
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 8, August 2018

1

Employing Gene Expression Programming in Estimating

Software Effort

Najla Akram AL-Saati, PhD
Assist. Professor, Software Engineering Dept.
College of Computer Sciences & Mathematics,

University of Mosul, Iraq

Taghreed Riyadh AL_Reffaee
Assist. Lecturer, Software Engineering Dept.

College of Computer Sciences & Mathematics,
University of Mosul, Iraq

ABSTRACT

The problem of estimating the effort for software packages is

one of the most significant challenges encountering software

designers. The precision in estimating the effort or cost can

have a huge impact on software development. Various

methods have been investigated in order to discover good

enough solutions to this problem; lately evolutionary

intelligent techniques are explored like Genetic Algorithms,

Genetic Programming, Neural Networks, and Swarm

Intelligence. In this work, Gene Expression Programming

(GEP) is investigated to show its efficiency in acquiring

equations that best estimates software effort. Datasets

employed are taken from previous projects. The comparisons

of learning and testing results are carried out with COCOMO,

Analogy, GP and four types of Neural Networks, all show that

GEP outperforms all these methods in discovering effective

functions for the estimation with robustness and efficiency.

Keywords

Effort Estimation, Software Engineering, Artificial

Intelligence, Gene Expression Programming.

1. INTRODUCTION
Administration and organization of Software projects usually

starts with planning, any project cannot be initiated before an

estimation of the work to be done, the essential resources, and

the time necessary to complete the project is carried out by the

development team.[1]

It is very crucial to provide good estimates of the effort and

cost required in completing projects during the inception

phase.[2] After doing so, a schedule should be prepared by the

development team describing software engineering

responsibilities and milestones, it should also decide who is in

charge of accomplishing such tasks[1].

Common problems related to the process of estimation are

associated with overestimation or underestimation of the

desired effort. Underestimation can cause low self-confidence

for employees, weakening in reputation and a demanding

work situation. In contrast, overestimation can produce a

situation where a lot of resources are bound to the project, or

produce inadequate decisions concerning outsourcing project

parts, as opposed to constructing it internally. By and large,

software industries tend to underestimate the effort, which can

lead to accepting that milestones can’t be met during

execution [2].

Software has lately become the highest costly part of a

project; hence the impact of worthy estimation in a software

project is essential. A lot of estimation models were

introduced over the last 4 decades and they were all

confronted with the same problem: when the software size

and significance increase it becomes more complex, then the

accurate prediction of effort or cost can be very difficult.

However due to the high-speed varying nature of software

development, it is becoming very hard to develop models that

provide high accuracy for software development in all areas.

The estimation process usually involve finding Effort (Person-

months), Project Duration (Calendar time), and/or Cost

(Dollars) [2].

Figure 1 shows the sequence of estimates in the life cycle of

the Software development. [3]

Fig 1: Sequence of Estimation in System Development Life

Cycle [3]

There has been a vast work presented for software effort

estimation starting from traditional and mathematical

approaches such as COCOMO and Function Point Analysis.

These methods do not regularly yield accurate cost or effort

estimates. Lately, Artificial Intelligent methods began to

attract more interest, they have been intensively investigated

in the literature. This work focuses on employing Gene

Expression Programming to find suitable estimates for

software effort.

2. LITERATURE REVIEW
To cover most of the previous work presented in this field, a

glance is made back to 2001, when Dolado [4] employed GP

in finding functions that estimates the cost; comparisons were

superior to pervious outcomes. In 2004, as Xu and

Khoshgoftaar proposed a fuzzy identification model that

delivered significantly improved estimates over three used

COCOMO models. [5] In 2005, Carroll estimated software

effort using case points, he applied the process on 200 sizable

projects, and verified metrics of accuracy having less than 9%

deviation between actual and estimated costs done on 95% of

his projects. [6] Later in 2006, Huang and Chiu engaged

Genetic Algorithms to estimate software efforts using the

linear and non-linear unequal weights. [7] Web cost

estimation was explored using the idea of Bayesian Network

Models by Mendes and Mosley in 2008. [8] Uzoka, used a

fuzzy expert system to carry out an analysis of cost benefit for

systems of Enterprise information in 2009. [9] While Ramesh

in 2010, estimated the software effort by means of the radial

basis and the generalized regression model of neural

networks.[10] in 2011, Azzeh used model tree with optimal

parameters obtained using Bee algorithm to build a software

effort model for estimation. Eight datasets from PROMISE

https://www.sciencedirect.com/science/article/pii/S0165011403004408#!
https://www.sciencedirect.com/science/article/pii/S0165011403004408#!

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 8, August 2018

2

and ISBSG were used to validate the model. He employed 3-

Fold cross validation for evaluating the accuracy of

predictions for different models.[11]Whereas Ziauddin, Tipu,

and Zia in 2012, developed an effort estimation model for of

Agile Software by employing traditional methods and 21

projects. [12] Toka and Turetken proposed a comparative

analysis for the accuracy of models of contemporary

parametric software estimation.[13] In the same year, Israa

[14] proposed an analysis of the performance for neural

networks, the results were compared with the COCOMO

model

Arnuphaptrairong proposed in 2013 a Function Point

methodology along with a data flow diagram to perform

estimation in the early stages of development, majority of the

estimation models were found to be reliant on information

acquired in the latest stages of the development. [15] In 2015,

Ruchi Puri and Iqbaldeep Kaur suggested a meta-heuristic

approach for cost estimation. The BAT swarm algorithm was

presented along with human opinion dynamics with the use of

effort parameter.[16] Shivani Sharma, Aman Kaushik, and

Abhishek Tomar used a hybridized algorithm in 2016 to solve

the problem of estimation for software cost; they aimed at

computing the budget of the project and the function points of

each module with a top down technique.[17]

3. ESTIMATING SOFTWARE EFFORT
Effort estimation symbolizes a vital part in software

development; it can critically influence the success or failure

of projects. The estimation process is required in order to

establish a plan signifying the completed activity along with

its required time and effort [18].

An exact estimation of software cost/effort can never be exact,

as numerous variables are involved such as human or

environment, which have the power of affecting the total cost

and effort needed to produce the software. Yet, the estimation

for software projects can be dealt with as a sequence of

methodical steps to deliver acceptable risk estimates.

Attaining trustworthy estimates of cost and effort can be

obtained following the next suggestions [1]:

1. Estimations can be postponed to late stages; this may

seem appealing yet not practical as estimates have to be

delivered in advance.

2. Similar completed projects’ estimates; this might go well

in case of the present project being similar to previous

efforts and additional project impacts. Unluckily, previous

practice is not always a worthy indicator of upcoming

outcomes.

3. Employment of reasonably uncomplicated decomposition

techniques in generating cost/effort estimates. Estimation

of cost/effort can be achieved in a step by step manner

after breaking up the project into main functions

accompanied by the related activities of software

engineering.

4. Empirical models can be used for estimating cost and

effort.

Experience-based models depend on historical data can be in

the form[1]:

𝑑 = 𝑓(𝑉) ……………………………….(1)

Where:

𝑑: Estimated value (e.g., effort, cost, duration).

V: Independent parameters (e.g., estimated LOC or FP).

4. COCOMO EMPIRICAL

ESTIMATION MODEL
One of the distinguished effort estimation models is the

COCOMO (Constructive Cost Model) model (Boehm,

1981). It supplies the effort in person months, the time of

development in months, and the size of team in persons. This

model uses mathematical equations for calculating such

parameters [19].

COCOMO consists of a Basic, Intermediate, and Detailed

level of modeling, they all comprise an association between

the size of system (KDSI Delivered Source Instructions) and

the effort of development (person-month). The intermediate

and detailed levels of COCOMO provide estimates that are

enhanced using some alterations on the main equation. Basic

COCOMO gives a relationship between size and effort as in

Eq(2).

𝑃𝑒𝑟𝑠𝑜𝑛_𝑀𝑜𝑛𝑡ℎ = 𝑎(𝐾𝐷𝑆𝐼)𝑏 …………….……(2)

where

Person_Month : is the effort

KDSI: is the Delivered Source Instruction

a: is the productivity coefficient

b: is a scale factor.

Models of COCOMO are[19]:

1-Basic Model: estimates effort of small to medium sized

projects in a hasty and rough style, it is given in Eq(3).

𝐸 = 𝑎(𝑆𝐼𝑍𝐸)𝑏 ……………………………………...(3)

where

a and b are dependent on the three development modes.

Three modes of projects were proposed by Boehm [19] :

 Organic:- for small projects (up to 2-50 KLOC)

accompanied with skilled developers in an accustomed

environment.

 Embedded:- for large intricate projects (usually over 300

KLOC) having developers with slight past experience.

 Semi-detached:- for medium projects (up to 50-300

KLOC) with average past experience on similar projects.

2- Intermediate Model: The direct COCOMO does not

include the environment of software development; Boehm

presented (15) cost drivers in this model, which in turn adds

accuracy to the direct COCOMO. Cost drivers are grouped

into four categories Product attributes, Computer attributes,

Personnel attributes, and Project attributes. The intermediate

COCOMO estimates effort in person-months as given in

Eq.(4).[19]

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑎 (𝑠𝑖𝑧𝑒)𝑏 𝐸𝑀𝑖
15
𝑖=1 …………….……….(4)

where

EMi : the value of the ith cost driver (Effort Multiplier).

 EMi
15
i=1 : the multiplication of the cost drivers.

3- Detailed Model:- Two more abilities for this model are

introduced by Boehm: Phase sensitive effort multipliers that

can aid in defining the allocation of manpower for all phases

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 8, August 2018

3

and the hierarchy of the three level product: module,

subsystem and system. [19].

Even though the COCOMO model is clear an obvious unlike

other models, it still has some drawbacks like[20]:

- Accurately estimating the size early in the project is very

hard, when most effort estimates are required.

- The Size is actually not a size measure but it is a measure

of length.

- Success relies mostly on tuning the model to the

requirements of the organization. This is done through the

use of historical data which is not always obtainable [20].

5. GENETIC PROGRAMMING
The introduction of Genetic Programming (GP) in 1992 by

Koza has greatly influenced the field of evolutionary

computation, the idea of using a population of competing

programs or equation instead of solutions has opened the door

for new insights. With GP a whole class of problems is solved

as an alternative to solving just one instance.

Following the idea of GA, Chromosomes are evolved in GP

from generation to the next carrying computer programs that

adapt their information using operators such as reproduction,

crossover, and mutation aiming to find fitter chromosomes.

This adaptation is done according to a fitness function that is

available to allocate fitness values for the individuals. The

process is shown in Figure 2.[21][22]

There are four major preparatory steps require to be specified

before commencing with an evolutionary algorithm:[22].

1. Defining the function and terminal set for the problem at

hand.

2. Stating the fitness function for the problem.

3. Setting the environmental parameters (population size,

max generations and maximum tree depth).

4. Choosing a termination criterion to stop the process.

Fig 2: GP Evolutionary Process [22]

6. GENE EXPRESSION

PROGRAMMING
Genetic Programming can be very problematic, especially

when it comes to programming because of the complication

related to tree structures. Accordingly, some linear variants

were suggested to encode chromosomes linearly and still

represent trees. Gene Expression Programming (GEP) is one

of these variants. [23][24]

Genomes or chromosomes of GEP are represented using a

linear symbolic string usually fixed in length containing one

or more genes. And even though their length is fixed, GEP

chromosomes are able to code expression trees with diverse

sizes and shapes.

As for GEP’s genes, their structural organization can better be

understood using Open Reading Frames (ORFs).

Biologically, the coding sequence of a gene (ORF)

commences with a start codon, and is finished by a

termination codon. In GEP the starting point is the first

position of a gene, but the termination point does not always

correspond to the gene’s last position. Noncoding regions are

commonly found in GEP’s genes.[25]

The algebraic expression Q= a + b ∗ (c − d) can be

represented as shown in Figure 3.

Fig 3: Gene Expression Programming Representation [26]

The expression starts with “Q” (location 0) and terminates at

“d” (location 7), the Expression Tree (ET) is made of a head

and a tail domain and each of them has different properties

and functions. The head contains functions and terminals, it is

primarily used in encoding functions chosen for the current

problem, while the tail containing only terminals, and use

them to guarantee creating valid structures every time.

Given any problem, a decision has to be made about the

length of the chromosome; head’s length (h) is predefined,

whereas the length of the tail (t) is defined as a function of the

head along with maximum arity (nmax) which is the

maximum number of arguments that a function from the

function set acquire. Eq. (5) gives the tail’s length

calculation[25]:
𝑡 = ℎ ∗ 𝑛max − 1 + 1 ……………………(5)

where

nmax: is the maximum number of arguments that a function

from the function set acquire.

6.1 GEP ALGORITHM
The process begins by randomly generating chromosomes for

the initial population. These chromosomes are expressed

afterwards and the fitness function is evaluated for each and

every individual. Selection of individuals starts according to

the fitness of each to be reproduced after possible

modifications using genetic operators. The process is iterated

until stopping criterion is met which can be the end of

generation or when a good solution has been found [25], the

main stages for GEP are depicted in Figure 4.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 8, August 2018

4

Fig 4: GEP Algorithm [25]

6.2 Genetic Operators.
Genetic operators are used to perform an interchange of

information between chromosomes competing in the same

population; they also introduce new genetic material that may

not be present in the individuals. Genetic operators for GEP

are described in following subsections.[24]

6.2.1 Mutation
Mutations are usually allowed to alter in any gene in the

chromosome. Nevertheless, the structure of the chromosome

must remain correct. When a mutation happens in the head

domain, symbols can change into another function or

terminal. However, as it takes place in the tail, terminal

symbols can only change into terminals. In this manner, the

structural organization for the chromosome is preserved, so

the new chromosomes created by mutation are correct

programs in their structure. A mutation occurs within a

specific rate (pm) usually set to)0.05). Figure 5 shows what

happens when a mutation occur in the head of a chromosome

[25].

Fig 5: The Mutation Operation

6.2.2 Transposition and Insertion Sequence

elements
There are three types of this operation:

1- Insertion Sequence elements (IS): any sequence in the

gene can form an (IS) element, so they are randomly

selected throughout the chromosome. A copy is made of

the transposition and is inserted at a random position in

the head, except for the start position. The rate of an IS

transposition (pis) is (0.1), a group of three different

length IS elements are employed. IS randomly selects the

chromosome, the starting position of the element, the

target position, and the transposon’s length. [25] Through

IS, the sequence from the copied IS element to the start

will be changed; symbols equal to the length of the IS

element will be eliminated from the end of the head. The

correctness of the resulting chromosome will still be

maintained after this insertion.[21]

2- Root Insertion Sequence (RIS): Elements of RIS always

start with a function; therefore they must be selected from

the head domain. Usually a point in the head is chosen

randomly and the gene is scanned forward to find a

function, this function becomes the starting point of the

RIS element. When no function is found, nothing is done.

A root transposition rate (pris) is typically set to (0.1) and

a group of three different size RIS elements are used. RIS

randomly chooses the chromosome, the gene, RIS element

starting point and length. [25]
3- Gene Transposition: - Here, the genes act as transposons

and transpose themself to the starting point of the

chromosome. Unlike the other forms of transposition, the

transposon -the gene- is eliminated from its source

location in order to maintain the length of the

chromosome. The choice of chromosome to go through

Gene transposition is random; a gene (apart from the first

one) is randomly selected to be a transposon from that

chromosome. Gene transposition rate is set to (0.0)

because the chromosome composed of one gene.[25].

6.2.3 Recombination:
GEP usually has three types of recombination [25]:

1- One-point Recombination: A randomly chosen position

is set to be the crossover point to produce two offspring

chromosomes. This recombination is an important origin

of genetic variation.

2- Two-point Recombination: it pairs the chromosomes and

sets two points of recombination randomly. After that, the

information between the recombination points are

swapped between the two parents, materializing two new

offspring chromosomes.

3- Gene recombination: here, genes are swapped between

the parents, resulting in two new offspring chromosomes.

This operator randomly selects the two parent

chromosomes and the gene to be swapped [25]. In this

recombination, the exchanged genes are very different

most of the times, but this operator cannot create new

genes, as the created chromosomes are just different

arrangements of the existing genes [21].

The rate of each recombination operator is subject to the rates

of other operators. Usually, a total crossover rate is set to (0.7)

which denotes the summed rates of all kinds of recombination

operators used

6.3 Fitness Function
The role of fitness functions is very critical when used in

methods for problem solving, as the success of finding

acceptable solutions to any given problem largely depends on

the chosen fitness function and its suitability to the problem at

hand. Therefore, the problem must be carefully studied to

provide good insights for the selection process in the hope of

finding better possible solutions.

For each chromosome in the population, the fitness is

evaluated to figure out the chromosome’s performance and

appropriateness. The fitness function can be measured in

several ways; it can be represented as the error ratio between

the actual input and the accomplished output. Or it might be

measured via the involved (time or cost) required to achieve

the desired goal. [24]

In GEP, fitness of chromosomes are evaluated by measuring

the variance between the result of an expression and the actual

output for a fitness case, this is shown in Eq.(6), Afterwards,

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 8, August 2018

5

the overall fitness for the individual will be the minimum

fitness among the expressions encoded in that chromosome,

as in Eq.(7).[27]

𝑓(𝐸𝑖) = |𝑂𝑘,𝑖
𝑛
𝑘=1 − 𝑊𝑘 | ………………………………(6)

where

Ok,i : is the result of expression Ei

Wk : is the actual output.

k: is the fitness case.

𝑓 𝐶 = min 𝑓 ⁡(𝐸𝑖) …………………………….………..(7)

6.4 Selection
In order to determine which of the chromosomes are to go

through reproduction and genetic operators, a selection

process is carried out to yield the offspring for the next new

generation. This process is usually based on the fitness of the

individuals, the more fit an individual is the more chance it

has to be selected. In this research tournament selection was

chosen to be selection method, and many Experiments were

conducted to investigate the selection size used in the

tournament selection, it proved that Tournament size (2) was

better and give the best result[28].

7. EXPERIMENTAL TESTING AND

RESULT

7.1 Datasets
An exploration has been carried out in this work to illustrate

the ability of GEP in finding a function for estimating the

software effort using the Datasets given in Table 1.

The Datasets selected here provide variety and diversity, their

availability and recurrent use made them become benchmark

datasets in this field, and they are mostly used to carry out

comparisons among techniques developed for software effort

estimation.

Table 1 Dataset used in this work

No Dataset Name Total no of projects

1. Albrecht &

Gaffney[29] [30]

5 incomplete (3,6,7,22,24)

 24 points

2. Kemerer [31] 15 points

3. Desharnais[32] 4 incomplete (38,44,66,75)

77 points

4. NASA[14] 60 point

5. Miyazaki [33] 48 projects

6. Boehm[34] 63 projects

7. Kitchenham and

Taylor[35]

33 projects

7.2 Parameters Setting
The preparation of GEP includes setting the parameter as

follows:

Function Set: {-, +, *, /, POWER, EXP, LOG, SQRT}

Terminal Set: project’s variables depending on the Dataset

NumGen :[25-1000]

PopSize : [10-500]

P(Mutation) :0.05

P(1-point) :0.3

P(2-point) : 0.4

7.3 Result Comparisons

7.3.1 Comparison with GP
Results of implementing GEP are compared with Genetic

Programming for the same data [4]. The results in Table 2

show that the MMRE and PRED functions of GEP (shown in

bold) are better than those of Genetic Programming. Table 3

shows the Effort Equations gained using GEP algorithm.

Table 2 Comparison between GP and GEP

No Dataset MMRE PRED(25)

GP GEP GP GEP

1 Miyazaki 0.50 0.43 47.9 50

2 Boehm 1.13 0.60 17.46 20.63

3 Kitchenham and

Taylor
0.84 0.51 27.27 36.36

Table 3 Effort Equation using GEP for the same dataset

No Dataset Effort Equation

1 Miyazaki ((KLOC - log10(FILE)E=

2 Boehm E=(exp(VIRT) * KSLOC)

3 Kitchenham and Taylor E= (Schedular + Tes effort)

7.3.2 Comparison with Analogy:
Results of GEP algorithm are also compared to those obtained

by Shepperd & Schofield [36] using analogy and stepwise

regression.

Tables 4 and 5 show the results of comparing GEP’s results

with those found by the Analogy method using (MMRE) and

(PRED(25)) function. Results signify the efficiency of GEP,

the best results of (MMRE) and (PRED) function of GEP are

shown in bold. The Effort Equations of GEP for the same

dataset are given in Table 6

Table 4 A Comparison between GEP and Analogy

No Dataset MMRE

Analog Regr1 Regr2 GEP

1 Albrecht & Gaffney 0.62 0.90 0.90 0.51

2 kemerer 0.62 0.107 0.107 0.43

3 Desharnais 0.64 0.66 0.66 0.55

Table 5 A Comparison between GEP and Analogy

No Dataset PRED(25)

Analog Regr1 Regr2 GEP

1 Albrecht & Gaffney 33 33 33 50

2 kemerer 40 13 13 46.6

3 Desharnais 36 42 42 27.27

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 8, August 2018

6

Table 6 Effort Equations of GEP algorithm

No Dataset Effort Equation

1 Albrecht &

Gaffney

E= (FP * sqrt((FP - sqrt(FILE))))

2 kemerer E =(FPcount / sqrt(sqrt(FPcount)))

3 Desharnais E=(YearEnd * (Envergure + TeamExp))

7.3.3 Comparison with COCOMO:
A comparison was conducted with the known empirical

models (Intermediate COCOMO) [19], results show the

success of the GEP as shown in Table 7. Table 8 shows the

Effort Equation of GEP for NASA data.

Table 7 A Comparison between GEP and COCOMO

Dataset

MMRE

COCOMO Model GEP

NASA 0.36 0.30

Table 8 Effort Equation for the NASA Dataset

COCOMO GEP (MMRE=0.30)

E =𝑎 (𝐾𝑆𝐿𝑂𝐶)𝑏 𝐸𝑀𝑖
15
𝑖=1 E=((LEXP + exp((PCAP/

LEXP))) * KSLOC)

7.3.4 Comparisons with Neural Networks:
In the end, and for further investigation, GEP is compared

with four types of Neural Networks, they are as follows[14]:

 The Cascade Neural Network (CNN).

 The Radial Basis Functions Network (RBFN(.

 The Feed Forward Neural Network (FFNN).

 The Elman Neural Network (ENN).

Tables 9 through 12 show the results of GEP and the four

Neural Networks taken for comparisons, these results indicate

the superiority of GEP over others in 6 cases out of 10 most

of the times.

Table 9 A Comparison between GEP and CNN

Project ID
Actual

Effort

Estimated Effort

CNN GEP

1. 62 50.95 66.65

2. 300 330.46 256.48

3. 48 63.93 61.42

4. 10.8 7.99 9.47

5. 120 132.10 111.25

6. 370 280.84 277.97

7. 60 137.63 133.81

8. 210 186.17 196.17

9. 1248 990.04 946.49

10. 72 94.88 35.07

Table 10 A Comparison between GEP and RBFN

Project ID Actual

Effort

Estimated Effort

RBFN GEP

1. 62 70.3 50.88

2. 300 331.8 247.96

3. 48 22 55.78

4. 10.8 10.9 19.02

5. 120 127.8 113.35

6. 370 195.1 197.36

7. 60 211.7 111.36

8. 210 156.5 133.72

9. 1248 1579.4 587.71

10. 72 20.9 30.372

Table 11 A Comparison between GEP and FFNN

Project ID Actual

Effort

Estimated Effort

FFNN GEP

1. 62 55.18 64.61

2. 300 331.00 278.69

3. 48 58.57 62.76

4. 10.8 46.26 14.64

5. 120 115.17 123.44

6. 370 286.24 221.66

7. 60 136.08 131.81

8. 210 184.79 175.65

9. 1248 981.30 1091.57

10. 72 72.94 53.94

Table 12 Comparison between GEP and ENN

Project ID Actual Effort Estimated Effort

ENN GEP

1. 62 58.8 31.5

2. 300 355.6 295.8

3. 48 38.9 40.9

4. 10.8 38.3 15.5

5. 120 109.8 131.0

6. 370 234 260.8

7. 60 161.5 85.9

8. 210 158.5 183.36

9. 1248 1018.3 575.31

10. 72 114.9 20.44

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 8, August 2018

7

8. CONCLUSION
Effort estimation was investigated in this work using the Gene

Expression Programming (GEP) method. This artificial

intelligent technique was adopted to find estimation functions

suitable enough to give best estimates based on the training

sets provided be previous projects.

GEP was employed to bypass the complications of Genetic

Programming such as tree size and depth, and to guarantee

that solutions are still correctly functioning following the

genetic operations.

In order to evaluate this employment, some comparisons were

performed between GEP and other methods including (GP,

Analogy, COCOMO, and Neural Networks. The results

showed that GEP was far better than the previously mentioned

methods using the same datasets.

9. REFERENCES
[1] Roger S. Pressman,(2010), "Software Engineering A

Practitioner’s Approach, Seventh Edition", 7th , McGraw-

Hill Company.

[2] Mohanty, S.K., Bisoi, A.K., (2012), ”Software Effort

Estimation Approaches – A Review”, International

Journal of Internet Computing ISSN No: 2231 – 6965,

VOL- 1, ISS- 3.

[3] Singh, J., Sahoo ,B., (2011), "Software Effort Estimation

with Different Artificial Neural Network", IJCA, 2nd

National Conference- Computing, Communication and

Sensor Network” CCSN.

[4] Dolado J.J., (2001),”On the problem of the software cost

function”, Information and Software Technology, pp:

Elsevier Science B.V. All rights reserved

[5] Zhiwei, Xu, and Taghi, M. Khoshgoftaar (2004).

Identification of fuzzy models of software cost

estimation. In Fuzzy Sets and Systems, V.145, Issue 1, 1

July 2004, Pages 141-163.

[6] Carroll, E. R. (2005). Estimating software based on use

case points. In Companion to the 20th annual ACM

SIGPLAN conference on Object-oriented programming,

systems, languages, and applications. pp: 257-265.

ACM.

[7] Huang, S., Chiu, N. (2006),”Optimization of Analogy

Weights by Genetic Algorithm for Software Effort

Estimation”, Journal of Systems and Software 48 (11),

pp:1034-1045.

[8] Mendes, E., Mosley, N., (2008). “Bayesian Network

Models for Web Effort Prediction: A Comparative

Study”. IEEE Trans. SWE, 34(6), pp: 723-737.

[9] Uzoka, F. M. E. (2009). Fuzzy-Expert system for cost

Benefit Analysis of Enterprise information systems, A

Frame work. International Journal on Computer Science

and Engineering, 1(3), pp: 254-262.

[10] Ramesh, S. N. S. V. S. C. (2010). Software effort

estimation using radial basis and generalized regression

neural networks. Journal of Computing, 2(5), ISSN

2151-9617 arXiv preprint arXiv:1005.4021.

[11] Azzeh, M. (2011). Model Tree Based Adaption Strategy

for Software Effort Estimation by Analogy. In Computer

and Information Technology (CIT), 2011 IEEE 11th

International Conference on (pp. 328 –335).

doi:10.1109/CIT.2011.48

[12] Ziauddin, Sh., Kamal, T., Shahrukh, Z., (2012) “An

Effort Estimation Model for Agile Software

Development,” Advances in Computer Science and Its

Applications (ACSA), Vol.2, No.1, pp. 314-324.

[13] Toka, D., Turetken, O. (2013). Accuracy of

Contemporary Parametric Software Estimation Models:

A Comparative Analysis. 39th Euromicro Conference on

Software Engineering and Advanced Applications SEAA

2013 IEEE, 313- 316.

http://dx.doi.org/10.1109/SEAA.2013.49

[14] Quba, I., Z. (2012). “Software Projects Estimation using

Neural Networks”. M.Sc Thesis. College of Computers

Sciences & Mathematics , University of Mosul. (in

Arabic).

[15] Arnuphaptrairong, T., (2013),” Early Stage Software

Effort Estimation Using Function Point Analysis:

Empirical Evidence”, Proc. of the Inter. Multi-Conf. of

Engineers and Computer Scientists Vol. II, (IMECS),

March 13-15, Hong Kong. pp: 730-735.

[16] Puri, R., Kaur, I., (2015) “Novel Meta-Heuristic

Algorithmic Approach for Software Cost Estimation”. In

I. J. of Innovations in Engineering and Technology

(IJIET), Vol. (5), Issue-2.

[17] Sharma, Sh., Kaushik, A., and Tomar, A., (2016)

“Software Cost Estimation using Hybrid Algorithm”. In

I. J. of Engineering Trends and Technology (IJETT).

Vol. (37), No.2.

[18] Chetan Nagar, Anurag Dixit, 2011, "Software Efforts and

Cost Estimation with a Systematic Approach", ISSN,

Journal of Emerging Trends in Computing and

Information Sciences.

[19] Kaushik ,A., Chauhan, A., Mittal, D.,Gupta, S.,)2012(,”

COCOMO Estimates Using Neural Networks” , MECS

DOI: 10.5815/ijisa.2012.09.03,© MECS I.J. Intelligent

Systems and Applications.

[20] Nancy Merlo, Schett, (2002)," COCOMO (Constructive

Cost Model)", Requirements Engineering Research

Group, Department of Computer Science, University of

Zurich, Switzerland.

[21] Fan,W., Fox, E.,A. , Pathak, P., Wu H., 2004 ,” The

Effects of Fitness Functions on Genetic Programming-

Based Ranking Discovery For Web Search “,Journal of

the American Society for Information Science and

Technology,27-14 self.

[22] Sheta A.F., Al-Afeef A., (2010). “A GP Effort

Estimation Model Utilizing Line of Code and

Methodology for NASA Software Projects”, In

proceeding of: 10th International Conference on

Intelligent Systems Design and Applications, ISDA, pp:

290-295.

[23] Oltean, M., Dumitrescu, D., (2002) “Multi Expression

Programming”.Technical-Report,UBB-01-2002.

[24] AL-Saati, N., A. , Alreffaee, T., R.,(2017), " Using Muli

Expression Programming in Software Effort Estimation",

International Journal of Recent Research and Review,

Vol. X, Issue 2, June 2017, ISSN 2277 – 8322.

[25] Ferreira, C., (2001),” Gene Expression Programming: A

new Adaptive Algorithm for Solving Problems”,

Complex Systems, Vol. 13, issue 2: 87-129, 2001.

[26] Jarullah, T.R. (2017). “Software Effort Estimation using

evolutionary computation”. M.Sc Thesis. College of

Computers Sciences & Mathematics, University of

Mosul. (in Arabic).

[27] Oltean, M.,(2006),“Multi Expression Programming”.

Tech.l Report, Babes-Bolyai Univ, Romania.28p.

[28] Miller, B.L., Goldberg, D.E., (1995). "Genetic

Algorithms, Tournament Selection, and the Effects of

Noise". Complex Systems. 9: 193–212.

[29] http://code.google.com/p/promisedata/wiki/Albrecht

[30] Albrecht, A.J., Gaffney, J.R., (1983),” Software

Function, Source Lines of Code, and Development Effort

Prediction: a Software Science Validation”, IEEE

Transactions on Software Engineering 9 (6) 639–648.

https://www.sciencedirect.com/science/article/pii/S0165011403004408#!
https://www.sciencedirect.com/science/article/pii/S0165011403004408#!
https://www.sciencedirect.com/science/journal/01650114
https://www.sciencedirect.com/science/journal/01650114/145/1

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 8, August 2018

8

[31] Kemerer, C.F., (1987), “An Empirical Validation of

Software Cost Estimation Models”, Communications of

the Association for Computing Machinery 30 (5).

pp:416–429.

[32] Desharnais, J.M., (1988), “Analyse statistique de la

productivite´ des projects de de´velopment en

informatique a` partir de la technique des points de

function”, Master’s Thesis, Univ. du Que´bec a`

Montreal, De´cembre,.

[33] Miyazaki, Y., Terakado, M., Ozaki, K., Nozaki, H.,

(1994), “Robust regression for developing software

estimation models”, J. of Sys..& SW 27 (1),pp:3–16.

[34] Boehm, B.W., Software Engineering Economics,

Prentice-Hall, Englewood Cliffs, NJ, 1981.

[35] B.A. Kitchenham, N.R. Taylor, Software project

development cost estimation, Journal of Systems and

Software 5 (1985) 267–278.

[36] Shepperd, M., Schofield, C., (1997),” Estimating

Software Project Effort Using Analogies”, IEEE

Transactions On Software Engineering, VOL. 23, NO.

12.

IJCATM : www.ijcaonline.org

