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ABSTRACT
In this paper, a Mel-scaled AR (Mel-AR) model based VAD is pre-
sented, where likelihood ratio measure is used to classify the input
speech frames as speech/non-speech segments. The Mel-AR model
parameters have been estimated on the linear frequency scale from
the input speech signal without applying bilinear transformation.
This has been done by employing a first-order all-pass filter rather
than unit delay. The performance of the proposed VAD is evaluated
on Aurora-2 database by measuring FAR and FRR. The equal false
rate (EFR) at the crossover point is also presented as a merit of
VAD. In addition, the performance of the proposed VAD in speech
recognition is verified by incorporating it with a Mel-Wiener filter
for MLPC based noisy speech recognition.
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1. INTRODUCTION
Voice activity detector (VAD) plays an important and sensitive role
in many applications including robust speech recognition, digital
hearing aids and discontinuous speech transmission for bandwidth
reduction or distributed speech recognition over wireless and IP
networks [1], [2], [3], [4]. One of the most critical problems of
such applications is that the limitations of coping with the envi-
ronments. Environmental noises contaminate the speech signal and
change the feature parameters. As a result, the performance of these
applications severely degrades in a wide variety of environmental
conditions. To maintain the performance at an acceptable level a
noise suppression unit along with a precise VAD is essential.

For non-stationary noises, the VAD is even more crucial since it is
necessary to update constantly varying noise statistics. Therefore,
a correct classification of noisy signal into speech/non-speech seg-
ments is necessary to track an accurate estimation of noise and an
efficient application to a speech enhancement scheme.

Many researchers have studied different methods to develop an ef-
ficient VAD and most of them are heuristics using different speech
parameters, such as, energy [5], [6], [7], zero crossing rate [2],
[8], cepstral [9], LPC [10], etc. However, the algorithms based on
speech features with heuristic rules have difficulty in coping with
real world noises at low SNR conditions. Recently, statistical model

based VAD is found to be an efficient approach to segregate speech
and non-speech frames under a broad range of background noises
[11], [12], [13], [14], [15], [16]. In [11], a robust VAD algorithm
based on statistical likelihood ratio test (LRT) involving a single
observation vector is proposed. Later, many variants of LRT have
been studied to improve the performance of VAD [12], [17], [18].

In this paper, an autoregressive (AR) model [19] based VAD is
proposed, where likelihood ratio (LR) measure is used to classify
the input speech frames as speech/non-speech segments. The AR
model is implemented on mel-scale using a first-order all-pass fil-
ter instead of unit delay.

2. GAUSSIAN MEL-SCALED AUTOREGRESSIVE
MODEL

The frequency warped signal x̃[n] (n = 0, 1, ..,∞) obtained by
the bilinear transformation [20] of a finite length windowed signal
(n = 0, 1, ..,N − 1) is defined as

X̃(z̃) =

∞∑
n=0

x̃[n]z̃−n = X(z) =

N−1∑
n=0

x[n]z−n (1)

where z̃−1 is the first-order all-pass filter,

z̃−1 =
z−1 − α

1− α · z−1
. (2)

The phase response of z̃−1 is given by

λ̃ = λ+ 2 · tan−1
{

α sinλ

1− α cosλ

}
(3)

This phase function determines a frequency mapping, and α(0 <
α < 1) controls the degree of warping.

Let x be anN -dimensional random variable corresponds toN con-
secutive samples of the windowed signal. For an M -th order zero
mean autoregressive process, x is given by

ẽn =

M∑
i=0

ãix̃n−i (n = 0, ..,∞) (4)

where {ẽn} are Gaussian i.i.d. random variables with zero mean
and unity variance, and {ãi} are the Mel-scaled AR coefficients
with ã0 = 1.
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Now, for large N , the probability density function for x can be
approximated by [19]

fa(x) ≈ (2π)−N exp{−1

2
δ(x; ã)} (5)

where

δ(x; ã) = Rã[0]r̃x[0] + 2

M∑
i=1

Rã[i]r̃x[i] (6)

Rã[i] is the autocorrelation function of AR coefficients and r̃x[i] is
the mel-autocorrelation function [21], [22], [23] of x.

The assumption made here is that the signal x has already been
properly scaled, that is, in the LPC terminology this is equivalent
to normalization by the square root of average residual energy.

3. LIKELIHOOD RATIO MEASURE
The proposed VAD is based on the likelihood ratio measure be-
tween autoregressive model of noise and input speech signal. An
M -th order autoregressive noise model with coefficients ã0 = 1 is
created from initial 20 frames of the input speech signal. Then for
any speech frame t, the mel-autocorrelation function r̃x[i] is cal-
culated to estimate likelihood ratio between AR noise model and
current speech frame as follows:

dLR = Rã[0]r̃xx[0] + 2

M∑
i=1

Rã[i]r̃xx[i]− 1 (7)

Finally, dLR is compared with a threshold value η. For dLR < η,
the frame is detected as noise, otherwise, speech frame.

When a frame t is detected as noise, the estimated mel-
autocorrelation function of noise ˆ̃rn[i, t] is updated by accumulat-
ing r̃x[i, t] as follows:

ˆ̃rn[i, t]=


βˆ̃rn[i, tp] + (1−β)r̃x[i, t];

if frame t is silence
ˆ̃rn[i, tp];

if frame t is speech

(8)

where tp is the previous noise frame and β is the forgetting factor
of value 0 < β < 1.

Though the proposed VAD is based on the likelihood ratio measure,
it is also possible to implement the VAD based on Itakura-Saito dis-
tortion measure [24]. Itakura-Saito distortion measure dIS between
AR noise model and input speech frame is given by

dIS =
1

σ2
en

δ(x; ã) + log
σ2
en

σ2
ex

− 1 (9)

where σ2
en and σ2

ex are the residual energies of the estimated noise
and current frame, respectively, and δ(x; ã) is given by Eq. (6).

4. EXPERIMENTAL SETUP
The proposed VAD was evaluated on test set A in Aurora 2 database
[25]. The Aurora 2 database is a subset of TI digits database [26]
contaminated by additive noises and channel effects. The order of
AR model was set to 10 and the window length was 40 ms with 10
ms frame period. The value of forgetting factor was set to 0.96.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Threshold

 5

10

15

20


R
a

te
 [

%
]


FRR 
FAR 

Fig. 1. False alarm and false rejection rate as a function of threshold.

5. PERFORMANCE EVALUATION
Usually two measures are used to examine the VAD performance.
One is frame based false alarm rate (FAR) and the other one is
frame based false rejection rate (FRR). As reference the corre-
sponding clean speech files are labeled as speech/nonspeech frames
using an energy based VAD. Because for clean speech the energy
based VAD can properly discriminate speech and silence.

As the threshold factor η is used for detecting input frames as
speech or noise, the effect of threshold factor on FAR and FRR
is examined and the result is presented in Figure 1. Here FAR and
FRR are calculated by using all the speech files for the entire set of
noises (subway, babble, car and exhibition) in test set A for 5 dB
SNR. The experiment was carried out for the threshold factor of
0.0 to 1.0. As shown in Figure 1, the proposed VAD keeps a steady
FAR and FRR with increasing threshold factor. It is also observed
that the FAR has a decreasing trend with increasing threshold fac-
tor. On the other hand, reverse characteristic is seen for FRR. The
higher value of FRR means the most of the noise frames are de-
tected as speech, on the contrary, the higher value of FAR means
the most of the speech frames are detected as noise. Hence, there
should be a trade-off between FAR and FRR for better estimation
of noise. It has been found that the crossover point is obtained at the
value of threshold factor η = 0.41, and the equal false rate (EFR)
at this point is around 11.2%.

The EFR at the crossover point both for Itakura-Saito (IS) distor-
tion and likelihood ratio (LR) measure as a function of window
length has also been examined and presented in Figure 2. It has
been found that longer window length gives lower EFR both for
IS and LR based VAD. Consequently, the proposed system uses 40
ms window length for VAD. Though the EFR for IS based VAD is
much lower than that of LR based VAD, the recognition result for
test set A of Aurora 2 database shows that LR based VAD obtains
slightly better result, which is presented in Figure 4.

To find the optimum threshold value, a number of recognition ex-
periments were carried out with different threshold values under the
conditions given in Table 1. The threshold factor η = 0.0 means
the noise model is not adaptive and it is created from the initial 20
frames of the speech signal. The larger threshold affects the esti-
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Fig. 2. False rate at crossover point as a function of window length both
for IS and LR based VAD.

mated noise model and changes the model into speech like model.
Because of higher value of threshold factor most of the frames are
detected as noise frames. As shown in Figure 3, the highest recog-
nition accuracy is obtained at the values of threshold factor around
0.1 to 0.15. In the final recognition experiment the threshold value
was set to 0.11.

Table 1. Analysis conditions for recognition
experiment.

Feature: MLPC
Analysis order: 12

Front-end Window length: 20 ms
Frame shift: 10 ms
Feature vector: 14 cep + 14 ∆

Filter: Mel-Wiener
Enhancement Order: 3

VAD: Proposed
Cepstral processing: Blind equalization

Back-end HMM

In Figure 5, FAR and FRR are presented as a function of SNR. The
false alarm and false rejection rate are calculated by averaging over
all noises for SNRs 15 to 0 dB with 5 dB interval. At high SNR
conditions both the FAR and FRR are almost constant. This means
that at a certain level of SNR, the performance of the proposed VAD
is almost unchanged with increasing value of SNR. At SNR 5 dB
an unexpected result is obtained.

6. CONCLUSION
This paper presents an autoregressive model based VAD and its
application to the robust speech recognition. The autoregressive
model is efficiently implemented on mel-scale. The likelihood ra-
tio measure is used to segregate speech and non-speech frames.
The performance of the proposed VAD is evaluated on Aurora 2
database. The FAR, FRR and EFR are presented as the merit of
VAD. The recognition accuracy for MLPC based front-end with
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Fig. 3. Recognition accuracy as a function of threshold.
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Fig. 4. Recognition accuracy for LR and IS based VAD using MLPC
based front-end with Mel-Wiener filter.
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Fig. 5. False alarm and false rejection rate as a function of SNR.
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mel-Wiener filter and proposed VAD is found to be 87.04% for test
set A.
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