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ABSTRACT

Imaging technologies have made a significant improvement
in the past few decades and their application made a
great impact on accelerating the process of drug discovery
and development. The ability to non-invasively image an
animal model or co-cultured live cells and validate potential
drug target, biomarkers of drug efficacy and assess a
pharmacological drug interaction significantly contributes
to the process of translating molecules into medicines.
This paper summarizes current trends in bio-imaging
technologies and their application on the process of drug
discovery. In particular, High Content Screening (HCS) and
Virtual Screening (VS) are reviewed, and their respective
examples are discussed to gain insight into state-of-the-art
bio-imaging methodologies used for extracting knowledge
and its application to drug discovery. This paper argues
the need to reduce the gap between experimental (e.g. HCS
based assays) and theoretical (e.g. VS based assays) assays.
Although HCS and VS are leading drug discovery choices
for the pharmaceutical industry and such investigations
have been carried out in their respective campaign, the
potential effects of these approaches together to facilitate
the process of drug discovery has rarely been reported.
Further, the prevalent research trends on developing
hybrid approaches such as VS complementing HCS implies
substantial enhancement to the goal of reliable drug
candidate identification.
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1. INTRODUCTION

It is critical for the pharmaceutical industry to refine
streamline processes which early identify the candidate
molecule for further clinical development. Early pivotal
stages of drug-screening and preclinical testing, accelerate
speed and quality of decision-making, improve efficiency,
provide accurate predictivity for clinical experimentation
and can save a lot of money. Imaging techniques (ITs) used
in drug discovery platforms uniquely provide quantitative
information, accurately assessing every part of the process.
The focus of this review is to present the imaging

techniques used in drug discovery stage which have
made a significant step beyond prevailing methods of
digital imaging. The advantages of High Content Screening
(HCS) and Virtual Screening (VS), in their individual
campaigns, as well as approaches developed from their
combination are creating new knowledge from a massive
number of throughputs without extensive human interaction
fundamentally changed the concept of drug discovery.
The paper organization is as follows: In the next section
2, a brief description of drug discovery and development
multilayer process is presented. Section 3 is a review,
describing the multiplicity of digital imaging applied
through all stages. A detailed representation of the wide
scope and complexity of HCS and VS technologies in drug
discovery process with examples, is made in section 4. This
leads to a discussion on the attributes of HCS and VS for
drug discovery, which is presented in section 5 and finally
section 6 presents with concluding remarks and furture trend
in drug discovery.

2. OVERVIEW

Generally, for approval of a new drug from beginning takes
more than 10 years, making the drug development process
a lengthy, high-risk, and costly endeavor. Furthermore, in
2013, among more than 5000 medicines in development,
less than 1% of those were approved by the Food and
Drug Administration (FDA) [3]. The selection of promising
drug candidates is critical in the early phase of successful
drug development. Advances in imaging techniques both
from hardware and software perspectives, are making their
contributions at different stages of the drug discovery
and development process. A typical drug discovery and
development process consists of five stages (shown in
Figure 1). 1. Target selection, 2. Drug discovery, 3. Drug
development, 4. Drug approval and 5. Clinical use. In the
following section, a brief review of imaging techniques for
drug discovery is described.

3. REVIEW OF THE IMAGING TECHNIQUES IN
DRUG DISCOVERY

Imaging sciences have grown exponentially during the past
three decades, and many techniques, such as magnetic
resonance imaging, nuclear tomographic imaging, and
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Fig. 1: Top Row: An illustration of stages involved in Drug Discovery and Development process. Middle Row: Number of years
(approx.) needed for different stages of the drug discovery and development lifecycle. Bottom Row: Types of assays involved at
different stages.

X-ray computed tomography have become indispensable in
clinical use. Following sections present a brief review of
some of the imaging techniques for different stages of drug
discovery.

3.1 Target identification

Advantages of imaging technology advances can be explored
to identify new targets [41, 50] at the earliest stage of
drug discovery and development process. For example,
Drevets et. Al. in [12] could find lower metabolic activity
and decreased cortical volume in patients with bipolar
and unipolar depression by imaging the medial prefrontal
cortex (mPFC). They measured the brain activity from rate
of glucose metabolism and positron emission tomographic
(PET) images of cerebral blood flow. An extended study of
this work can be found [13].

3.2 Drug discovery

A brief review of the imaging techniques used in sub-phases
namely compound screening and compound optimization
for drug discovery are presented.

3.2.1 Compound screening. The compound screening phase
aims to find the ‘hit’ molecule. For this purpose, a plethora
of compound screening assays are developed such as
cell-based assay [13], virtual screening [6, 35, 28] etc.
Fluorescent-imaging Plate Reader (FLIPR)

The fluorescent-imaging plate reader (FLIPR) utilizes the
charge-coupled device, imaging of the whole plate and
captures the fluorescent readouts. [43]. FLIPR enables
functional screening of the largest membrane proteins in
the human genome, G protein-coupled receptors (GPCRs).
FLIPR enables functional screening of the largest membrane
proteins in the human genome, G protein-coupled receptors
(GPCRs). FLIPR is sensitive, homogenous, amenable to
automation but cannot be used for inverse agonist screens,
and suffers from fluorescence quenching [46].
High-through Put Screening (HTS)/High-content screening
(HCS)
High content screening is an automated imaging approach

which consists of both the acquisition and analysis of
digital images in a multi-well microtiter plate with and
without other substrates. High content screening differs
from high-throughput screening in regards to its capability,
to simultaneously monitor multiple phenotypes. On the
other hand, HTS measures a signal averaged over all cells
within a microplate well. Hence, HCS provides deeper
insights into biological processes [29]. With technological
advancements in imaging, fast automated microscopes
capable of auto-focusing and sample positioning acquire
high-resolution images. Integrated software platforms
coupled with the automated microscope are running the
analysis by extracting quantitative measurements at the
pixel level from acquired digital images in an unbiased
manner. This multiparametric quantitative data is a result
of the algorithmic extraction of number, size, texture,
fluorescent distribution, fluorescent intensity changes per
pixel, the spatial distribution of objects, statistical analysis,
application of deep learning methods to detect unusual
cell morphologies and network access to databases via
commercial or open source components [39]. Besides the
technological advancements, development in HCS assays
highly depends on physiologically relevant models which
include – primary cells, engineered cell lines, 3D-cell
cultures and whole organisms. The pharmaceutical industry
has been implementing HCS technology in all stages of
contemporary drug discovery, and it is considered as
a mainstream technology [51]. The process results are
optimized, by increasing target confidence, decreasing
the time taken for screening drug libraries, reducing the
number of animals in experiments, better exclusion criteria,
reproducible endpoints and a better understanding of
preclinical pharmacology. Virtual screening
Virtual Screening (VS) approaches provide the possibilities
to process molecules that are physically non-existent
in an investigators collection and can readily acquire
through purchase or synthesis. [4]. Thus, making this
type of compound screening time and cost-effective as
compared to alternative compound screening techniques.
Based on the target or existing ligands information, VS
can be divided into two approaches; structure-based
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VS (SBVS) and ligand-based VS (LBVS). SBVS aims to
understand the molecular basis of a disease by using the
known three-dimensional (3D) structure of a biological
target in the process. The available protein (3D)structure
of interest and a synthesized compound library of small
molecules is investigated by docking into the active site
of the biochemical target using computer algorithms and
scoring [48, 17, 22]. LBVS explores biological data to identify
known active or inactive compounds form biological data
to retrieve other potentially active molecular scaffolds based
on similarity measures such as common descriptor values.
A combination of these two approaches has also been
proposed previously [42].
Recently, SBVS has been proven to be more effective than
the other traditional ways of drug discovery [30]. In SBVS,
a 3D structure of the target for processing is obtained
from imaging techniques such as X-ray, NMR or neutron
scattering spectroscopy, besides homology modeling, or
from Molecular Dynamics (MD) simulations. However,
SBVS approaches are prone to shortcomings such as tools
developed for specific cases, struggle with very potent leads,
unable to perform in congeneric series etc., making its use in
drug discovery debatable.

3.2.2 Compound optimization. High attrition rate of
compounds entering the clinical phase implies that
academic-industry partnerships could really add value
preclinically and this eventually could help bring more
effective drugs to patients. For lead optimization, techniques
such as hit evaluation [7], (Bio)isosteric replacements [18]
and hit fragmentation [44] could be used. However, these
techniques are beyond the scope of this review and will not
be discussed further.

3.3 Drug development

Non-invasive molecular imaging is making a great
contribution towards chronic investigational animal models,
to image the same animal at different stages of disease
progression, and extract data for the consistency of drug
effect and safety profile over a long period of treatment.
For use of imaging, to be considered reliable in drug
development, it needs to be robust, quantitative and
easy to implement across multiple centers which poses
a major challenge. For data acquisition and analysis
including applications for small animals, a variety
of imaging modalities are available such as Positron
Emission Tomography (PET), Single-Photon Emission
Computed Tomography (SPECT), optical imaging, Magnetic
Resonance Imaging/Spectroscopy (MRI/MRS), ultrasound
and computed tomography (CT).
Using PET by [5] and SPECT by [27], promising results for
drug development have been reported with a premise of the
translation of preclinical studies into clinical applications.
Different imaging modalities give complimentary rather
than competitive results, and the choice of appropriate
imaging technique primarily depends on the specific
question to be addressed. It can be concluded that a
combination of different imaging modalities holds great
promise.

4. HCS AND VS ASSAYS IN DRUG DISCOVERY

This section discusses the impact of imaging techniques on
drug discovery with the aid of recently reported examples;
an HCS assay example reported and VS assay example from
[24].

4.1 HCS Assay

High content screening is effectively used for
multiparametric measurement of early cytotoxicity testing
and cell health assessment, during the drug discovery
process. Upon treatment, drugs are mainly metabolized
by the liver or in other words, enzymatically converted
into less active or inactive compounds. Water-soluble drug
metabolites are then easily excreted by the kidney [40]. Some
of the routinely screened biomarkers in drug-induced liver
injury and toxicity are mitochondrial dysfunctions, plasma
membrane permeability, oxidative stress, accumulation of
lipids in lysosomes and defects in lipid metabolism. In an
HCS assay, depolarization of mitochondrial potential in
living cells is possible by using MitoTrackers organic dyes
[32, 38, 21]. These fluorescent dyes, stain mitochondria
in live cells and their accumulation are dependent on
membrane potential and measure membrane dysfunction.
This physiological parameter is in correlation with cells’
capacity to produce ATP (adenosine triphosphate) and deal
with oxidative stress.

A multiparametric HCS assay demonstrating mitochondrial
health and cytotoxicity is shown in (Figure 2a). In the
experiment, human liver cancer cell line Hep G2, displaying
robust morphological and functional differentiation is
chosen as a suitable model for ‘in vitro’ studies [36]. Cells
are stained with three different dyes, to detect in detail
the processes that occur after being treated with 10µM and
120µM dose of Valinomycin for 24h. Valinomycin is an
ionophore which can destroy the electrochemical gradients
of membranes and lead to cell death. The Image-iT R©
DEAD GreenTM fluorescent dye is permeant for cells which
plasma membranes are compromised and does not affect
healthy cells. MitoHealth stain in red and is a reagent
that accumulates in active mitochondria thereby the signal
decreases when mitochondrial membrane depolarises. The
third signal in blue is from Hoechst nuclear stain which gives
signal from the nuclei of cells that has not lost their integrity
and intensity decline, measuring the quantity of cell loss.
Control cells not treated with Valinomycin are shown
on the left side of panel A in (Figure 2a) with intact
plasma membranes and strong visualisation of their active
mitochondria in red and functional nuclei in blue. The
administration of 10 µM Valinomycin, rapidly changes
the fluorogenic excitation with almost complete loss of
active mitochondria, a weak signal of compromised plasma
membranes and small number of lost cells. When 120
µM Valinomycin are administered the level of cytotoxicity
increases and the excitation from mitochondria, and nuclei
significantly decrease while excitation from compromised
plasma membrane increases. After data analysis, according
to fluorescent intensity changes per pixel, the half-maximal
dose response (EC50), can be calculated with a great accuracy
for each biomarker. The HCS in vitro fluorescence-based
method is routinely used for early cytotoxicity testing in
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(a) Representative images showing the fluorescent excitation
from cells in the control well (left), cells treated with 10
µM Valinomycin (middle) and cells treated with 120 µM
Valinomycin (right).

(b) Dose-response curves, showing the change in the intensity
of fluorescent excitation according to the concentration of
Valinomycin. Imaging and analysis of the experiment was done
on a Thermo Scientific Cellomics R© ArrayScan R© VTI [34].

Fig. 2: A multiparametric HCS assay demonstrating mitochondrial health and cytotoxicity.

order to predict which chemical entities should proceed in
drug development stage.

4.2 VS assay

To elaborate the virtual screening process for drug
discovery, authors of [25, 24] evaluated common virtual
screening tool, which is used to identify novel bioactive
molecules for cyclooxygenases-1 and -2 as representatives
of classical enzymes [25] and to identify novel peroxisome
proliferator-activated receptor (PPARγ) ligands [24]. PPARγ
belongs to nuclear receptor class, and is a valuable drug
target. These upon activation, form heterodimers with the
retinoid X receptor (RXR) that regulates the expression
of genes involved in adipogenesis, lipid homeostasis, and
glucose metabolism [8]. Research on these receptors focuses

on the discovery of novel partial agonists since full activation
of the nuclear receptor adds to unwanted side effects.
An example of such case is evaluated by [24] which by
employing pharmacophore, shape-based virtual screening
and docking, independently and in parallel to identify
novel PPARγ ligands. These models are briefly explained
to elaborate its effectiveness in the drug discovery. For all
three models, virtual screening of the commercial Maybridge
database1 was used.
For pharmacophore modeling, 10 models from five Protein
Data Bank (PDB) entries (2Q5S, 3H0A, 2Q5P, 3FUR, and
3QT0), and one additional ligand-based model generated
with LigandScout 3.1 [24], were used. Three optimized

1www.maybridge.com
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(a) A. based on the crystal structure of PPARγ in complex
with the partial agonist nTZDpa (PDB entry 2Q5S). B. based on
the crystal structure of tetrahydronaphthalene derivative 1 in
complex with PPARγ (PDB-entry 3H0A) C. ligand-based model
generated with the known partial agonists GQ-16 2 and PA-082
3.

(b) The models were generated with (A) nTZDpa (PDB-entry
2Q5S), (B) MRL24 (PDB-entry 2Q5P), (C) INT131 (PDB-entry
3FUR), (D) telmisartan (PDB-entry 3VN2), and (E) one
low-energy conformation of the known partial agonist
isoxazolone derivative 4.

Fig. 3: a) Pharmacophore models for PPARγ partial agonists. b) Shape-based models for PPARγ partial agonists [24].

models were selected as shown in Figure 3a(A-C), based
on their ability to find the majority of compounds in the
“partial agonist” dataset. In the prospective screening of
the commercial Maybridge database (52,000 entries), 9231
unique compounds mapped at least one of the models
and virtual hits were ranked by their relative geometric
pharmacophore fit score [24].
Secondly, employing shape-based modelling, 50 models
using vROCS 3.0.0 tool [2] were generated and a selection
of best performing models were chosen. The co-crystallized
ligands of PPARγ -compound complexes were selected
for model generation, as they describe the biologically
relevant conformations. It also contains a model based on,
one low-energy conformation of the known partial agonist,
isoxazolone derivative 4, which has identified most of
the compounds in the “partial agonist” dataset. The final
shape-based models are depicted in Figure 3b (a-e). Color
features were added to refine the shape models: green
sphere, ring feature; red sphere, anion; blue sphere, cation;
yellow sphere, hydrophobic; red mesh, hydrogen bond
acceptors (HBA). For all virtual hits, the relative ComboScore
calculated from shape and color features, was subsequently
used to rank all mapping compounds. Table 1 also known as
prediction matrix, contains list of selected compounds and
their relative ComboScores.
Further, docking process, that contributes to predicting both
the strength and type of signal produced, was generated
with GOLD v5.2 [23, 1] tool, using the eight crystal structures
2Q5S, 2Q5P, 2Q6S, 2YFE, 3FUR, 3V9Y, 4A4V, and 4A4W [24].
As a result 809 unique compounds were docked into the
binding site of PPARγ with a GoldScore of ≥124.0. Virtual
hits were ranked by their GoldScore (shown in Table 1).
Top 10 compounds from virtual hit ranking list for each

of the three models are further investigated. Overall hit
list obtained from the three models contains 29 unique
compounds as shown in Table 1. All these compounds
are subject to further investigation with the external
bioactivity profiling tools such as SEA [26], PASS [16] and
PharmMapper [31] (shown in Table 1). Lastly, biological
testing could confirm the binding of nine out of the 29
selected test compounds.

5. DISCUSSION

HTS/HCS and VS are conceptually different (experimental
vs theoretical) but widely used for lead compound discovery.
On the one hand, both strategies have their advantages
and limitations when employed individually(summary
presented in Table 2). On the other hand, a combined
approach can impact favorably on lead compound discovery
due to synergies between VS and HTS technology.
This section briefly discusses the potential impact of
VS-HTS/HCS approaches. One of the major challenges for
HTS/HCS is the need for a large and diverse source of
compounds. This particularly affects smaller pharmaceutical
companies. VS methods such as presented by an example
in section 4.2, showed the ability for compounds selection.
Such utility of VS techniques provides augmentation of
in-house compound databases. Furthermore, the availability
of quality compound libraries can benefit HTS/HCS before
the screening. This can be achieved by compound filtering,
to enrich libraries with molecules that have preferred
properties. Therefore, it is vital that the compound filtering
4.2) achieved by VS methods, is applied as a ‘front-end’
technique, before screening such as reported in [10, 49].
HTS/HCS assays are prone to errors, both random errors,
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Table 1. : Prediction matrix for overall hit list. Values obtained in the top-ten hit lists of the respective methods are highlighted
in bold.

Name LigandScouta ROCSb GOLDc SEAd PASSe PharmMapperf Activitym

Top-ranked pharmacophore modelling hits

Compound 5 0.97h - - - - - -

Compound 6g 0.97h 1.215j - - - - -

Compound 7 0.97h - - - - - -

Compound 8 0.96h - - - - - -

Compound 9 0.96h - - - - - +

Compound 10 0.96h - - - - - +

Compound 11 0.96h - - - - - -

Compound 12 0.96h - - - - - +

Compound 13 0.96h - - - - - -

Compound 14 0.95i - - - - - -

Top-ranked shape-based modelling hits

Compound 15 - 1.265k - - - 0.607 +

Compound 16 - 1.254j - - - - -

Compound 17 - 1.251j - - - - -

Compound 18 - 1.233l - - - - +

Compound 19 0.93h 1.217l - - - - -

Compound 20 - 1.198j - - - - -

Compound 21 - 1.196l - - - - -

Compound 22 0.93h 1.192j 127.019 - - - -

Compound 23 - 1.189k - - - - -

Compound 24 - - 146.089 9.93eˆ-4 - - +

Top-ranked docking hits

Compound 25 - - 144.178 - - 0.634 -

Compound 26 - - 141.653 - - - +

Compound 27 - - 141.154 - - - -

Compound 28 - 1.011l 140.461 - - - -

Compound 29 - - 139.719 - - - +

Compound 30 0.93h - 139.554 - - - -

Compound 31 - - 138.331 - - - -

Compound 32 - - 37.578 - - - +

Compound 33 - - 136.966 - - - -
a Only highest relative pharmacophore fit score is listed for every compound, high values are desirable.
b Only highest relative ComboScore is listed for every compound, high values are desirable.
c Only highest GoldScore is listed for every compound, high values are desirable.
d Only lowest E-value below the activity cut-off is listed for every compound, low values are desirable.
e Only Pa values above activity cut-off are listed, high values are desirable.
f Highest relative pharmacophore fit score retrieved with a model with at least 6 features, high values are desirable.
g Consensus hit ranked in the top-ten of both the pharmacophore- and shape-based modeling hit list.
h Identified with model pm-2q5s.
i Identified with model pm-3h0a.
j Identified with model shape-2q5s.
k Identified with model shape-3vn2.
l Identified with model shape-3fur.
m + active in the biological testing, - inactive in the biological testing.

such as noise, and systematic errors that are associated
with consistent or over-underestimated activity across the
screening collection [11, 14]. This has also been reflected
by examining the examples discussed in section 4.1. To
mitigate this limitation, VS can play key role in extraction of
knowledge from HTS experiments and the data derivation

that is required for predictive models of activity for database
mining. Finally, the compound reusability factor is a major
HTS/HCS issue. Nevertheless, in section 4.2, VS techniques
allowed to analyze the known crystal structure. Such
VS techniques allow the creation of compound subsets.
These compound subsets are biased towards the target
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Table 2. : Summary of relavant VS and HTS factors

Type Effectiveness Integration and automation Cost Drug target knowledge

HTS/HCS
Experimental, testing
as may compounds

as possible

depends on
compounds screened

HTS/HCS benefits
from automation.

However, integrating ever
increasing advances

in computational technologies
pose a continuous challenge

HTS/HCS are still costly
because of the large
amount of resources
required in relation

to the number
of active compounds

discovered

no prior target
information is

required

VS

theoratical, uses prior
biological information

to identify active
compounds.

depends on quality
and completeness
of input training

sets for model
generation and validation

VS benefits both
from automation,

and integration with
state-of-the-art

computational approaches
contributing to overall task of

compound screening and
optimization for drug discovery

cost effective - after a large
number of possible new

ligands are found,
only then these active

compounds
are purchased and

tested.

detailed knowledge
of the target
is required

Table 3. : Successful applications of vHTS.

Target Main contribution Method Reference

DNMT Nanaomycin as selective
DNMT3b inhibitor Structure-based [37]

Chk-1 kinase
Thirty-six inhibitors with

IC50values between
68 nM and 110 mM

Ligand-centric,
pharmacophore-based

and structure-based
[33]

mGlu4 receptor Six agonists from a library of
720 000 compounds Structure-based [47]

Neurokinin-1 receptor One compound with
IC50 = 0.25 mM

Pharmacophore-based and
structure-based [15]

Fructose 1,6-
bisphophatase

Three compounds
from ZINC6 database

with IC50 values
between 1.1 and 32 mM

Structure-based [20]

Serine/Threonine
and tyrosine kinases

Substituted 2-arylbenzothiazoles
EC50 = 60 nM. Structure-based [45]

class for which structure-activity relationships (SARs) exist
across the different lead chemotypes or active sites [19].
These compound subsets, also known as focused screening
(illustrated in the appendix), can provide sufficient hits
in the drug discovery phase, without screening the whole
molecular inventory.
In light of these complimentary benefits offered by VS
and HCS in the individual campaigns, further research
developing hybrid approaches could mitigate their
limitations and increase the efficiency of the drug discovery
process. Some of the successful approaches based on the
combination of VS and HCS are summarized in Table 3
below.

6. CONCLUSION AND FUTURE REMARKS

In this paper, we briefly present a review of the two
leading imaging techniques i.e HCS and VS, used for drug
discovery to identify potential compound candidates. From
disucssion it can be deduced that the ever-increasing amount
of available compound activity and biomedical data is
leading to the emergence of new hybrid approaches from the
HCS and VS. To mine, efficiently large-scale chemistry data
for such approaches make it a plausible solution for drug
discovery. Deep learning techniques provide the flexibility
to create neural network architectures custom-build for
specific problems. Deep learning techniques are more
complex and large at scale. Some of the applications for
deep learning include compound property and activity

prediction, predicting reactions and retrosynthetic analysis,
predict ligand-protein interactions, Benchmark datasets
within chemoinformatics, biological imaging analysis etc.
In the context of drug discovery, deep learning has been
found to be a suitable solution for tasks with structured input
descriptors such as bioactivity prediction [9].
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