
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 7, August 2018

5

An Ameliorated Approach to Represent UML Class

Diagram in the Table Format

R. N. Kulkarni, PhD
Prof. & Head,

Dept. of Computer Science & Engineering,
BITM, Ballari, India

C. K. Srinivasa
Associate Prof.,

Dept. of Computer Science & Engineering,
BITM, Ballari, India

ABSTRACT

Nowadays Unified Modeling Language (UML) is a de-facto

standard tool used for the design of software systems. The

UML tool has the facility to perform forward engineering and

reverse engineering of the UML diagrams. The user can make

use of forward engineering option to convert the UML

diagrams into a template in a target specific programming

language such as C++, C#, Java etc and also can perform

reverse engineering by transferring the template into the

diagram. In this paper, we are proposing a Semi automated

tool which takes the UML class diagram as an input and

represent it in a table format. This process of transformation

from diagram to table is carried out in two stages. Firstly by

converting the input class diagram into its equivalent XML

Metadata Interchange (XMI) format using a generic available

tool called White Star UML and then the required contents are

abstracted from the XMI format by our proposed developed

tool.

Keywords

UML Class Diagram; XMI Format

1. INTRODUCTION
The UML Class diagram is used to represent the design of any

software application. The representation visualizes the static

view of an entire application. The class diagram basically

comprises the class name, attribute set and the operations

associated with it. The relationships such as generalization,

inheritance, multiplicity and association are explicitly

represented in the table.

The UML tool available in the market today has features of

converting the diagram into a form of a program code in a

specific programming language which is well defined in the

tool. The tool has the limitations i.e. it will not convert

diagram into its equivalent table form.

2. LITERATURE SURVEY
UML is an acronym for Unified Modeling Language,

incorporating Object Oriented concepts for analysis, design,

and modeling software systems. UML is widely accepted as a

de-facto tool for design of software systems, initially

developed by the “Three Amigos” Grady Booch, Jim

Rumbaugh, and Ivar Jacobson and now owned and supersede

by the Object Management Group (OMG) [1].

In paper [2], the author discussed about a methodology to

abstract the behavior of the program and then representing

this behavior in the form of a data flow diagram through a

series of steps. In our proposed work the static behavior of a

class diagram is represented to a table form.

In paper [3], the author represented the attributing all

information from XMI tagged elements obtains its equivalent

graph representation and indeed this approach bridges the gap

between theory and practice by converting XMI

representation of UML 2.x. In this paper an equivalent XMI

template of a class diagram is generated and abstracts the

relationships between the classes.

In paper [4], the author discussed about the modeling process

in which the class diagrams are taken as an input and

generated the output which helps for the design of Meta

models. In our proposed work we are also taking the class

diagram as an input and representing this class diagram in the

form of a table for further abstraction.

In the paper [5], the author discussed about restructuring of

input legacy „C‟ program system in which a methodology was

proposed to restructure the „C‟ program without changing the

functionality of the program. In this paper the same

methodologies is used and appropriately modified to suit the

requirement of converting the class diagram into table format.

In paper [6], the author presented the behavior of the classes

and analyses of control flow that helps in determining

relationships between them. In this paper we abstract the

relationships of one class to other classes in a table form.

In paper [7], the author developed a reengineering

methodology that automatically abstracts the

interrelationships between group of attributes and actor‟s

interface, functional dependences etc. In this paper

relationship between UML classes are abstracted in form of a

table.

In paper [8], the author contributed to integrate a set of UML

class diagrams using mapping and validation between them

that result in the alignment of UML models. In the proposed

work, the UML class diagrams are mapped into a table

format.

In our methodology, we try to transform UML Class diagram

that generates the output in a table format wherein the class

diagram acts as an input. The proposed technique outlines the

class diagram in a standard arrangement and additionally

records out the relationship between classes in a table form.

3. TERMINOLOGY
XMI Format: XMI are XML files stands for XML metadata

interchange which usually contain metadata information and

have been represented as a template.

ClassTable: ClassTable is a Table where it collates all the

UML class standard features such as Attributes, Operations,

Multiplicity, Associations, generalizations, Aggregation and

composition and also visualizes relationships of class

diagram.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 7, August 2018

6

4. METHODOLOGY
In this paper we are proposing a semi automated tool which

has two parts viz,

i) Abstraction of the data from the class table

such as class name, attributes, operations, and

visibility. Here we are using the generic tool

called White Star UML, to abstract the class

name, attributes, operations, and visibility.

ii) The abstracted information from the generic

tool is used as an input to our proposed tool for

further abstraction and representation of the

class diagram in the form of table.

We are using White Star UML tool for the retrieval of class

name, attributes, operations(methods) and visibility such as

(Public, private, protected). This abstraction information will

act as input to our proposed tool. The proposed tool processes

the input data and represents the output in the form of a table.

All the features such as Class name, Attributes, Operations,

Visibility, Multiplicity, Association, generalization,

specialization etc is explicitly represented in the table. The

purpose of representing the diagram into the table is to

abstract the required contents to make amenable for further

process. The step followed in the abstraction of table from

UML class diagram is shown in figure 1.

4.1 Converting the UML Class diagrams to

its equivalent XML document.
The UML Class diagram is drawn using white Star UML tool

and is exported to XMI format. The generated XMI for class

diagram is manually validated for correctness and

completeness. The proposed step of converting the UML

diagram into XMI format is shown in figure 2.

4.2 Finding and mapping the elements of

XMI document to appropriate field in a

table.
In this step we have proposed a tool which takes the output of

step 1 and then it abstracts relevant contents from the XMI

document and then represented in the form of a table.

4.3 Block diagram for Representing UML Class Diagram To Table Form

Figure 1: Block diagram of a procedure to convert from XMI form a of class diagram to class Table.

The above block diagram shows the procedure to convert

UML class diagram to Table form. Initially a class diagram is

drawn using White star UML tool and is exported to XMI

form. This equivalent XMI class form is given as input to our

proposed tool (Class Table Generator). Our proposed tool

validates the XMI tags and identifies the class features. The

class features such as class name, attributes, visibility,

multiplicity, association, generalization etc are abstracted. The

abstracted information of class is mapped and is displayed to a

Table form.

4.4 Algorithm for Representing Class

Diagram To Table Form
 INPUT: UML-Class-Diagram

 OUTPUT: Class-Table

 Pre-Condition: A UML Class diagram

 Post-Condition: A valid XMI of Class diagram

REPRESENTING-CLASS-DIAGRAM (File-Name.xml)

STR[1..n] ← File-Name.xml

if (! (Validate (STR [1..n]))) then

 return InValid xml

else

Initialize Count= 0

for j ← XmlNode to xcontentnode do

 if Name == uml.model then

 ChildNode ← NameSpace.ownedElement

 Count++

 if ChildNode && Count > 0 then

 model ← childNode

 while (model)

 Identify class and class features

 for Class-j ← 1 to n do

 Class-j ← class-Name

 Class-j [1..n] = {Attr-j, type-j, visibility-j}

 Class-j [1..n] = {Oper-j, Para-j, visibility-j}

 Class-j [1..n] = {Asso-Class-name-j, Asso-name-j,

multi-j}

 Class-j [1..n] = {Parent-Class-name-j, Sub-Class-name-

j,Generaz-j,Aggreg-j,Compo-j}

 end for

 end while

 end if

 end if

 end for

end if

for Class-j ← 1 to n do

 Class-Table [1..n] ← Class-j [1..n]

 end for

Display Class-Table

XMI

representation of

class diagram

Validate XMI

representation of class

diagram

Identify model and Data

types

Determine class

features
Convert to Table Display Class

Table

Class

diagram

White Star UML

Tool

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 7, August 2018

7

5. CASE STUDY
The proposed procedure is implemented for various types of

UML Class diagram and the results we got are correct and

complete. The sample UML Class diagram Table 1 is the

input and Table 2 is the output of our methodology. In Table 1

the UML class has three compartments which contain class

name, attributes and operations. This Class has a class name

as Bank and has two attributes named BankCode and Address

with visibility public and data type as integer and string. The

third compartment of class has two operations with visibility

public. The first operation is named as Manages and has two

parameters Atm_info and Dcard with datatype string and

integer. The second operation is named as Maintains with null

parameters.

Table 1: UML Class Diagram

Bank
+BankCode:Integer
+Address: String

+Manages(Atm_Info:String, Dcard:Integer)
+Maintains()

Step 1:
The first step of our proposed work is to export UML Class

diagram to XMI form using White Star UML Tool. The

following XMI code is generated by White Star UML for an

UML Class diagrams Table 1.

<?xml version = "1.0" encoding = "UTF-8"?>

<XMI xmi.version = "1.1"

xmlns:UML="href://org.omg/UML/1.3" timestamp = "Sat

Mar 24 9:18:46 2018">

<XMI.header>

 <XMI.documentation>

 <XMI.owner></XMI.owner>

 <XMI.contact></XMI.contact>

 <XMI.exporter>StarUML.XMI-Addin</XMI.exporter>

 <XMI.exporterVersion>1.0</XMI.exporterVersion>

 <XMI.notice></XMI.notice>

 </XMI.documentation>

 <XMI.metamodel xmi.name = "UML" xmi.version = "1.3"/>

 </XMI.header>

 <XMI.content>

<UML: Model xmi.id="UMLProject.1">

<UML: Namespace.ownedElement>

<UML: Model xmi.id="UMLModel.2" name="Scenarios"

visibility="public" isSpecification="false"

namespace="UMLProject.1" isRoot="false" isLeaf="false"

isAbstract="false"/>

<UML: Model xmi.id="UMLModel.3" name="Logical View"

visibility="public” isSpecification="false"

namespace="UMLProject.1" isRoot="false" isLeaf="false"

isAbstract="false">

<UML: Namespace.ownedElement>

<UML: Class xmi.id="UMLClass.4" name="Bank"

visibility="public" isSpecification="false"

namespace="UMLModel.3" isRoot="false" isLeaf="false"

isAbstract="false" isActive="false">

<UML: Classifier.feature>

<UML: Attribute xmi.id="UMLAttribute.5"

name="BankCode" visibility="public" isSpecification="false"

ownerScope="instance" changeability="changeable"

targetScope="instance" type="X.17" owner="UMLClass.4"/>

<UML: Attribute xmi.id="UMLAttribute.6" name="Address"

visibility="public" isSpecification="false"

ownerScope="instance" changeability="changeable"

targetScope="instance" type="X.20" owner="UMLClass.4"/>

<UML: Operation xmi.id="UMLOperation.7"

name="Manages" visibility="public" isSpecification="false"

ownerScope="instance" isQuery="false"

concurrency="sequential" isRoot="false" isLeaf="false"

isAbstract="false" specification="" owner="UMLClass.4">

<UML: BehavioralFeature.parameter>

<UML: Parameter xmi.id="UMLParameter.8"

name="Atm_Info" visibility="public" isSpecification="false"

kind="in" behavioralFeature="UMLOperation.7"

type="X.16"/>

<UML: Parameter xmi.id="UMLParameter.9" name="Dcard"

visibility="public" isSpecification="false" kind="in"

behavioralFeature="UMLOperation.7" type="X.17"/>

</UML: BehavioralFeature.parameter>

</UML: Operation>

<UML: Operation xmi.id="UMLOperation.10"

name="Maintains" visibility="public" isSpecification="false"

ownerScope="instance" isQuery="false"

concurrency="sequential" isRoot="false" isLeaf="false"

isAbstract="false" specification="" owner="UMLClass.4"/>

</UML: Classifier.feature>

 </UML: Class>

 </UML: Namespace.ownedElement>

 </UML: Model>

 <UML: Model xmi.id="UMLModel.11"

name="Development View" visibility="public"

isSpecification="false" namespace="UMLProject.1"

isRoot="false" isLeaf="false" isAbstract="false"/>

<UML: Model xmi.id="UMLModel.12" name="Process

View" visibility="public" isSpecification="false"

namespace="UMLProject.1" isRoot="false" isLeaf="false"

isAbstract="false">

<UML: Namespace.ownedElement>

<UML: ActivityGraph xmi.id="UMLActivityGraph.13"

name="ActivityGraph1" visibility="public"

isSpecification="false" context="UMLModel.12">

<UML: StateMachine.top>

<UML: SimpleState xmi.id="UMLCompositeState.14"

name="TOP" visibility="public" isSpecification="false"

stateMachine="UMLActivityGraph.13"/>

</UML: StateMachine.top>

</UML: ActivityGraph>

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 7, August 2018

8

</UML: Namespace.ownedElement>

</UML: Model>

<UML: Model xmi.id="UMLModel.15" name="Physical

View" visibility="public" isSpecification="false"

namespace="UMLProject.1" isRoot="false" isLeaf="false"

isAbstract="false"/>

<UML: DataType xmi.id="X.16" name="string"

visibility="public" isSpecification="false" isRoot="false"

isLeaf="false" isAbstract="false"/>

<UML: DataType xmi.id="X.17" name="Integer"

visibility="public" isSpecification="false" isRoot="false"

isLeaf="false" isAbstract="false"/>

<UML: DataType xmi.id="X.20" name="String"

visibility="public" isSpecification="false" isRoot="false"

isLeaf="false" isAbstract="false"/>

</UML: Namespace.ownedElement>

</UML: Model>

<UML: TaggedValue xmi.id="X.18" tag="ordering"

value="unordered" modelElement="UMLAttribute.5"/>

<UML: TaggedValue xmi.id="X.19" tag="ordering"

value="unordered" modelElement="UMLAttribute.6"/>

</XMI.content>

</XMI>

Figure 2: XMI representation of Table 1 exported from White Star UML

Step 2:
In this step the required contents of an UML class diagram are abstracted from the XMI format and represented in form of a table by

our proposed tool. Table 2 is generated output and is equivalent to Table 1 which contains all the class features and is analogous to

matrix.

Table 2: Output of UML class diagram Table 1 generated by our proposed tool

6. CONCLUSION
In this paper an attempt is made to represent the UML Class

diagram into its equivalent table format.

The paper proposed a semi automatic tool which takes the

UML class diagram as an input and then generates the output

in a table format. This Representation of UML class diagram

is carried out by converting class diagram into its equivalent

XMI format and then abstracting the information from XMI

and is presented in a table format. This tool collates all the

UML class standard features such as attributes, operations,

Associations, generalizations, Aggregation and composition

which systematizes with no ramifications. It helps to quickly

visualize relationships of class diagram and is affable to

develop software systems and further may be used to abstract

requirement specification. In future we are proposing similar

kind of representation to the remaining UML diagrams.

7. REFERENCES
[1] “OMG Unified Modeling Language TM (OMG UML),

superstructure version 2.2”,

http://www.omg.org/spec/UML/2.2/ Superstructure.

[2] Dr. R.N. Kulkarni, T. Aruna, and N. Amrutha, A. Mantri

et al. “Abstraction of Design Information from

Procedural Program” (Eds.): HPAGC 2011, CCIS 169,

pp. 364–372, 2011. © Springer-Verlag Berlin Heidelberg

2011.

[3] Debasish Kundu, Debasis Samanta, and RajibMall, “An

Approach to Convert XMI Representation of UML2.x

Interaction Diagram into Control Flow Graph,”

International Scholarly Research Network ISRN

Software Engineering Volume 2012, Article ID 265235,

22 pages doi:10.5402/2012/265235

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 7, August 2018

9

[4] B. Rumpe, “Modeling with UML”, Springer International

Publishing Switzerland 2016, DOI 10.1007/978-3- 319-

33933-7_2

[5] Dr. R N Kulkarni, Nidhi Jain C, Rashmi G, Vaishali B J,

Zakiya Niyazi, “Abstraction Of Test Cases From Input

Java Program”, International Journal of Combined

Research & Development (IJCRD) eISSN:2321-

25X;pISSN:2321-2241 Volume: 4; Issue: 5; May -2015.

[6] Dr. R N Kulkarni “Abstraction of Uml Diagrams from

Java Code “, International Journal of Combined

Research & Development (IJCRD) eISSN: 2321-225X;

pISSN: 2321-2241 Volume: 2; Issue: 4; April-2014.

[7] Dr. Shivanand M. Handigund, Rajkumar N. Kulkarni “An

Ameliorated Methodology for the design of Object

Structures from legacy „C‟ Program”, ©2010

International Journal of Computer Applications (0975 –

8887) Volume 1 – No. 13.

[8] Hicham Elasri and Elmustapha Elabbassi and Abderrahim

Sekkaki and Muhammad Fahad, “Integration of UML

class diagram with semantic Validation on segments of

mappings”, CoRR, year 2018, volume abs/1801.04482.

[9] D.Kundu, M.Sarma, D.Samanta, and R.Mall, “System

testing for object-oriented systems with test case

prioritization”, Software Testing, Verification and

Reliability, vol. 19, no. 4, pp. 297–333, 2009.

IJCATM : www.ijcaonline.org

