Abstract

One of the current challenges in Internet of Things (IOT) security is the choice cryptography algorithms and key management mechanism to be used in the perception (hardware) layer. The purpose of this paper is to study the various security algorithms to achieve security standards (confidentiality, integrity, privacy) on the perception layer of IOT. The study is based on comparing the different characteristics of these algorithms, such as the degree of security of the algorithm, its speed, its achievement of various security standards, and determination of which algorithms are easy to apply to physical devices such as sensors.

References

IOT Perception Layer Security and Privacy


3. Deakin, Mark (22 August 2013). "From intelligent to smart cities". In Deakin, Mark. Smart
Cities: Governing, Modelling and Analysing the Transition. Taylor and Francis. p. 15.

Conference on Electronic Mechanical Engineering and Information Technology, volume 6,

5. Davis, Jim; Edgar, Thomas; Porter, James; Bernaden, John; Sarli, Michael (2012-12-20).
"Smart manufacturing, manufacturing intelligence and demand-dynamic performance".


7. K. Zhao and L. Ge, "A survey on the internet of things security," in Int'l Conf. on
Computational Intelligence and Security (CIS), 663-667, 2013.

8. M. Leo, F. Battisti, M. Carli, and A. Neri, "A federated architecture approach for Internet

9. L. Atzori, A. Iera, G. Morabito, and M. Nitti, "The social internet of things (sIoT)—when
social networks meet the internet of things: Concept, architecture and network characterization,"

Computer Networks 148 (2019) 283–294

Medical Informatics ❄ Volume.15, No. 5, 2008.

Frequency Identification (RFID) Systems ", National Institute of Standards and Technology.


Index Terms

Computer Science

Security
Keywords

IOT, Perception Layer, Security.