip
local solutions in high dimensional problems. In the PSOd−CV al-
gorithm, the value of the inertia weight w is fixed. However, the
control of this weight has an impact on the PSOd−CV algorithm.
The inertia weight control is the trade-off between the exploration
and the exploitation. With a significant value of w, the PSO al-
gorithm tends to search the global area. On the other hand, with
a small value of w, the PSO algorithm tends to focus on the local
area. A famous technique for weight control is the linear decreasing
strategy. This strategy focuses on the exploitation task at the begin-
ning of the algorithm. After that, the exploration job is addressed to
search in the local area [19]. This strategy has the chances to find
local solutions.
This paper proposes the PSO with control of velocity and iner-
tia weight algorithm (wPSOd−CV algorithm). This algorithm is
the combination of the PSOd−CV algorithm and the inertia strat-
egy. Thus, this algorithm may overcome the disadvantage of the
PSOd−CV algorithm. The wPSOd−CV algorithm is given in equa-
tion (7).

vp(t+ 1) = wmax − wmax − wmin

Nite

× ite× vp(t)

+c1 × (x−Pbestp(t)− xp(t))

+c2 × (x−Gbest(t)− xp(t)) +
c3 × r

(vp(t))2

(7)

where Nite is the number of iterations, ite is the current iteration,
c1, c2, c3 are the coefficients, r is the random number.

3. EXPERIMENTS
The experiments were conducted with the DE1-SoC development
board provided by Altera [21]. The Hardware based NN is coded in
SystemVerilog programming language while the PSO algorithms
were implemented in ARM processor attached to the DE1-SoC
board. The connection between the hardware side and the software
side was done by direct memory access (DMA) mechanism.
The experiments investigated three different PSO algorithms which
were SPSO, PSOd−CV presented in the previous research, and the
proposed wPSOd−CV algorithm.
Based on the tests, a suitable set of parameters for all three algo-
rithms was as follows.

(1) w = 0.7, c1 = 0.5, c2 = 0.3 in the standard PSO algorithm.
(2) w = 0.7, c1 = 0.5, c2 = 0.3, c3 = 0.00001 in the PSOd−CV

algorithm.
(3) wmax = 0.7, wmin = 0.3, c1 = 0.5, c2 = 0.3, c3 = 0.00001 in

the wPSOd−CV algorithm.

Four different databases were used in the experiments called XOR
problem, Iris dataset, Balance-scale dataset, and Credit approval
dataset.

3.1 XOR problem
The first experiment was conducted with the XOR problem, a non-
linear problem. The configurations of the NN were two input nodes,
six hidden nodes, and four output nodes. The parameters of this ex-
periment were 50 particles, 150 iterations.
The measurement of three algorithms (standard PSO, PSOd−CV,
and wPSOd−CV) was the Gbest, the global minimum value of the
learning error. Fig. 3 shows the reduction of the Gbest. In all three
algorithms, the Gbest had a rapid reduction period. In the next pe-
riod, the Gbest declined slowly. The decreased value of Gbest may

3



International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.44, March 2019

0.0

0.2

0.4

0.6

0 50 100 150
Number of iterations

G
be

st
Algorithm

 wPSOd_CV
PSOd_CV
Standard PSO

Fig. 3: The reduction of Gbest

be subtle. For example, the Gbest of the standard PSO was 0.323
in iteration 17 and this number reduced to 0.321 in iteration 38. The
final Gbest after 150 iterations of the standard PSO algorithm was
0.278, the PSOd−CV algorithm was 0.195, and the wPSOd−CV
algorithm was 0.005. The wPSOd−CV algorithm obtained better
performance than the other two algorithms in this experiment.
The results of the co-design program were observed in the PuTTY
software. For example, the results of the NN trained by the
wPSOd−CV algorithm with the XOR problem were shown in
Fig. 4. For reference, Table I shows the training data.

Fig. 4: The output in PuTTY software

Table I. : The training data of the XOR problem

Input Output1 Ouput2 Outpu3 Output4

1 1 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0

3.2 Iris dataset
In the previous experiment, the NN was capable of solving the
XOR problem. It is needed to investigate the operation of the pro-
posed co-design with a classification dataset comes from daily life.
However, this research uses Cyclone V which has the lowest num-
ber of resources in the Altera device family [20]. Thus, the Iris
dataset was chosen. This dataset has three different classes called
Setosa, Versicolour, and Virginica. Each class has 50 samples. Each
sample has four different attributes (the sepal length, the sepal
width, the petal length, and the petal width) [22].

The NN in this experiment had four input nodes (for four at-
tributes), three output nodes (for three classes), ten hidden nodes,
and two hidden layers. The configuration was 4-10-10-3.
The Iris dataset was separated into two sets. The bigger set had 105
samples (each class had 35 samples). On the other hand, the smaller
set had 45 samples (each class had 15 samples).
Several experiments were conducted to investigate the operation of
three algorithms in different situations. Therefore, various values
for the number of training data, the number of iterations and the
number of particles were chosen.
In the first scenario, the bigger set was used as the training data
and the other set was considered as the testing data. The number of
particles was modified from a small value to a big value.
Fig. 5 and Fig. 6 describe the reduction of Gbest, the global min-
imum value of learning error. In these experiments, the number
of particles was 20, and the numbers of iterations were 100 and
340. In both experiments, the final Gbest of the wPSOd−CV al-
gorithm decreased to the lowest value (0.1774 in the case of 100
iterations and 0.0510 in the case of 340 iterations). The final Gbest
of the PSOd−CV algorithm was 0.1944 (100 iterations) and 0.0883
(340 iterations). The final Gbest of the standard PSO algorithm
was 0.2012 in both scenarios. Concerning the recognition rate, the
wPSOd−CV also obtained a higher recognition rate (77.78% in 100
iterations and 93.33% in 340 iterations) than the PSOd−CV al-
gorithm (66.67% in 100 iterations and 93.33% in 340 iterations)
and the standard PSO algorithm (only 66.67%). Therefore, the
wPSOd−CV algorithm may obtain a low Gbest and a high recog-
nition rate even with the small number of particles.

0.0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100
Number of iterations

G
be

st

Algorithm
 wPSOd_CV
PSOd_CV
Standard PSO

Fig. 5: The reduction of Gbest when P = 20 particles, 100 iterations

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300
Number of iterations

G
be

st

Algorithm
 wPSOd_CV
PSOd_CV
Standard PSO

Fig. 6: The reduction of Gbest when P = 20 particles, 340 iterations

4



International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.44, March 2019

In the next experiments, the number of particles was changed to
increase the recognition rate and to reduce the final Gbest. Fig.
7 presents the Gbest in all three algorithms when the number of
particles P = 42. Table II shows the final Gbest and the recognition
rate when P = 100. As seen in Table II and Fig. 7, the wPSOd−CV
algorithm had a lower Gbest and also had a better recognition rate
than the PSOd−CV algorithm and the standard PSO algorithm.

0.0

0.1

0.2

0.3

0.4

0.5

0 50 100
Number of iterations

G
be

st

Algorithm
 wPSOd_CV
PSOd_CV
Standard PSO

Fig. 7: The reduction of Gbest when P = 42 particles

Table II. : The results of three different PSO algorithms when P = 100
particles

Number of iterations Algorithm Gbest Recognition rate

100 Standard PSO 0.0669 93.33%
PSOd−CV 0.0541 95.56%

wPSOd−CV 0.0457 100.00%
230 Standard PSO 0.0577 97.78%

PSOd−CV 0.0368 100.00%
wPSOd−CV 0.0210 100.00%

Another experiment was conducted to investigate the operation of
the proposed system with a small number of training data. In this
experiment, the smaller set (45 samples) was used as the training
samples. The number of particles and the number of iterations were
chosen randomly (P = 80 particles, 40 iterations).
Fig. 8 illustrates the Gbest of three algorithms. The wPSOd−CV al-
gorithm still produced better results than the PSOd−CV algorithm
and the standard PSO algorithm (the final Gbest and the recogni-
tion rate of wPSOd−CV were 0.0277 and 95.28%, respectively).
The results of the PSOd−CV algorithm were Gbest = 0.0284,
recognition rate = 94.29%. The results of the standard PSO algo-
rithm were Gbest = 0.1698, the recognition rate = 76.19%.

3.3 Balance-scale dataset
Another dataset, called Balance-scale dataset, was also tested in
order to investigate the operation of the NN trained by three dif-
ferent PSO algorithms in different situations. This dataset has the
same number of classes and attributes with the Iris dataset. Thus,
the configuration of the NN in this experiment was similar to the
configuration of the NN in the Iris experiment (4-10-10-3). Three
attributes of this dataset are “right state”, “left state”, and “balance
state”, respectively. The names of four attributes are “left weight”,

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40
Number of iterations

G
be

st

Algorithm
 wPSOd_CV
PSOd_CV
Standard PSO

Fig. 8: The reduction of Gbest with 45 samples as training data

“left distance”, “right weight”, “right distance”. The values of the
attributes are from one to five.
The Balance-scale dataset was also divided randomly into two sets.
The first set which had 200 samples was considered as the training
set. On the other hand, the second set that contains 60 samples was
selected as the testing set.
The configurations for the PSO were 200 iterations, 50 particles.

0.0

0.1

0.2

0.3

0 50 100 150 200
Number of iterations

G
be

st

Algorithm
 wPSOd_CV
PSOd_CV
Standard PSO

Fig. 9: The reduction of Gbest in the Balance-scale dataset experiment

Table III. : The results of the experiment with the Balance-scale dataset

Algorithm Gbest Recognition rate

Standard PSO 0.2689 81.67%
PSOd−CV 0.1298 85.00%

wPSOd−CV 0.0077 90.00%

Fig. 9 and Table III demonstrate the accuracy results of the exper-
iment with 50 particles, 200 iterations. The wPSOd−CV algorithm
also obtained the best recognition rate among the three algorithms.

3.4 Credit approval dataset
To investigate a different situation, the one hidden layer NN was
also tested. Thus, the NN can be used with a bigger dataset that
has bigger attributes. The Credit approval dataset was chosen. This
dataset that is concerning the applications for credit cards has four-
teen attributes. To protect the confidentiality of the data, the names

5



International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.44, March 2019

of the attributes are not disclosed [22]. The configuration of the NN
was 14-24-2.
The first experiment investigated the situation when the numbers
of samples from each class were equal. For example, 175 samples
from class 1 and 175 samples from class 2 were selected randomly
as 350 training samples. The testing samples 125 data from set 1
and 125 data from set 2.
To investigate different cases, the number of iterations and particles
were modified from 10 particles, 50 iterations in scenario 1 to 50
particles, 100 iterations in scenario 2.
The reductions of the minimum learning error Gbest in the first
scenario and second scenario are shown in Fig. 10, and Fig. 11,
respectively. The results which are given in table IV demonstrated
the performance of the proposed wPSOd−CV algorithm for train-
ing the FPGA-based NN in the co-design architecture.

Table IV. : Credit approval dataset, 350 training samples, 250 testing sam-
ples

Parameters Algorithm Gbest Recognition rate

25 particles Standard PSO 0.1267 91.20%
50 iterations PSOd−CV 0.1161 94.00%

wPSOd−CV 0.1155 94.40%
50 particles Standard PSO 0.1164 92.00%

100 iterations PSOd−CV 0.1089 94.80%
wPSOd−CV 0.0971 96.40%

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40 50
Number of iterations

G
be

st

Algorithm
 wPSOd_CV
PSOd_CV
Standard PSO

Fig. 10: The reduction of Gbest with 350 training samples, 25 particles, 50
iterations

The second experiment used the training set and testing set that did
not have an equal number of samples from each class. For exam-
ple, 272 samples of set 1 and 229 samples of set 2 were randomly
included in the training set. The testing set had 190 samples. The
number of particles was 50, and the number of iterations was 100.
The reduction of Gbest is presented in Fig. 12. The final Gbest of
the wPSOd−CV algorithm decreased to the lowest value (0.1324)
while the final Gbest of the PSOd−CV algorithm was 0.1332, and
the final Gbest of the standard PSO algorithm was 0.1421. The
recognition rates of the NN trained by these three algorithms are
illustrated in table V. The wPSOd−CV algorithm also obtained the
highest recognition rate (88.95%).
The experimental results show that the proposed wPSOd−CV al-
gorithm obtained the best performance among the three algorithms
(wPSOd−CV, PSOd−CV, and standard PSO).

0.0

0.1

0.2

0.3

0.4

0 25 50 75 100
Number of iterations

G
be

st

Algorithm
 wPSOd_CV
PSOd_CV
Standard PSO

Fig. 11: The reduction of Gbest with 350 training samples, 50 particles,
100 iterations

0.0

0.1

0.2

0.3

0 25 50 75 100
Number of iterations

G
be

st

Algorithm
 wPSOd_CV
PSOd_CV
Standard PSO

Fig. 12: The reduction of Gbest with 500 training samples, 50 particles,
100 iterations

Table V. : Credit approval dataset, 500 training samples, 190 testing samples

Algorithm Gbest Recognition rate

Standard PSO 0.1421 83.65%
PSOd−CV 0.1332 86.84%

wPSOd−CV 0.1324 88.95%

4. CONCLUSION
This paper presents the new PSO algorithm called the wPSOd−CV
algorithm which is the improved version of the PSOd−CV algo-
rithm presented in the previous paper. In light of the evidence,
experimental results confirmed that the neural network trained by
PSO algorithms (SPSO, PSOd−CV, wPSOd−CV) was successfully
developed. The results also stated that the proposed wPSOd−CV
algorithm obtained higher accuracy concerning the learning errors
Gbest and the recognition rates than two other PSO algorithms
with different datasets and different PSO parameters (number of it-
erations, number of particles). The proposed PSO algorithm could
help the training phase of the NN out of the local minimum to in-
crease the training efficiency.
A possible avenue for future research is to investigate more com-
plex dataset with a bigger size of the NN. Another future scope of
this study is to improve the wPSOd−CV to increase the recognition
rate and to reduce the learning error. The future research will also

6



International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.44, March 2019

investigate the using of the proposed NN-wPSOd−CV in real-life
applications.

5. REFERENCES
[1] P.M. Ravdin, G. M. Clark GM, A practical application of

neural network analysis for predicting outcome of individ-
ual breast cancer patients, Breast Cancer Research and Treat-
ment, vol. 22, no. 3, pp. 285-293, 1992

[2] A. E. Celik, Y. Karatepe, Evaluating and forecasting bank-
ing crises through neural network models: An application for
Turkish banking sector, Expert Systems with Applications vol.
33, no. 4, pp. 809-815, 2007

[3] S. Haykin, Neural networks and learning machines, 3rd edn,
Prentice Hall, 2008

[4] R. H. Nielsen, Theory of the backpropagation neural network,
In processing of the international conference on neural net-
works, pp. 693-605, 1989

[5] R. Rojas, Neural networks - a systematic introduction,
Springer-Verlag, 1996

[6] J. R. Zhang, J. Zhang, T. M. Lok. M. R. Lyu, A hybrid particle
swarm optimizationback-propagation algorithm for feedfor-
ward neural network training, Applied mathematics and com-
putation, vol. 185, pp. 10261037, 2007

[7] Z.A. Bashir, M.E. El-Hawary, Applying Wavelets to Short-
Term Load Forecasting Using PSO-Based Neural Networks,
IEEE transactions on power systems, vol. 46, pp. 268-275,
2016

[8] A. Suresh, K. V. Harish, N. Radhika, Particle Swarm Opti-
mization over Back Propagation Neural Network for Length
of Stay Prediction, In processing of the international confer-
ence on information and communication technologies, vol.
24, no.1, pp. 20-27, 2009

[9] V. G. Gudise, G. K. Venayagamoorthy, Comparison of parti-
cle swarm optimization and backpropagation as training al-
gorithms for neural networks, In processing of 2003 IEEE
swarm intelligence symposium, pp. 110-117, 2003

[10] J. Kennedy, R. Eberhart, Particle swarm optimization, In pro-
cessing of the IEEE international conference on neural net-
works, vol. 4, pp.1942-1948, 1995

[11] R. Eberhart, Y. Shi, Particle swarm optimization: develop-
ments, applications and resources, In processing of the 2001
IEEE international conference on congress on evolutionary
computation, vol. 1, pp. 81-86, 2001

[12] R. Mendes, et al., Particle swarms for feedforward neural net-
work training, In processing of the IEEE international joint
conference on neural networks, vol.2, pp.1895-1899, 2002

[13] K. W. Chau, Application of a PSO-based neural network in
analysis of outcomes of construction claims. Automation in
construction, vol. 16, no. 5, 642-646, 2007

[14] G. Montavon, G. B. Orr, K. R. Muller Neural networks: tricks
of the trade, 2nd edn, Springer, 2012

[15] T. L. Dang, Y. Hoshino, Hardware/Software Co-design for a
Neural Network Trained by Particle Swarm Optimization Al-
gorithm, Neural Processing Letters, pp. 1-25, 2018

[16] T. L. Dang, C. Thang, Y. Hoshino, Hybrid hardware-software
architecture for neural networks trained by improved pso al-
gorithm, ICIC Expree Letters, pp. 565-574, 2017

[17] T. L. Dang, Y. Hoshino, An-FPGA based classification system
by using a neural network and an improved particle swarm
optimization algorithm, In processing of the 2016 Joint 8th
International Conference on Soft Computing and Intelligent
Systems (SCIS) and 17th International Symposium on Ad-
vanced Intelligent Systems, pp.97-102, 2016

[18] Y. Hoshino, H. Takimoto, PSO training of the neural network
application for a controller of the line tracing car, In: Proceed-
ings of the IEEE International Conference on Fuzzy Systems,
pp.1-8, 2012

[19] Y. Shi. R.Eberhart R, A modified particle swarm optimizer, In
Proceedings of 1998 IEEE International Conference on Evo-
lutionary Computation, pp 69-73, 1998

[20] Altera company, SoC product brochure.
https://www.altera.com/products/soc/overview.html, ac-
cessed 07 February 2019

[21] Terasic company, DE1-SoC user manual,
http://de1-soc.terasic.com, accessed 07 February 2019

[22] M Lichman, UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml, accessed 07 February 2019

7


	Introduction
	NN-wPSOd-CV
	Neural network
	Neural network trained by standard PSO
	Hardware implementation of the NN-SPSO
	Neural network trained by improved particle swarm optimization
	Linearly decreasing inertia weight
	Particle swarm optimization with control of velocity and inertia weight


	Experiments
	XOR problem
	Iris dataset
	Balance-scale dataset
	Credit approval dataset 

	Conclusion
	References

