
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

12

NLP for Information Retrieval using B Trees

Manasamithra P.

Department of Computer Science
JSS Science and Technology University (Formerly

SJCE)

H. C. Vijayalakshmi

Department of Computer Science
JSS Science and Technology University (Formerly

SJCE)

ABSTRACT
Information retrieval is very important area in any of the IT

applications. Systematic data storage is essential in information

retrieval. In conventional method, data is stored in a structured

format and retrieved using SQL queries which requires technical

knowledge. There is a necessity to retrieve the data using

natural language. A hybrid system to query and retrieve the data

from the database using natural language is implemented. It is a

combination of keyword based and semantic analysis methods.

M-way B-tree is used to store the keywords which act as

knowledge base. Analysis shows that using B-tree is found to be

faster and superior in retrieving information.

Keywords
B-tree, Database Management System, Information retrieval,

Keyword based search, natural language queries, Semantic

Analysis, SQL,

1. INTRODUCTION
Information retrieval is an emerging technology in Information

technology field. Every application needs storing and retrieval of

application specific data. The traditional way of doing it, is

through various SQL queries. This requires high technical

knowledge about the usage of the SQL tools and the structure of

relevant database schema. It is hard for common people not

having technical knowledge to use these kinds of tools. In this

regard, Natural Language Processing concept started evolving

rapidly. NLP made human-computer interaction possible

through human natural language. Application user can query the

database in any of the human languages like English and get the

relevant answer using NLP techniques.

Several researchers are working in this direction. Many

researchers have proposed different ideas and methodologies to

convert natural language query to system understandable query

such as SQL query. In this paper, we have proposed a method

for conversion of natural language query in to SQL query using

a hybrid approach. It includes keywords based and semantic

based techniques using an efficient data structure to store the

knowledge base.

This paper is organized in to 6 sections. Section1 is about brief

introduction and section2 is the literature survey about the work

carried out by different researchers using NLP techniques.

Section 3 provides the overview of the System. Section 4 gives

the implementation details. Section 5 tabulates the results of the

experiment and does a comparative analysis of result with and

without using B-tree. This is followed by Conclusion and Future

Work in Section 6.

2. LITERATURE SURVEY
LUNAR is a system which answers about rock sample brought

back from the moon. It uses an Augmented Transition Network

(ATN) parser and Woods‟ Procedural Semantics. It has

linguistic limitations and was able to handle 78% of users

request and this ratio increased to 90% when dictionary errors

were corrected. But it was misleading. LIFFER/LADDER used a

semantic grammar to query a distributed database. It is based on

three layered architecture, Information Natural Language Access

to Navy Data (INLAND), Intelligent Data Access (IDA), File

Access Management (FAM). RENDEZVOUS focuses on query

paraphrasing and in engaging users in clarification dialogs when

there is a difficulty in parsing input as mentioned by Axita Shah

et al. [5].

PLANES is able to understand and answer poorly framed

questions by interacting with the user. CHAT-80 processes the

question into three stages such as 1) Representing a word in

logical constants, 2) Representing verbs, nouns and adjectives

with their prepositions as a predicate and 3) Representing

complex phrases or sentences by conjunctions of predicates on

the database. It consists of facts about 150 countries of the

world and small set of English language vocabulary,

implemented in PROLOG [5].

EUFID consists of three major modules namely analyzer

module, mapper module and translator module. Word Alignment

based semantic parsing (WASP) uses Prolog as the formal query

language to build a semantic parser. There is no necessity of

prior knowledge of syntax. The System is able to build a

semantic parser from annotated corpora which does not require

creating a grammar manually. It was evaluated on GEOQUERY

domain and achieves 86.14% precision and 75% recall. It was

also evaluated on English, Spanish, Japanese and Turkish from

which Japanese and Turkish has the lowest recall.

In [1], Fei L et al., used dependency parser to understand the

natural language query linguistically. Stanford parser is used to

generate dependency parse tree. The system proposed in [2] by

Garima Singh et al., is an algorithm based technique to generate

the sql query from the natural language. The system analyses

Natural language query in series of steps and at each stage the

data is further processed to finally form a query leading to its

execution.

3. SYSTEM OVERVIEW
Figure 1 depicts the overview of the proposed system. The entire

system that we have implemented consists of mainly four parts

namely preprocessing, Natural Language Processor, Knowledge

Base and Query translator. Each discussed below.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

13

Figure 1. System Overview of Information Retrieval using B-

tree

3.1 Preprocessing
Preprocessing is a very important step in NLP. Parsing and

cleaning are the most important tasks performed in this phase.

User entered query from user interface is the input for this step.

The input query undergoes various preprocessing steps. This

includes elimination of stop words, changing the case to all

lower case and tokenization.

3.2 Natural Language Processor

Natural Language Processor is main part of the system where

actual processing takes place. NLP Processor is a combination of

Semantic Analysis technique and keyword based approach.

Semantic Analysis is a choice when none of the words in the

entered query matches with the keywords in the knowledge base.

It means that either the query is invalid that it does not fit into

the context of database that we have. Or there is a chance that

some of the keywords are missing in the knowledge base even

though it is a relevant query. If it is first case, Semantic Analysis

also cannot produce the result. In case of second option,

Semantic analysis will try to form the query using the linguistic

relationship between the words from the Natural language query.

The output of this step is intermediate query in case of Semantic

analyzer and components of the query in case of Keywords

based approach. This is done by using Stanford dependency

parser. The details of dependency parser are given below.

Stanford Dependency Parser

Many Natural Language processing implementations used

Stanford dependency parser as the syntactic and semantic

analyzers. Valentin Ilyich Spitkovsky et al. [21] proposed

Stanford typed dependencies representation which is designed to

provide a simple description of the grammatical relationships in

a sentence that can easily be understood and effectively used by

people without linguistic expertise who want to extract textual

relations by. Marie-Catherine de Marneffe in [22] mentioned

that, rather than the phrase structure representations that have

long dominated in the computational linguistic community, it

represents all sentences relationships uniformly as typed

dependency relations which called „typed dependency parser‟.

Based on the grammatical relationships, it is possible to

determine the component of the SQL query.

Example: Tree representation for the query - Return all the

employees who have salary more than 20000

The tree representation given below is based on the linguistic

relationship between the words. Here “all” acts as adjective for

the noun “Employees”. So, from this we can determine that

Employee as a table name and “all” as a keywords which is to

retrieve all the records of Employee table.

Figure 2. Stanford dependency parse tree

3.3 Knowledge Base
The efficiency of the system will be increased as we use more

robust data structure to store the keywords. All the possible

keywords should be pre-stored in case of keyword based

approach. Storing and searching the keywords in a flat file is

expensive. This will increase the search time as the searching

method is sequential. Here, we have used a well-known data

structure called B-tree. All the keyword combinations are stored

in different m-way B-trees with a root node and all the leaves in

alphabetical order so that search becomes easy. Separate B-tree

is constructed for table names, attributes, constants; escape

characters/stop words and so on. A sample 4-way B-tree for all

the escape characters is as shown in Figure 3.

Figure 3. Sample B-tree for storing escape characters

3.4 Query Translator
The result of comparison of tokenized keywords with the

knowledge base is the input for this stage. Based on the

comparison, tokens are classified as table name, attribute names

or constants. Find out the type of query from the classification

result. i.e. the query with “where” clause or query with “group

by” etc. Based on the type of query, keywords are placed in

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

14

appropriate position to form the query. This is followed by query

execution in MySQL to get the actual result.

4. IMPLEMENTATION DETAILS
This section explains how exactly the system is implemented in

detail. We have used Python for this implementation along with

dJango web interface for UI implementation. Detailed system

structure is as shown in Figure 4.

Figure 4. Detailed System structure used for Information Retrieval using B-Trees

User interface: Our application provides a user-friendly

interface to the end user who can provide his/her query in

English and Submit. Just a single click does everything for user.

Tokenization: Once the query is entered, next step is to divide

them into set of atomic tokens which cannot be broken further.

In the keyword based approach, this step is carried out by storing

space separated words given in the sentence and maintaining it

in a list. In the semantic analysis method, tokenization is part of

dependency parsing.

Remove Stop words/Escape characters: Once the tokens are

generated, unwanted characters should be removed. These are

the words which do not contribute anything in forming SQL

query. For e.g., „a‟, ‟an‟, ‟the‟ etc are some of the stop word

characters. The training data is stored previously and compared

with the list of tokens extracted from the natural language query.

Matched ones are removed from the list.

Part of Speech Tagging: This is done by using POS library

available in the python. In case of Semantic analysis method,

Stanford parser gives typed dependency parser with each word

attached with their part of speech notation. This is very

important in Natural Language Processing to determine the

relationship between the words. Also, POS tagging helps in

routing the search to appropriate B-tree.

Keyword based Approach:

After the common steps mentioned above, next step is to

compare each token with the different categories of training data.

The training data would be stored in different B-trees. One for

escape characters, one for table names, attributes etc. For the

comparative analysis purpose, we have also implemented the

keywords based system by storing training data set in the flat

files. Each time when we compare, file operation is carried out

and read from them sequentially.

But this is time consuming when we have very large set of data.

B-tree makes this task easier by storing them in alphabetical

order. By using tree parsing algorithms, we can easily carry out

the comparison process. B-tree is implemented in such a way

that we can construct the b-tree of any order based on the

number of keywords to be stored. Any new keywords to be

added will take a place in an alphabetical order. Searching takes

place by finding out the path to the keywords to be searched.

This reduces the time by making the search only in either left or

right of the root it belongs to recursively. The system will

proceed to process the query only if database or table name

given in the natural language query exists in the knowledge base.

Semantic Analysis:

Semantic analysis is carried out by using dependency parser.

This is helpful when the keywords stored do not yield good

result. The linguistic dependency between the words in the

sentence is captured using dependency parser. Stanford

dependency parser is used for this purpose. This helps the

system to understand the query linguistically. Each word in the

natural language query acts as node and the edge between any

words is the linguistic dependency relationship between the

tokens. The edge between the tokens is determined based on the

part of speech. Based on the relation, determine the place of each

word in the query.

Query Translator:

The tokens are classified into tables, attributes, constants and

other database entities based on comparison match. Find out the

type of query once the classification of the tokens is determined.

System supports simple queries, query containing „where‟

clause, join queries with multiple tables, group by, having, query

with constant values in the where clause, one level nested

queries and queries with multiple conditions in the where clause.

Based on the type of the query, keywords are placed in

appropriate place to form the query.

We have experimented on ten different databases like Student,

Employee, Hospital, University etc. One of the databases used

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

15

for the implementation is the Employee database and the

Schema diagram is as shown in Figure 5.

Figure 5. Schema diagram of Employee database

5. RESULT AND ANALYSIS
A set of 10 databases, 500 table names, 1500 attributes are used

for testing. This implementation resulted in good accuracy as a

combined approach. All types of queries including one level of

nesting are possible with this system. A comparative analysis is

done by carrying out the keyword based search sequentially and

by storing the keywords in B-tree. Since, we have also adapted a

technique of storing the knowledge base in an efficient data

structure called B-tree; it also enhanced the efficiency of the

system, hence reduced execution time. Some of the natural

language queries and corresponding SQL queries are as shown

in Table 1.

We have made a comparative analysis by using the B-tree as

knowledge base versus flat files. There is a huge difference in

the execution time. The result is tabulated in table 1. As we can

observer from the Table 1, Execution time reduced almost by

86%. It also helps in enhancing the space efficiency.

Table 1. Result of comparative analysis

Sl No Natural Language Query SQL query Execution

Time

using B-

Tree(in

Sec)

Execution

Time

without

using B-

Tree(in

Sec)

1 Get all the Employee details Select * from EMPLOYEE; 0.6783 4.8234

2. Return all the Employee details

who has salary more than 30000

select * from EMPLOYEE where

Salary>30000;

0.573 1.59

3. Give me all the employee names

who works in same department

location

Select Fname, Lname from Employee,

DEPARTMENT, DEPT_LOCATIONS

where Employee.Ssn =

DEPARTMENT.Dnumber and

DEPARTMENT.Dnumber =

DEPT_LOCATIONS.Dnumber group by

DEPT_LOCATIONS.Dlocation;

0.69 2.258

4. List the Project names which

belongs to HR Department

Select Pname from PROJECT,

DEPARTMENT where PROJECT.Dnum =

DEPARTMENT.Dnumber and

0.759 1.987

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

16

DEPARTMENT.Dname = “HR”;

5. Count the total number of

employees in the organization.

Select count(*) from EMPLOYEES; 0.568 0.987

6. Give me details of employee

whose name is “John”

Select * from EMPLOYEE where

Fname=”John”;

0.305 1.508

7. Return the details of all Female

Employees

Select * from EMPLOYEE where

Sex=”Female”;

0.496 3.456

8. List all the project names which

belongs to same department

Select Pname from PROJECT group by

Dnum;

0.509 2.964

9. Select all the unique data from

Department and Department

location.

Select * from DEPARTMENT NATURAL

JOIN DEPT_LOCATION;

0.578 3.237

10. Return the unique data from

Employee and Department

Select * from EMPLOYEE NATURAL

JOIN DEPARTMENT;

0.435 3.572

6. CONCLUSION AND FUTURE

ENHANCEMENT
This system is implemented by a combined approach of both

keyword based and semantic analysis which yielded a good

result. Many researchers have used sequential search method for

keyword based mechanism. Few of them used XML knowledge

base as it is a structured mechanism to retrieve the keywords and

other related information. Here, we have used m-way B-tree data

structure as knowledge base. This enhances the search burden

which was present in sequential search. When there is a huge

amount of data in the database, this method is very useful as the

result is very quick. For very large database, keyword based

mechanism takes lot of time for search in case of sequential. But,

the use of efficient data structure enhances the search burden on

the algorithm.

This system is designed as a proof of concept to demonstrate the

search time reduction in case of m-way b-tree usage in

Information retrieval. So, it is restricted to certain types of

queries as mentioned in Table 1. The system can be enhanced to

include much more types of query such as all types of join,

multiple levels of nesting etc.

7. REFERENCES
[1] Fei L, H. V. Jagadish, “Constructing an Interactive Natural

Language Interface for Relational Databases”, Proceedings

of the VLDB Endowment, Vol. 8, No. 1, 2014

[2] Garima Singh, Arun Solanki, “An algorithm to transform

natural language into SQL queries for relational databases”,

Selforganizology, 2016

[3] Subhabrata Sengupta, Prasun Kanti Ghosh, Saparja Dey

“Automatic SQL Query Formation from Natural Language

Query”, July 2014

[4] Prabhdeep Kaur, Shruthi J, “ CONVERSION OF

NATURAL LANGUAGE QUERY TO SQL”,

International Journal of Engineering Sciences & Emerging

Technologies, Jan. 2016.

[5] Axita Shah, Dr. Jyoti Pareek, Hemal Patel, Namrata

Panchal, “NLKBIDB - Natural Language and Keyword

Based Interface to Database”, International Conference on

Advances in Computing, Communications and Informatics

(ICACCI) IEEE , 2013

[6] Filbert Reinaldha, Tricya E. Widagdo, S.T., M.Sc., “Natural

Language Interfaces to Database (NLIDB):Question

Handling and Unit Conversion”, 2014 IEEE

[7] Azilawati Azizan, Zainab Abu, Shahrul Azman Noah,

“Query Reformulation Using Ontology and Keyword for

Durian Web Search”, 2016 Third International Conference

on Information Retrieval and Knowledge Management

[8] Manavalan, Subrata Chattopadhyay, Mangala, Prahlada

Rao, Sarat Chandra Babu, Akhil Kulkarni, “Experiments on

Information Retrieval Mechanisms for Distributed

Biodiversity Databases Environment”, IC3I,IEEE, 2014

[9] Sanket S.Pawar, Abhijeet Manepatil, Aniket Kadam,

Prajakta Jagtap, “Keyword Search in Information Retrieval

and Relational Database System: Two Class View”,

ICEEOT, 2016

[10] Xuan Xuan, Liu Jianbo, Yang Jin, “Research on the natural

language querying for remote sensing databases”,

International Conference on Computer Science and Service

System, 2012

[11] Xu Yiqiu Wang Liwei Yan Shi, “The Study on Natural

Language Interface of Relational Databases”, 2nd

Conference on Environmental Science and Information

Application Technology, 2010

[12] Mahesh P.Gaikwad, Natural Language Interface to

Database, International Journal of Engineering and

Innovative Technology (IJEIT) Volume 2, Issue 8,

February 2013

[13] Pooja A.Dhomne, Sheetal R.Gajbhiye, Tejaswini

S.Warambhe, Vaishali B.Bhagat, “ACCESSING

DATABASE USING NLP”, IJRET, Dec-2013

[14] Avinash J. Agrawal, Dr. O. G. Kakde, “Semantic Analysis

of Natural Language Queries Using Domain Ontology for

Information Access from Database”, I.J. Intelligent

Systems and Applications, 2013

[15] Rukshan Alexander, Prashanthi Rukshan,Sinnathamby

Mahesan, “Natural Language Web Interface for Database

(NLWIDB)”, Proceedings of the Third International

Symposium, SEUSL: 6-7 July 2013

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

17

[16] Gaganpreet Kaur, “Usage Of Regular Expressions In Nlp”,

IJRET, Jan-2014

[17] Akshay G. Satav, Archana B. Ausekar, Radhika M. Bihani,

Mr Abid Shaikh,” A Proposed Natural Language Query

Processing System”, International Journal of Science and

Applied Information Technology, April 2014

[18] K. Javubar Sathick, A. Jaya, “Natural language to SQL

Generation for Semantic Knowledge Extraction in Social

Web Sources”, January 2015

[19] Rongrong Zhang, Qingtian Zeng, Sen Feng, “Data Query

Using Short Domain Question in Natural Language”, 2010

IEEE

[20] Johanna Monti, Mario Monteleone, Maria Pia di Buono,

Federica Marano, “Natural Language Processing and Big

Data An Ontology-Based Approach for Cross-Lingual

Information Retrieval”, IEEE, 2013

[21] Marie-Catherine de Marneffe and Christopher D. Manning,

“Stanford typed dependencies manual” September 2008.

[22] Valentin Ilyich Spitkovsky, “Grammar Induction And

Parsing With Dependency-And-Boundary Models”,

December 2013

[23] http://www.nltk.org

IJCATM : www.ijcaonline.org

