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ABSTRACT 

This paper presents a Convolutional Neural Network CNN 

Models to classify Arabic sentences into three topics. These 

sentences are derived from Essex Arabic Summaries Corpus 

(EASC) corpus, tokenized to words and transformed to 

sequences of word indices. All sequences are padded to be in 

the same length. The models of Convolution Neural Network 

are built on top of word embedding layer. The word 

embedding layer is either pre-trained or jointed into the 

model. Dropout and l2 weight regularization are used to 

overcome the overfitting during training. The CNN models 

achieve high performance in accuracy for Arabic sentences 

classification.  
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1. INTRODUCTION 
Recently days the information on Internet is increased rapidly, 

so the need of automatic systems is increased, these automatic 

systems process the human language and try to understand it. 

These systems seek to be interactive systems as auto 

abstractive summarization [1] and the classification. In natural 

language processing NLP, text classification task is 

considered important step for text understanding [2]. Text 

classification needs text processing and analysis, because 

computer sees the text as group of symmetric characters 

without meaning differentiation between these characters. 

Text classification is defined as assigning each text with 

predefined set of classes. Text classification is divided into 

two types: single-label classification and multi-label 

classification. In the single-label classification, each text 

belongs to only single class, whereas the multi-label 

classification assigns each text to more than one class. If the 

set of classes consist of two classes, then the text 

classification is called binary classification. However, if the 

set contains multi classes, text classification is called multi 

classification [3]. There are many applications of text 

classification such as: topic identification of document or 

sentence, detection of the book author, sentiment analysis, 

spam classification, and others [4]. 

Convolutional neural networks (CNN) are a category of the 

Deep neural networks that employs a mathematical operation 

called convolution. Convolution is a specified kind of linear 

operations. CNN are simply neural networks that use 

convolution in place of general matrix multiplication in at 

least one of their layers [5]. CNN has proven effectiveness in 

computer vision, classification and has begun applied in 

Natural language processing NLP [6]. In natural language 

processing the text is tokenization into words, characters, or 

bag of words, and the words, characters, or bag of words are 

called tokens. Although tokens are available, CNN models 

don’t take it as input, they only work with numeric tensors. 

The numeric tensors are resulted by vectorization. 

Vectorization associates the generated tokens with the vectors. 

There are multiple ways of vectorization such as: one hot 

encoding and word embedding [7].  One hot encoding 

associates every token with a unique integer index and then 

turns this integer index into a binary vector of vocabulary 

size. The vector is zeros except at the index of the token will 

be one, so the vectors in the one hot encoding are sparse 

whereas word embedding are low dimensional of floating 

point vectors. Word embedding are learned from data. Word 

embedding can be either a part of the main task model or 

loaded as pre-trained into the model. 

The researchers used the convolutional neural networks in text 

classification applications and Semantic clustering, so 

convolutional neural network is used to model of short texts 

[8]. Extracting lexical and sentence level features were 

implemented by a convolutional deep neural network, then 

these features are fed into a softmax classifier to predict the 

relationship between two marked nouns [9]. The Simple CNN 

with one layer of convolution on top of word vectors and little 

hyper parameters tuning can do sentence-level classification 

tasks [10]. The models for task of sentences classification 

requires practitioners to specify an exact model architecture 

and set accompanying hyper parameters, including the filter 

region size, regularization parameters, and so on [11]. To 

achieve text classification, we need to represent the semantic 

content of a sentence as it is presented in the research [12]. In 

the research [13] the method learns embedding of small text 

regions from unlabeled data for integration into a supervised 

CNN to achieve better results on text classification. The study 

in [14] presents empirical character-level convolutional 

networks for text classification. character-level CNN is an 

effective method, but it needs a very large size of data set. 

Also the research in [15] work in character-level, it increases 

the depth of CNN to increase the performance. The research 

[16] provides effective use for word order instead word 

embedding to feed into CNN for text categorization. In 

research [17] model progressively builds a document vector 

by aggregating important words into sentence vectors and 

then aggregating important sentences vectors to document 

vectors. The research in [18] builds an Arabic word 

embedding model and convolutional neural network (CNN) 

for sentiment classification. 

In this paper, the model of convolutional neural network 

jointly on top word embedding layer and the two model of 

convolutional neural network on top pre-trained word 

embedding are suggested for Arabic sentences classification. 

https://www1.essex.ac.uk/linguistics/research/arabic/arabiccorpora/easc.aspx
https://www1.essex.ac.uk/linguistics/research/arabic/arabiccorpora/easc.aspx
https://www1.essex.ac.uk/linguistics/research/arabic/arabiccorpora/easc.aspx
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The paper is organized as follows: The Data set is briefly 

reviewed in Section 2. Section 3 introduce word embedding, 

Section 4 describes convolutional neural network, section 5 

shows the methodology, and section 6 demonstrates the 

experimental results. Finally, conclusion is offered in Section 

7. 

2. Data Set 
Essex Arabic Summaries Corpus (EASC), university of 

Essex, contains  153 Arabic Articles for summarization task 

[19], in this  research, a set of 500 Arabic sentences derived 

from EASC is collected as the dataset. The dataset includes 

three topics: Music & art, environment, and finance. Each 

sentence belongs to only one topic. Each topic has nearly 160 

Arabic sentences, so the dataset is considered balanced 

dataset. The dataset includes about 15000 words.  Sentence 

length ranges between 30 to 47 words. 

3. WORD EMBEDDING 
There are many methods to get vectorization, which 

transforms each token to a vector. Previously the statistical 

methods are used to do the vectorization as TF-IDF which 

calculates term frequency across the one document and the all 

documents in the dataset. In vector space model one hot 

encoding method creates a vocabulary of most common words 

in the dataset and gives index for each word in the vocabulary, 

then builds vectors of zeros in vocabulary size and gets the 

value of one in the word index of the vector. One hot 

encoding presents vectors with high dimensional and all the 

values of the vector are zeroes except a single value, so it is 

considered sparse vectors. Word embedding can compress the 

vectors into low dimensional of float values, word embedding 

learns the values of the vectors from the data. The most 

common of word embedding methods is word2vec which has 

become important in 2013 when Mikilov et al from Google 

[20] suggested their method in word2vec. Word2vec model is 

based on tow strategies: skip- gram and continuous bag of 

words CBOW.  The model trains on so large dataset and 

learns the vectors of the words from the context of the words 

in the dataset. In skip-gram strategy the model predicts the 

context word from the target word while CBOW predicts the 

target word from the context words. Word2vec shows the 

similarity between word vectors according to the semantic 

relationship among these words, and reflects some of the 

syntactic and morphology analyzes into mathematical 

relations between vectors.  

Word embedding models can be used as pre-trained in top of 

other models for many tasks. 

The research [21] presents AraVec Arabic word2vec models 

for the Arabic language using three different dataset 

resources: Wikipedia, Twitter and Common Crawl webpages 

crawl data, the models are built in the same strategies in 

Mikilov word2vec, skip-gram and CBOW. Gensim library is 

used to implement AraVec models. AraVec models are 

publicly available. AraVec models proven ability to capture 

similarity among word vectors, and are used as pre-trained in 

top of the models for Arabic NLP tasks.  

4. CONVOLUTIONAL NEURAL 

NETWORK CNN 
CNN is a category of Deep learning neural network. It 

achieves power effectives in computer vision as feature 

extraction from images and image classification, it is also 

successfully begun applied to NLP. The importance of CNN 

is shown in its automatic extraction of features without human 

supervision. The main block of CNN is convolutional layer 

that it uses the convolution operation in its computational. 

Convolution operation refers to mathematically operation that 

merges two sets of information. CNN consists of feature 

extraction part and classification or regression part. The 

feature extraction part detects the features from the input 

through the convolution layers, the classification part contains 

of the fully connected layers and the output layer. CNN model 

uses the convolution operation in the convolution layers to 

reduce the parameters in the traditional neural networks, 

because the neurons in the one layer do not connect to all the 

neurons in the next layer but only to a small region of it [22].  

The convolution is performed on the input data with the use of 

a filter or kernel to produce a feature map. The filters 

represent the weights in the convolution layer [23]. Each filter 

indicates the features are searched about them in the input 

data. A convolution operation is applied by sliding the filter 

over the input data. At every location in the input region, an 

element-wise multiplication is performed and the results are 

summed onto the feature map. The region of the input where 

the convolution operation takes place is called receptive field. 

The size of the receptive field equals to the size of the 

convolution filter. It is recommended to use odd filter size. 

The convolution layers perform multiple convolution on an 

input data, each convolution uses a different filter and results 

a distinct feature map, all these feature maps are stacked 

together to form the output of the convolutional layer, so the 

filter count is the dimension of the convolutional layer output. 

The step for moving the filter over the input is called stride 

and the value of the stride by default is 1. When the stride size 

is increased, we get less overlap between the elements of the 

input data. The feature map size is smaller than the input size 

because the filter is contained in the input, if we want to retain 

the feature map size as the same size of the input data, the 

padding of zeros is used. Zero padding is expressed by the 

following equation: 

ZeroPadding =
K − 1

2
 

 Where K is the filter size.  

the following equation is used to calculate the feature map 

size: 

O =
 W − K + 2P 

S
+ 1 

Where O refers to the size of the output feature map, w is the 

size of the input, K is the filter size, P is the padding, and S is 

the stride. Lower feature maps detect simple features from the 

input data because they get less information, the deeper 

feature maps combine more information from previous feature 

maps so deeper feature maps can detect complex features. The 

output of the convolution will be passed through the nonlinear 

activation function. This could be the ReLu activation 

function. This means that the ReLu is applied to the feature 

maps. The function of ReLu is illustrated by the equation: 

F x = max⁡(0, x) 

So the only negative values change to 0, other values retrain 

as these. ReLu function achieves better training of the model, 

because it increases the nonlinearity of the model. ReLu 

function helps to alleviate the vanishing gradient problem, 

which is the issue where the lower layers of the model train 

very slowly because the gradient decreases exponentially 

through the layers, so by applying ReLu function the 

performance of the training gets faster and better. Each 

convolution layer detects a level of the features. When we 

build the CNN models, we have to adjust a set of hyper 

https://www1.essex.ac.uk/linguistics/research/arabic/arabiccorpora/easc.aspx
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parameters. The hyper parameters of the CNN are 

convolutional layers count, filter size, filter count, stride and 

padding. The fully connected layers in the classification part 

expects a 1D vector so the output of the convolutional layers 

is flattened to a vector. this vector becomes the input of the 

fully connected layer. the final output will be reduced to a 

single vector of probability score by using softmax function 

on the output layer. CNN is trained by backpropagation with 

gradient descent or other learning methods. 

5. METHODOLOGY 
This research is fall in a single-label multi classification, that 

every sentence has to be belongs to only one class from three 

classes. Each class represent the topic of sentence. 

5.1. Tokenization 
The text is tokenized to words, according to a regular 

expression, regex, that is a sequence of  characters. Regex in 

this research consists of the punctuation marks group, 

numbers group and Arabic alphabet group containing 

characters of vocalization. When the search algorithm finds 

sequence of the characters from regex group, it tokenizes it. 

All number tokens are referred to the same token “number”. 

All the punctuation marks are referred to the same token 

“sign”. 

5.2. Word Indices 
Each token that it is a word, is given an index, this index 

indicates the most common of this word in all text of the data 

set. the number of the most common words in the data set 

equals to 15000 words. These most common words are called 

vocabulary.  

5.3. Pad Sequences   
The sentences in the data set are transformed to the sequence 

of word indices. All sequences have the same length. The 

identical length is the number of the words in the longest 

sentence in the data set that equals to 47 words, so the 

sentences which their length less than 47 are padded by zeros. 

5.4. Model 
The dimension of the model input is a samples × sentence 

length. The samples represent the sentence numbers in the 

training set. 

The model is a stack sequential of the layers that it consists of 

the embedding layer, three convolutional layers, flatten layer, 

one fully connected layer and the output classifier layer. The 

vocabulary of the data set is built in 1500 most common 

words. Each word gets the index, then these indices input to 

the embedding layer to transform each of them to a float point 

vector. The convolutional layers apply nonlinear ReLu 

activation function and have hyper parameters as filter size, 

filter count, stride and padding. The flatten layer is used to 

flatten the output of the convolutional layers to a 1D vector 

which inputs to the fully connected layer. The output layer 

contains of three neurons because the task is to classify 

sentences into three topics. The output layer applies the 

softmax activation function. Each output neuron gives the 

output a score of probability to be the one of the three topics. 

The labels of the topic classes are encoded as binary category 

with one hot encoding method. 

The data set is split by random selection into training data and 

test data according to the training rate. 

In this research, three models are built. In the first model, 

word embedding layer is trained jointly in the top of the 

model. It is trained to give word vectors which minimize the 

loss function by using the optimization method to achieve the 

main task of this model. The main task is the sentence 

classification. the input to this embedding layer is used to 

index a table with the embedding vectors The dimension of 

the word vectors is hyper parameter, and it is adjusted to be 

256 dimension, the hyper parameters for convolutional layers 

are 512 for filter count, and 3 for filter size, so the convolution 

filter slide over the input and pick three words, each word is 

represented by 256 features. The stride equals to one and the 

padding is not used. The size of the output feature map from 

the first convolutional layer is: 

𝑂 =
𝑊 − 𝐾 + 2𝑃

𝑆
=
47 − 3 + 0

1
+ 1 = 45 

Where W is the sentence length represented the input, K is 

filter size, p is padding and s is stride. The dimension of this 

output feature map is 45× 512. This feature map is inputted to 

the second convolutional layer, and the size of the second 

output feature map is: 

𝑂 =
𝑊 − 𝐾 + 2𝑃

𝑆
=
45 − 3 + 0

1
+ 1 = 43 

The dimension of this output feature map is 43× 512. 

The input of the third convolutional layer is the second output 

feature map, and the output feature map is: 

𝑂 =
𝑊 − 𝐾 + 2𝑃

𝑆
=
43 − 3 + 0

1
+ 1 = 41 

The dimension of the third feature map is 41×512. 

The fully connected layer receives a 1D dimension vector, so 

the flatten layer flatten the dimension of the third 

convolutional layer output into a 1D vector 41*512=20992 

then the output layer reduces the large numbers 20992 

neurons to three neurons. 

However, in the second model, AraVec Arabic word2vec is 

used as pre-trained word embedding layer so the weights of 

AraVec are loaded into the embedding layer, and the training 

parameter is initialized to a value false. Pre-trained AraVec 

Arabic word vectors have dimension of 300. They trained by 

the CBOW strategy on Wikipedia data resources. The 

convolutional layers’ hyper parameters are adjusted. the filter 

size is selected to be three and the filter count is selected to be 

500. The size of the feature maps is calculated Similar to the 

one in the first model. But the dimension is to be 500 instead 

of 512, so the fully connected input is 500*41=20500 neurons 

and also reduced to three output neurons. 

Finally, the third model also uses pre-trained Aravec Arabic 

word2vec model, but it gives the words not present in the 

word2vec data set the mean of the other word vectors with a 

small random offset. Regularization is applied to these word 

vectors with 0.05 value to prevent the values of these vectors 

of memorizing from the other vectors. The convolutional 

layers and the fully connected layer are the same in the second 

model. 

Pre-trained AraVec Arabic word2vec is proven effectiveness 

in capturing some semantic relations between words, so in the 

last two models it gives effectiveness in the sentences 

classification. 

Generally, the filters in the convolutional layers in these 

models detect the features from the Arabic sentences through 

three levels. These features feed into the classification part to 

perform the classification task effectively. 

https://en.wikipedia.org/wiki/Character_(computing)
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The models are trained by using categorical cross entropy loss 

function to minimize the errors between the output class and 

the target class. 

The filters represented weights are updated to learn through 

optimization function Adam. The learning rate and epochs 

number are adjusted in the models to give high accuracy in 

the classification results. 

5.5. Overfitting 
overfitting is happened during the training stage. Overfitting 

is when the model learns patterns that are specific to the 

training data but that are irrelevant when it comes to new data. 

so the training loss function curve keeps going down but the 

validation loss curve grows up. 

to avoid this overfitting, dropout layers and weight 

regularization are used.  

Dropout in the first and the second models is applied to the 

convolutional layers’ neurons where some neurons in these 

layers randomly are disabled to reduce the dependences 

between the neurons. The rate of a dropping neurons is 

selected to 0.7. 

weight regularization gets the performance of the model more 

generalization and resistance of overfitting. 

Weight regularization put constraints on the complexity of a 

model by forcing the weights with large values to take only 

small values, that makes the distribution of weight values is 

more regular. 

In the third model L2 regularization technique is used. L2 

regularization technique adds cost which is proportional to the 

square of the value of the weight coefficients, so the weights 

are become regular. This cost value is called regularization 

factor and is assigned 0.01 of the all convolutional layers in 

these models. 

6. EXPERIMENTAL RESULTS 
These models are implemented in Python language by using 

libraries like Keras, numpy, re, Sklearn, Gensim and 

tensorflow in the back end.  

The architecture of the models is built by Keras library. 

Numpy, panda, csv and re libraries are used for text 

preprocessing as text reading and text tokenization. The 

training and testing set are selected using Sklearn library to 

split the data set to training data and testing data randomly 

according to the specific training rate. Gensim library is used 

to load the pre-trained AraVec Arabic word2vec. 

The implementation is achieved by GPU 940 MX personal 

computer. 

In the first experiment, where the first model is implemented. 

embedding layer is jointly into the model, the embedding 

layer is not trained well, because the data set size is small and 

the main task of the training is text classification not word 

embedding. the model is trained on 14 epochs and The 

learning rate of the Adam function is 1e-4. The batch size of 

training is 30. In this experiment, the training set is 75 % of 

the data set. To avoid overfitting, dropout is used in 

embedding and convolutional layers. dropout layer selects 

randomly dropped neurons with dropping rate 0.7. 

The implementation of this model takes 21.23 seconds. 

As we notice in the (figure 1), the training loss decreases with 

every epoch until approaching zero value. But the validation 

loss remains without modification until the seventh epoch, 

then the validation loss starts with decreasing to reach a six 

value at the end of the training, that it is called overfitting, 

where a model that performs better on the training data isn’t 

necessarily a model that will do better on data it has never 

seen before. Although dropout is added to this model to 

overcome the overfitting, the model still has overfitting.  

 

Fig 1: training and validation loss in the first model 

The training accuracy is reached 99% as shown in (figure 2) 

but this accuracy doesn’t be generalize to the new data in the 

validation set, so the validation accuracy reaches only to 76 % 

at epoch 14 in the end of the training. So the second model is 

suggested to perform better accuracy.  

 

Fig 2: Training and validation accuracy in the first model 

In the second experiment, where the second model is 

implemented.  

AraVec pre-trained Arabic word2vec model is used as word 

embedding in this model to give word vectors. These word 

vectors capture the semantic relations between the words 

according to these contexts in the word2vec model data set. 

So the results of the sentence classification get better. Dropout 

also added to the model in the convolutional layers and with 

the same rate 0.7.  the model is trained on 10 epochs and The 

learning rate of the Adam function is 1e-4. The batch size of 

the training is 30.  

The experiment is achieved by using tow training rate, the 

first training rate is 75% of the data set, and the second one is 

50% of the data set. for retesting the results, the seed of keras 

is constant and is 1337.  

In the state of the training rate 75%, the implementation  of 

this model takes 28 seconds. In the (figure 3) the training loss 

approaches zero value, and the validation loss decreases but it 
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can’t reach less than 4.5, although the improvement is done to 

the model, overfitting is still shown in the model.  

 

Fig 3: training and validation loss in the second model, 

training set is 75% of the data set 

the performance accuracy of this model is rose from its in the 

previous model, the training accuracy approaches about 99 % 

from the epoch six, but the validation accuracy increases until 

reach more than 80% at epoch eight then decreases a little to 

stabilize to the 80%.  

 

Fig 4: training and validation accuracy in the second 

model, training set is 75% of the data set 

When the training rate is decreased, the training data will be 

reduced. So the model performance will decrease. The (figure 

5) shows the training and validation loss by splitting the data 

set into 50% for the training data and 50% for the testing data. 

The training loss decreases gradually until be about 0.05 in 

the end of the training. Whereas the validation loss can’t 

decrease less than 0.7.  the performance accuracy of the 

training still reaches almost 99%, but the validation accuracy 

shows decrease in the performance. As illustrated in (figure 6) 

validation accuracy approaches to 71 % by training 50% of 

the data set. The time for implementing this model takes 23.75 

seconds 

 

 

Fig 5: training and validation loss in the second model, 

training set is 50% of the data set 

 

Fig 6: training and validation accuracy in the second 

model, training set is 50% of the data set 

Finally, the third experiment is done by implement the third 

model. AraVec Arabic word2vec is used as word embedding 

as in the second model, but The words which are not present 

in the AraVec model data set, a vector of the mean of the 

other word vectors is suggested with random offset and 

regularization factor to represent these word vectors. Dropout 

layers are not used in this model whereas the l2 regularization 

with factor 0.01 is added to the convolutional layers to 

improve the performance and avoid overfitting. 

The model is trained on 8 epochs and The learning rate of the 

Adam function is 1e-3. The batch size of training is 30. the 

seed of keras is constant and is 1337 for helping in retesting 

the results. 

The experiment is implemented by using tow training rate, the 

data set is split by 75% rate and by 50% rate of the data set.  

When the training set forms the 75% of the data set, the model 

takes 14.60 seconds for implementation. Training and 

validation loss function in this state converge as shown in 

(figure 7). That means the model can overcome the 

overfitting. 

The validation accuracy increase gradually to approach 91 % 

at the epoch 8 in the end of the training, as illustrated in 

(figure 8). 
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Fig 7: training and validation loss in the third model, 

training set is 75% of the data set 

 

Fig 8: training and validation accuracy in the third model, 

training set is 75% of the data set 

The performance is reduced a little, when the experiment is 

achieved by using only 50% of the data set for training. 

However, the training and validation loss functions converge 

to approach a value about 1.5 as shown in (figure 9). 

 

Fig 9: training and validation loss in the third model, 

training set is 50% of the data set 

The accuracy performance decreases a little to reach about 

87%.  (Figure 10) shows the training and validation accuracy.  

The training accuracy peak to values more than 95% from the 

epoch four but the validation accuracy values increase to more 

than 75% from the three epoch to reach 87% at the eight 

epoch in the end of the training.  

This experiment for implementing  this model takes 15.4 

seconds. 

 

Fig 10: training and validation accuracy in the third 

model, training set is 50% of the data set 

7. CONCLUSION 
Three models of convolutional neural network models are 

implemented in top of embedding layer. The embedding layer 

either be jointly into the model, or be pre-trained AraVec 

Arabic word2vec model. The vectors for unknown words in 

AraVec dataset are created by the mean of the other vectors 

plus small random offset and regularization factor to get the 

distribution of these vectors are normal. 

Overfitting is avoided by using two methods: dropout layers 

and l2 weight regularization. 

Convolutional neural network models in top of word 

embedding layer proven powerful and achieve high 

performance accuracy in the NLP task, Arabic sentences 

classification.  

8. REFERENCES 
[1] Sagheer Dania, Sukkar Fadel, "A hybrid Intelligent 

System for Abstractive summarization”, International 

Journal of computer Applications, vol (168),No (9), 

June, 2017. 

[2] Xiang Zhang,Yann LeCun ,“Text understanding from 

scratch”, arXiv:1502.01710v5  [cs.LG],  Apr, 2016. 

[3] Aris Kosmopoulos, “large scale hierarchical text 

classification”, Ph.D. thesis department of informatics 

Athens university of economics and business, 2015. 

[4] Mrs. Manisha Pravin Mali, Dr. Mohammad Atique, 

"Applications of Text Classification using Text Mining", 

International Journal of Engineering Trends and 

Technology (IJETT), Volume 13, Number 5, Jul 2014. 

[5] Ian Goodfellow, Yoshua Bengio, Aaron Courville, 

“Deep Learning”, An MIT Press book, 2016 

[6] Marc Moreno, Lopez,Jugal Kalita "Deep Learning 

applied to NLP", arXiv:1703.03091v1  [cs.CL]  9 Mar 

2017 

[7] Francois chollet, “Deep learning with python”, Manning 

publication Co, 2018 



International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No.5, July 2018 

46 

[8] PengWang, JiamingXu, BoXu,Cheng-LinLiu, 

HengZhang FangyuanWang, HongweiHao, “Semantic 

Clustering and Convolutional Neural Network for Short 

Text Categorization”,  Proceedings of the 53rd Annual 

Meeting of the Association for Computational 

Linguistics and the 7th International Joint Conference on 

Natural Language Processing (Short Papers), pages 352–

357, Beijing, China, July 26-31, 2015. 

[9] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhouand 

JunZhao, “Relation Classification via Convolutional 

Deep Neural Network”, Proceedings of COLING 2014, 

the 25th International Conference on Computational 

Linguistics: Technical Papers, pages 2335–2344, Dublin, 

Ireland, 2014. 

[10] Yoon Kim, “Convolutional Neural Networks for 

Sentence Classification”, arXiv:1408.5882v2 [cs.CL], 

2016 

[11] Ye Zhang, Byron C. Wallace, "A Sensitivity Analysis of 

(and Practitioners’ Guide to) Convolutional Neural 

Networks for Sentence Classification", 

arXiv:1510.03820v4 [cs.CL], 2016 

[12] NalK alchbrenner, Edward Grefenstette, Phil Blunsom, 

“A Convolutional Neural Network for Modelling 

Sentences”, arXiv:1404.2188v1, [cs.CL], 2014  

[13] Rie Johnson, Tong Zhang, "Semi-supervised 

Convolutional Neural Networks for Text Categorization 

via Region Embedding", arXiv:1504.01255v3 [stat.ML], 

2015 

[14] Xiang Zhang Junbo Zhao Yann Le Cun, “Character-level 

Convolutional Networks for Text Classification”, 

arXiv:1509.01626v3 [cs.LG] , 2016 

[15] Alexis Conneau, Holger Schwenk, Yann Le Cun, Lo¨ıc 

Barrault , “Very Deep Convolutional Networks for Text 

Classification”, arXiv:1606.01781 [cs.CL], 2017 

[16] Rie Johnson, Tong Zhang Baidu, “Effective Use of Word 

Order for Text Categorization with Convolutional Neural 

Networks”, Human Language Technologies: Annual 

Conference of the North American Chapter of the ACL, 

pages 103–112, Denver, Colorado, May 31 – June 5, 

2015 

[17] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, 

Alex Smola, Eduard Hovy, “Hierarchical Attention 

Networks for Document Classification”, Proceedings of 

NAACL-HLT 2016, pages 1480–1489, San Diego, 

California, June 12-17, 2016. 

[18] Abdelghani Dahou,Shengwu Xiong, Junwei Zhou, 

Mohamed Houcine Haddoud and Pengfei Duan “Word 

Embeddings and Convolutional Neural Network for 

Arabic Sentiment Classification”, Proceedings of 

COLING 2016, the 26th International Conference on 

Computational Linguistics: Technical Papers, pages 

2418–2427, Osaka, Japan, 2016. 

[19] Arabic Corpora. Essex Arabic Summaries Corpus: 

https://www.essex.ac.uk/linguistics/research/arabic/arabi

ccorpora/easc.aspx 

[20] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffry Dean, 

“Efficient Estimation of Word Representations in Vector 

Space”, arXiv:1301.3781v3 [cs.CL] 7 Sep 2013. 

[21] Abu Bakr Soliman, Kareem Eissa, Samhaa R. El-Beltagy 

“AraVec: A set of Arabic Word Embedding Models for 

use in Arabic NLP”, 3rd International Conference on 

Arabic Computational Linguistics, ACLing 2017, 5-6 

November 2017, Dubai, United Arab Emirates 

[22] Josh Patterson and Gibson, “Deep learning, A 

practitioner’s approach”, O’Reilly, Media, Inc., 2017 

[23] Hamed Habibi Aghdam, Elnaz Jahani Heravi, “Guide to 

Convolutional Neural Networks. A Practical Application 

to Traffic-Sign Detection and Classification”, Springer 

International Publishing AG 2017. 

 

IJCATM : www.ijcaonline.org 


