
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

40

Arabic Sentences Classification via Deep Learning

Dania Sagheer, PhD

student
Dept. Artificial Intelligence and Natural Languages

Faculty of Informatics Engineering, Aleppo
university

Fadel Sukkar

Professor
Dept. Artificial Intelligence and Natural Languages

Faculty of Informatics Engineering, Aleppo
university

ABSTRACT

This paper presents a Convolutional Neural Network CNN

Models to classify Arabic sentences into three topics. These

sentences are derived from Essex Arabic Summaries Corpus

(EASC) corpus, tokenized to words and transformed to

sequences of word indices. All sequences are padded to be in

the same length. The models of Convolution Neural Network

are built on top of word embedding layer. The word

embedding layer is either pre-trained or jointed into the

model. Dropout and l2 weight regularization are used to

overcome the overfitting during training. The CNN models

achieve high performance in accuracy for Arabic sentences

classification.

General Terms

Natural Language Processing, Deep Learning

Keywords

Classification, Convolutional neural network, Word

Embedding

1. INTRODUCTION
Recently days the information on Internet is increased rapidly,

so the need of automatic systems is increased, these automatic

systems process the human language and try to understand it.

These systems seek to be interactive systems as auto

abstractive summarization [1] and the classification. In natural

language processing NLP, text classification task is

considered important step for text understanding [2]. Text

classification needs text processing and analysis, because

computer sees the text as group of symmetric characters

without meaning differentiation between these characters.

Text classification is defined as assigning each text with

predefined set of classes. Text classification is divided into

two types: single-label classification and multi-label

classification. In the single-label classification, each text

belongs to only single class, whereas the multi-label

classification assigns each text to more than one class. If the

set of classes consist of two classes, then the text

classification is called binary classification. However, if the

set contains multi classes, text classification is called multi

classification [3]. There are many applications of text

classification such as: topic identification of document or

sentence, detection of the book author, sentiment analysis,

spam classification, and others [4].

Convolutional neural networks (CNN) are a category of the

Deep neural networks that employs a mathematical operation

called convolution. Convolution is a specified kind of linear

operations. CNN are simply neural networks that use

convolution in place of general matrix multiplication in at

least one of their layers [5]. CNN has proven effectiveness in

computer vision, classification and has begun applied in

Natural language processing NLP [6]. In natural language

processing the text is tokenization into words, characters, or

bag of words, and the words, characters, or bag of words are

called tokens. Although tokens are available, CNN models

don’t take it as input, they only work with numeric tensors.

The numeric tensors are resulted by vectorization.

Vectorization associates the generated tokens with the vectors.

There are multiple ways of vectorization such as: one hot

encoding and word embedding [7]. One hot encoding

associates every token with a unique integer index and then

turns this integer index into a binary vector of vocabulary

size. The vector is zeros except at the index of the token will

be one, so the vectors in the one hot encoding are sparse

whereas word embedding are low dimensional of floating

point vectors. Word embedding are learned from data. Word

embedding can be either a part of the main task model or

loaded as pre-trained into the model.

The researchers used the convolutional neural networks in text

classification applications and Semantic clustering, so

convolutional neural network is used to model of short texts

[8]. Extracting lexical and sentence level features were

implemented by a convolutional deep neural network, then

these features are fed into a softmax classifier to predict the

relationship between two marked nouns [9]. The Simple CNN

with one layer of convolution on top of word vectors and little

hyper parameters tuning can do sentence-level classification

tasks [10]. The models for task of sentences classification

requires practitioners to specify an exact model architecture

and set accompanying hyper parameters, including the filter

region size, regularization parameters, and so on [11]. To

achieve text classification, we need to represent the semantic

content of a sentence as it is presented in the research [12]. In

the research [13] the method learns embedding of small text

regions from unlabeled data for integration into a supervised

CNN to achieve better results on text classification. The study

in [14] presents empirical character-level convolutional

networks for text classification. character-level CNN is an

effective method, but it needs a very large size of data set.

Also the research in [15] work in character-level, it increases

the depth of CNN to increase the performance. The research

[16] provides effective use for word order instead word

embedding to feed into CNN for text categorization. In

research [17] model progressively builds a document vector

by aggregating important words into sentence vectors and

then aggregating important sentences vectors to document

vectors. The research in [18] builds an Arabic word

embedding model and convolutional neural network (CNN)

for sentiment classification.

In this paper, the model of convolutional neural network

jointly on top word embedding layer and the two model of

convolutional neural network on top pre-trained word

embedding are suggested for Arabic sentences classification.

https://www1.essex.ac.uk/linguistics/research/arabic/arabiccorpora/easc.aspx
https://www1.essex.ac.uk/linguistics/research/arabic/arabiccorpora/easc.aspx
https://www1.essex.ac.uk/linguistics/research/arabic/arabiccorpora/easc.aspx

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

41

The paper is organized as follows: The Data set is briefly

reviewed in Section 2. Section 3 introduce word embedding,

Section 4 describes convolutional neural network, section 5

shows the methodology, and section 6 demonstrates the

experimental results. Finally, conclusion is offered in Section

7.

2. Data Set
Essex Arabic Summaries Corpus (EASC), university of

Essex, contains 153 Arabic Articles for summarization task

[19], in this research, a set of 500 Arabic sentences derived

from EASC is collected as the dataset. The dataset includes

three topics: Music & art, environment, and finance. Each

sentence belongs to only one topic. Each topic has nearly 160

Arabic sentences, so the dataset is considered balanced

dataset. The dataset includes about 15000 words. Sentence

length ranges between 30 to 47 words.

3. WORD EMBEDDING
There are many methods to get vectorization, which

transforms each token to a vector. Previously the statistical

methods are used to do the vectorization as TF-IDF which

calculates term frequency across the one document and the all

documents in the dataset. In vector space model one hot

encoding method creates a vocabulary of most common words

in the dataset and gives index for each word in the vocabulary,

then builds vectors of zeros in vocabulary size and gets the

value of one in the word index of the vector. One hot

encoding presents vectors with high dimensional and all the

values of the vector are zeroes except a single value, so it is

considered sparse vectors. Word embedding can compress the

vectors into low dimensional of float values, word embedding

learns the values of the vectors from the data. The most

common of word embedding methods is word2vec which has

become important in 2013 when Mikilov et al from Google

[20] suggested their method in word2vec. Word2vec model is

based on tow strategies: skip- gram and continuous bag of

words CBOW. The model trains on so large dataset and

learns the vectors of the words from the context of the words

in the dataset. In skip-gram strategy the model predicts the

context word from the target word while CBOW predicts the

target word from the context words. Word2vec shows the

similarity between word vectors according to the semantic

relationship among these words, and reflects some of the

syntactic and morphology analyzes into mathematical

relations between vectors.

Word embedding models can be used as pre-trained in top of

other models for many tasks.

The research [21] presents AraVec Arabic word2vec models

for the Arabic language using three different dataset

resources: Wikipedia, Twitter and Common Crawl webpages

crawl data, the models are built in the same strategies in

Mikilov word2vec, skip-gram and CBOW. Gensim library is

used to implement AraVec models. AraVec models are

publicly available. AraVec models proven ability to capture

similarity among word vectors, and are used as pre-trained in

top of the models for Arabic NLP tasks.

4. CONVOLUTIONAL NEURAL

NETWORK CNN
CNN is a category of Deep learning neural network. It

achieves power effectives in computer vision as feature

extraction from images and image classification, it is also

successfully begun applied to NLP. The importance of CNN

is shown in its automatic extraction of features without human

supervision. The main block of CNN is convolutional layer

that it uses the convolution operation in its computational.

Convolution operation refers to mathematically operation that

merges two sets of information. CNN consists of feature

extraction part and classification or regression part. The

feature extraction part detects the features from the input

through the convolution layers, the classification part contains

of the fully connected layers and the output layer. CNN model

uses the convolution operation in the convolution layers to

reduce the parameters in the traditional neural networks,

because the neurons in the one layer do not connect to all the

neurons in the next layer but only to a small region of it [22].

The convolution is performed on the input data with the use of

a filter or kernel to produce a feature map. The filters

represent the weights in the convolution layer [23]. Each filter

indicates the features are searched about them in the input

data. A convolution operation is applied by sliding the filter

over the input data. At every location in the input region, an

element-wise multiplication is performed and the results are

summed onto the feature map. The region of the input where

the convolution operation takes place is called receptive field.

The size of the receptive field equals to the size of the

convolution filter. It is recommended to use odd filter size.

The convolution layers perform multiple convolution on an

input data, each convolution uses a different filter and results

a distinct feature map, all these feature maps are stacked

together to form the output of the convolutional layer, so the

filter count is the dimension of the convolutional layer output.

The step for moving the filter over the input is called stride

and the value of the stride by default is 1. When the stride size

is increased, we get less overlap between the elements of the

input data. The feature map size is smaller than the input size

because the filter is contained in the input, if we want to retain

the feature map size as the same size of the input data, the

padding of zeros is used. Zero padding is expressed by the

following equation:

ZeroPadding =
K − 1

2

 Where K is the filter size.

the following equation is used to calculate the feature map

size:

O =
 W − K + 2P

S
+ 1

Where O refers to the size of the output feature map, w is the

size of the input, K is the filter size, P is the padding, and S is

the stride. Lower feature maps detect simple features from the

input data because they get less information, the deeper

feature maps combine more information from previous feature

maps so deeper feature maps can detect complex features. The

output of the convolution will be passed through the nonlinear

activation function. This could be the ReLu activation

function. This means that the ReLu is applied to the feature

maps. The function of ReLu is illustrated by the equation:

F x = max⁡(0, x)

So the only negative values change to 0, other values retrain

as these. ReLu function achieves better training of the model,

because it increases the nonlinearity of the model. ReLu

function helps to alleviate the vanishing gradient problem,

which is the issue where the lower layers of the model train

very slowly because the gradient decreases exponentially

through the layers, so by applying ReLu function the

performance of the training gets faster and better. Each

convolution layer detects a level of the features. When we

build the CNN models, we have to adjust a set of hyper

https://www1.essex.ac.uk/linguistics/research/arabic/arabiccorpora/easc.aspx

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

42

parameters. The hyper parameters of the CNN are

convolutional layers count, filter size, filter count, stride and

padding. The fully connected layers in the classification part

expects a 1D vector so the output of the convolutional layers

is flattened to a vector. this vector becomes the input of the

fully connected layer. the final output will be reduced to a

single vector of probability score by using softmax function

on the output layer. CNN is trained by backpropagation with

gradient descent or other learning methods.

5. METHODOLOGY
This research is fall in a single-label multi classification, that

every sentence has to be belongs to only one class from three

classes. Each class represent the topic of sentence.

5.1. Tokenization
The text is tokenized to words, according to a regular

expression, regex, that is a sequence of characters. Regex in

this research consists of the punctuation marks group,

numbers group and Arabic alphabet group containing

characters of vocalization. When the search algorithm finds

sequence of the characters from regex group, it tokenizes it.

All number tokens are referred to the same token “number”.

All the punctuation marks are referred to the same token

“sign”.

5.2. Word Indices
Each token that it is a word, is given an index, this index

indicates the most common of this word in all text of the data

set. the number of the most common words in the data set

equals to 15000 words. These most common words are called

vocabulary.

5.3. Pad Sequences
The sentences in the data set are transformed to the sequence

of word indices. All sequences have the same length. The

identical length is the number of the words in the longest

sentence in the data set that equals to 47 words, so the

sentences which their length less than 47 are padded by zeros.

5.4. Model
The dimension of the model input is a samples × sentence

length. The samples represent the sentence numbers in the

training set.

The model is a stack sequential of the layers that it consists of

the embedding layer, three convolutional layers, flatten layer,

one fully connected layer and the output classifier layer. The

vocabulary of the data set is built in 1500 most common

words. Each word gets the index, then these indices input to

the embedding layer to transform each of them to a float point

vector. The convolutional layers apply nonlinear ReLu

activation function and have hyper parameters as filter size,

filter count, stride and padding. The flatten layer is used to

flatten the output of the convolutional layers to a 1D vector

which inputs to the fully connected layer. The output layer

contains of three neurons because the task is to classify

sentences into three topics. The output layer applies the

softmax activation function. Each output neuron gives the

output a score of probability to be the one of the three topics.

The labels of the topic classes are encoded as binary category

with one hot encoding method.

The data set is split by random selection into training data and

test data according to the training rate.

In this research, three models are built. In the first model,

word embedding layer is trained jointly in the top of the

model. It is trained to give word vectors which minimize the

loss function by using the optimization method to achieve the

main task of this model. The main task is the sentence

classification. the input to this embedding layer is used to

index a table with the embedding vectors The dimension of

the word vectors is hyper parameter, and it is adjusted to be

256 dimension, the hyper parameters for convolutional layers

are 512 for filter count, and 3 for filter size, so the convolution

filter slide over the input and pick three words, each word is

represented by 256 features. The stride equals to one and the

padding is not used. The size of the output feature map from

the first convolutional layer is:

𝑂 =
𝑊 − 𝐾 + 2𝑃

𝑆
=
47 − 3 + 0

1
+ 1 = 45

Where W is the sentence length represented the input, K is

filter size, p is padding and s is stride. The dimension of this

output feature map is 45× 512. This feature map is inputted to

the second convolutional layer, and the size of the second

output feature map is:

𝑂 =
𝑊 − 𝐾 + 2𝑃

𝑆
=
45 − 3 + 0

1
+ 1 = 43

The dimension of this output feature map is 43× 512.

The input of the third convolutional layer is the second output

feature map, and the output feature map is:

𝑂 =
𝑊 − 𝐾 + 2𝑃

𝑆
=
43 − 3 + 0

1
+ 1 = 41

The dimension of the third feature map is 41×512.

The fully connected layer receives a 1D dimension vector, so

the flatten layer flatten the dimension of the third

convolutional layer output into a 1D vector 41*512=20992

then the output layer reduces the large numbers 20992

neurons to three neurons.

However, in the second model, AraVec Arabic word2vec is

used as pre-trained word embedding layer so the weights of

AraVec are loaded into the embedding layer, and the training

parameter is initialized to a value false. Pre-trained AraVec

Arabic word vectors have dimension of 300. They trained by

the CBOW strategy on Wikipedia data resources. The

convolutional layers’ hyper parameters are adjusted. the filter

size is selected to be three and the filter count is selected to be

500. The size of the feature maps is calculated Similar to the

one in the first model. But the dimension is to be 500 instead

of 512, so the fully connected input is 500*41=20500 neurons

and also reduced to three output neurons.

Finally, the third model also uses pre-trained Aravec Arabic

word2vec model, but it gives the words not present in the

word2vec data set the mean of the other word vectors with a

small random offset. Regularization is applied to these word

vectors with 0.05 value to prevent the values of these vectors

of memorizing from the other vectors. The convolutional

layers and the fully connected layer are the same in the second

model.

Pre-trained AraVec Arabic word2vec is proven effectiveness

in capturing some semantic relations between words, so in the

last two models it gives effectiveness in the sentences

classification.

Generally, the filters in the convolutional layers in these

models detect the features from the Arabic sentences through

three levels. These features feed into the classification part to

perform the classification task effectively.

https://en.wikipedia.org/wiki/Character_(computing)

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

43

The models are trained by using categorical cross entropy loss

function to minimize the errors between the output class and

the target class.

The filters represented weights are updated to learn through

optimization function Adam. The learning rate and epochs

number are adjusted in the models to give high accuracy in

the classification results.

5.5. Overfitting
overfitting is happened during the training stage. Overfitting

is when the model learns patterns that are specific to the

training data but that are irrelevant when it comes to new data.

so the training loss function curve keeps going down but the

validation loss curve grows up.

to avoid this overfitting, dropout layers and weight

regularization are used.

Dropout in the first and the second models is applied to the

convolutional layers’ neurons where some neurons in these

layers randomly are disabled to reduce the dependences

between the neurons. The rate of a dropping neurons is

selected to 0.7.

weight regularization gets the performance of the model more

generalization and resistance of overfitting.

Weight regularization put constraints on the complexity of a

model by forcing the weights with large values to take only

small values, that makes the distribution of weight values is

more regular.

In the third model L2 regularization technique is used. L2

regularization technique adds cost which is proportional to the

square of the value of the weight coefficients, so the weights

are become regular. This cost value is called regularization

factor and is assigned 0.01 of the all convolutional layers in

these models.

6. EXPERIMENTAL RESULTS
These models are implemented in Python language by using

libraries like Keras, numpy, re, Sklearn, Gensim and

tensorflow in the back end.

The architecture of the models is built by Keras library.

Numpy, panda, csv and re libraries are used for text

preprocessing as text reading and text tokenization. The

training and testing set are selected using Sklearn library to

split the data set to training data and testing data randomly

according to the specific training rate. Gensim library is used

to load the pre-trained AraVec Arabic word2vec.

The implementation is achieved by GPU 940 MX personal

computer.

In the first experiment, where the first model is implemented.

embedding layer is jointly into the model, the embedding

layer is not trained well, because the data set size is small and

the main task of the training is text classification not word

embedding. the model is trained on 14 epochs and The

learning rate of the Adam function is 1e-4. The batch size of

training is 30. In this experiment, the training set is 75 % of

the data set. To avoid overfitting, dropout is used in

embedding and convolutional layers. dropout layer selects

randomly dropped neurons with dropping rate 0.7.

The implementation of this model takes 21.23 seconds.

As we notice in the (figure 1), the training loss decreases with

every epoch until approaching zero value. But the validation

loss remains without modification until the seventh epoch,

then the validation loss starts with decreasing to reach a six

value at the end of the training, that it is called overfitting,

where a model that performs better on the training data isn’t

necessarily a model that will do better on data it has never

seen before. Although dropout is added to this model to

overcome the overfitting, the model still has overfitting.

Fig 1: training and validation loss in the first model

The training accuracy is reached 99% as shown in (figure 2)

but this accuracy doesn’t be generalize to the new data in the

validation set, so the validation accuracy reaches only to 76 %

at epoch 14 in the end of the training. So the second model is

suggested to perform better accuracy.

Fig 2: Training and validation accuracy in the first model

In the second experiment, where the second model is

implemented.

AraVec pre-trained Arabic word2vec model is used as word

embedding in this model to give word vectors. These word

vectors capture the semantic relations between the words

according to these contexts in the word2vec model data set.

So the results of the sentence classification get better. Dropout

also added to the model in the convolutional layers and with

the same rate 0.7. the model is trained on 10 epochs and The

learning rate of the Adam function is 1e-4. The batch size of

the training is 30.

The experiment is achieved by using tow training rate, the

first training rate is 75% of the data set, and the second one is

50% of the data set. for retesting the results, the seed of keras

is constant and is 1337.

In the state of the training rate 75%, the implementation of

this model takes 28 seconds. In the (figure 3) the training loss

approaches zero value, and the validation loss decreases but it

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

44

can’t reach less than 4.5, although the improvement is done to

the model, overfitting is still shown in the model.

Fig 3: training and validation loss in the second model,

training set is 75% of the data set

the performance accuracy of this model is rose from its in the

previous model, the training accuracy approaches about 99 %

from the epoch six, but the validation accuracy increases until

reach more than 80% at epoch eight then decreases a little to

stabilize to the 80%.

Fig 4: training and validation accuracy in the second

model, training set is 75% of the data set

When the training rate is decreased, the training data will be

reduced. So the model performance will decrease. The (figure

5) shows the training and validation loss by splitting the data

set into 50% for the training data and 50% for the testing data.

The training loss decreases gradually until be about 0.05 in

the end of the training. Whereas the validation loss can’t

decrease less than 0.7. the performance accuracy of the

training still reaches almost 99%, but the validation accuracy

shows decrease in the performance. As illustrated in (figure 6)

validation accuracy approaches to 71 % by training 50% of

the data set. The time for implementing this model takes 23.75

seconds

Fig 5: training and validation loss in the second model,

training set is 50% of the data set

Fig 6: training and validation accuracy in the second

model, training set is 50% of the data set

Finally, the third experiment is done by implement the third

model. AraVec Arabic word2vec is used as word embedding

as in the second model, but The words which are not present

in the AraVec model data set, a vector of the mean of the

other word vectors is suggested with random offset and

regularization factor to represent these word vectors. Dropout

layers are not used in this model whereas the l2 regularization

with factor 0.01 is added to the convolutional layers to

improve the performance and avoid overfitting.

The model is trained on 8 epochs and The learning rate of the

Adam function is 1e-3. The batch size of training is 30. the

seed of keras is constant and is 1337 for helping in retesting

the results.

The experiment is implemented by using tow training rate, the

data set is split by 75% rate and by 50% rate of the data set.

When the training set forms the 75% of the data set, the model

takes 14.60 seconds for implementation. Training and

validation loss function in this state converge as shown in

(figure 7). That means the model can overcome the

overfitting.

The validation accuracy increase gradually to approach 91 %

at the epoch 8 in the end of the training, as illustrated in

(figure 8).

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

45

Fig 7: training and validation loss in the third model,

training set is 75% of the data set

Fig 8: training and validation accuracy in the third model,

training set is 75% of the data set

The performance is reduced a little, when the experiment is

achieved by using only 50% of the data set for training.

However, the training and validation loss functions converge

to approach a value about 1.5 as shown in (figure 9).

Fig 9: training and validation loss in the third model,

training set is 50% of the data set

The accuracy performance decreases a little to reach about

87%. (Figure 10) shows the training and validation accuracy.

The training accuracy peak to values more than 95% from the

epoch four but the validation accuracy values increase to more

than 75% from the three epoch to reach 87% at the eight

epoch in the end of the training.

This experiment for implementing this model takes 15.4

seconds.

Fig 10: training and validation accuracy in the third

model, training set is 50% of the data set

7. CONCLUSION
Three models of convolutional neural network models are

implemented in top of embedding layer. The embedding layer

either be jointly into the model, or be pre-trained AraVec

Arabic word2vec model. The vectors for unknown words in

AraVec dataset are created by the mean of the other vectors

plus small random offset and regularization factor to get the

distribution of these vectors are normal.

Overfitting is avoided by using two methods: dropout layers

and l2 weight regularization.

Convolutional neural network models in top of word

embedding layer proven powerful and achieve high

performance accuracy in the NLP task, Arabic sentences

classification.

8. REFERENCES
[1] Sagheer Dania, Sukkar Fadel, "A hybrid Intelligent

System for Abstractive summarization”, International

Journal of computer Applications, vol (168),No (9),

June, 2017.

[2] Xiang Zhang,Yann LeCun ,“Text understanding from

scratch”, arXiv:1502.01710v5 [cs.LG], Apr, 2016.

[3] Aris Kosmopoulos, “large scale hierarchical text

classification”, Ph.D. thesis department of informatics

Athens university of economics and business, 2015.

[4] Mrs. Manisha Pravin Mali, Dr. Mohammad Atique,

"Applications of Text Classification using Text Mining",

International Journal of Engineering Trends and

Technology (IJETT), Volume 13, Number 5, Jul 2014.

[5] Ian Goodfellow, Yoshua Bengio, Aaron Courville,

“Deep Learning”, An MIT Press book, 2016

[6] Marc Moreno, Lopez,Jugal Kalita "Deep Learning

applied to NLP", arXiv:1703.03091v1 [cs.CL] 9 Mar

2017

[7] Francois chollet, “Deep learning with python”, Manning

publication Co, 2018

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No.5, July 2018

46

[8] PengWang, JiamingXu, BoXu,Cheng-LinLiu,

HengZhang FangyuanWang, HongweiHao, “Semantic

Clustering and Convolutional Neural Network for Short

Text Categorization”, Proceedings of the 53rd Annual

Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on

Natural Language Processing (Short Papers), pages 352–

357, Beijing, China, July 26-31, 2015.

[9] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhouand

JunZhao, “Relation Classification via Convolutional

Deep Neural Network”, Proceedings of COLING 2014,

the 25th International Conference on Computational

Linguistics: Technical Papers, pages 2335–2344, Dublin,

Ireland, 2014.

[10] Yoon Kim, “Convolutional Neural Networks for

Sentence Classification”, arXiv:1408.5882v2 [cs.CL],

2016

[11] Ye Zhang, Byron C. Wallace, "A Sensitivity Analysis of

(and Practitioners’ Guide to) Convolutional Neural

Networks for Sentence Classification",

arXiv:1510.03820v4 [cs.CL], 2016

[12] NalK alchbrenner, Edward Grefenstette, Phil Blunsom,

“A Convolutional Neural Network for Modelling

Sentences”, arXiv:1404.2188v1, [cs.CL], 2014

[13] Rie Johnson, Tong Zhang, "Semi-supervised

Convolutional Neural Networks for Text Categorization

via Region Embedding", arXiv:1504.01255v3 [stat.ML],

2015

[14] Xiang Zhang Junbo Zhao Yann Le Cun, “Character-level

Convolutional Networks for Text Classification”,

arXiv:1509.01626v3 [cs.LG] , 2016

[15] Alexis Conneau, Holger Schwenk, Yann Le Cun, Lo¨ıc

Barrault , “Very Deep Convolutional Networks for Text

Classification”, arXiv:1606.01781 [cs.CL], 2017

[16] Rie Johnson, Tong Zhang Baidu, “Effective Use of Word

Order for Text Categorization with Convolutional Neural

Networks”, Human Language Technologies: Annual

Conference of the North American Chapter of the ACL,

pages 103–112, Denver, Colorado, May 31 – June 5,

2015

[17] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,

Alex Smola, Eduard Hovy, “Hierarchical Attention

Networks for Document Classification”, Proceedings of

NAACL-HLT 2016, pages 1480–1489, San Diego,

California, June 12-17, 2016.

[18] Abdelghani Dahou,Shengwu Xiong, Junwei Zhou,

Mohamed Houcine Haddoud and Pengfei Duan “Word

Embeddings and Convolutional Neural Network for

Arabic Sentiment Classification”, Proceedings of

COLING 2016, the 26th International Conference on

Computational Linguistics: Technical Papers, pages

2418–2427, Osaka, Japan, 2016.

[19] Arabic Corpora. Essex Arabic Summaries Corpus:

https://www.essex.ac.uk/linguistics/research/arabic/arabi

ccorpora/easc.aspx

[20] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffry Dean,

“Efficient Estimation of Word Representations in Vector

Space”, arXiv:1301.3781v3 [cs.CL] 7 Sep 2013.

[21] Abu Bakr Soliman, Kareem Eissa, Samhaa R. El-Beltagy

“AraVec: A set of Arabic Word Embedding Models for

use in Arabic NLP”, 3rd International Conference on

Arabic Computational Linguistics, ACLing 2017, 5-6

November 2017, Dubai, United Arab Emirates

[22] Josh Patterson and Gibson, “Deep learning, A

practitioner’s approach”, O’Reilly, Media, Inc., 2017

[23] Hamed Habibi Aghdam, Elnaz Jahani Heravi, “Guide to

Convolutional Neural Networks. A Practical Application

to Traffic-Sign Detection and Classification”, Springer

International Publishing AG 2017.

IJCATM : www.ijcaonline.org

