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ABSTRACT

In this paper, some higher order moments, spectral and bispec-
tral density functions for some integer autoregressive of order
one (INAR(1)) models are calculated. These models are the new
skew INAR(1) (NSINAR(1)), the shifted geometric INAR(1) type-
IT (SGINAR(1)-II) and the dependent counting geometric INAR(1)
(DCGINAR(1)). The spectrum, bispectrum and normalized bispec-
trum are estimated using the one and two dimensional lag windows
as in Subba Rao and Gabr(1984). A realization is generated for
each model of size n=500 for estimation. Also, the bispectral den-
sity function and normalized bispectral density function are used
for studying the linearity of integer valued time series models.
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1. INTRODUCTION

Integer valued time series used in many fields in life such as
medicine, economics, etc,. ... McKenzie (1985) introduced integer
valued autoregressive (INAR) models by replacing the scalar mul-
tiplication in the standard AR by thinning operator. The thinning
operator defined as a probabilistic operation that can be applied to
random counts when the thinning operator deletes some of these
counts, the size of the shrinked counts is still integer-valued so,
INAR is the best model for modelling large counting values in-
stead of approximating it into continuous-valued models. The first
and most popular thinning operator is the binomial thinning op-
erator that introduced by Steutel and Van Harn (1979) based on
the sum of Bernoulli counting series. After that, there are many
types of thinning operators appears such as geometric and nega-
tive binomial thinning operators, thinning operators with dependent
structure, mixed thinning operator, operators acting on true integer
autoregressive, etc.... Through the last three decades statisticians
tried to made the INAR models more realistic and flexible for prac-
tical purposes of modelling the observed data, thus they made some
modifications on INAR. Some of them, modify the marginal distri-
bution of INAR, others, modify the order of the model and others
modify the thinning operators of the models. Al-Osh and Al-Zaid
(1987) defined the INAR(1) based on the binomial thinning opera-
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tor as

Xt =aoX;+¢e, t€Z,

X
where the operator o’ is defined as 0 X = Y ¥;, a € (0,1),
i=1

{Y.} is a sequence of i.i.d Bernoulli random variables with prob-
ability a.. {e;} is a sequence of i.i.d non-negative integer valued
random variables with mean y and variance o2, thinning opera-
tions are performed independently of each other and of {£;} and
{Xs}s<t. The probability generating function (pgf) of ¢, is given
by
_ Px(s)

Ox(l—a+as)
The first four moments of £; using the pgf are given by
B(e) =@, (1),
B(e}) =, () + 0, (1),
E(e}) =@, (1) +32.,(1) + ., (1),
E(e}) =@, (1) + 72, (1) + 6@, (1) + P, (1).
If { X, } is stationary process to k-th order, then the k-th order joint
moment of
Xty Xiqsy, o+, Xiqs, , 18 a function of k-1 parameters defined
by

D (s)

Hx (51, 825 -eny Sk—l) = E(XtXt+51-~-Xt+sk,1)’
with
The k-th order joint centeral moments are given by

Cir(ti,ta,sti1) = El(Xe — ) Xewey — ) Xege, —

) (Xegryy — )] _
Leonov and Shiryaev (1959) derived relations between joint mo-
ments and joint cumulants of a stationary time series

CQ(tl) - N(tl) - M27 (2)

Cs(ty,ta) = B[( X — ) (Xeqe, — 1) (Xeae, — )], 3)

From (2) and (3) the second- and third-cumulants are the same as
the second- and third-order central moments. The second and third



order cumulants satisfy the following symmetry relations

Cy(t) = Ca(—t),

C3(0,t) = C3(t,0) = C5(—t,—t)
= C3(0,—t) = C3(—t,0) = C3(t, 1),
Cs(s,s+t) = Cs(s+t,s) =Cs(—s,t)
= C3(t, 78) S Cg(*S - t, 715) = 03(7157 —t — S),

fors > 0andt¢ > 0.

1.1 The spectral and bispectral density functions

The spectral density (second-order spectrum) , f(.), of {X;} can
be expressed as the Fourier transform of autocovariance function

(Ca(.),

t1=-00

where 33 | Ca(t1) [< o0
The bispectral and normalized bispectral density functions are
given respectively as

fx(wi,wa) = Z Z Cs(ty,t2) € t1w1+t2w2)
tl——aotg——:x,
(%)
f(W1,WQ)
Wi, W 6
g(wn 2) \/fwl w1+w2) 6)

where —m < wy,ws < m. The blspectral density function exists
for all wq % W if

Z Z |C3(t1,t2)| < 0.
t1=—00 tg=—00
The bispectral density function is a complex valued function takes
the form

Fx (w1, ws) = r(wy,ws) + ig(wr,ws).

The modulus and phase of the bispectral density function are given
respectively, by

|fx (w1, w2)| = (72 (w1, wa) + ¢ (w1, w2)) 2,

71(q(w1,w2)

phase = tan .
r(wi,ws)

The bispectral density function provides us useful information
about the non-linearity of the process. For continuous non-
Gaussian time series the modulus of the normalized bispectrum is
flat.

1.2 Estimation of spectrum

There are many methods for estimating the spectrum and bispec-
trum, but in this paper we interested in estimating the spectrum and
bispectrum using the smoothed periodogram using the Parzen lag
window. The smoothed spectral and bispectral density functions are
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respectively given by

n

R 1 N
fl) = 5 20 AgpeCas)
1
= 5 _z; )\(— 02 ) cos ws, @)

and
1 N-1 N-1 s s
f = AL 52
Flo,we) = > > SYahvL
s1=—(N-1) sg=—(N-1)
xCs(s1, s9)e o112z, ®)
where C(s), Cy(s1, 52) are given by

R 1 Nl _

N Z (Xt_X)(Xt+\s\_X)7

-84
N
fo e

2 \

2

R 1 _ _ _
Cs(s1,82) = N (Xt = X)(Xigs; = X)(Xpgs, — X)),

1

where s1,s2 > 0,y = max(sl,s2), s = 0,£1,£2,...,£(N —
1), -7 < wy,ws < 7, ”A(.)” is one-dimensional lag window
and ”A(3%, 32)” is two- dimensional lag window [Parzen, Daniell,
Tukey Hamming ,...]. In this paper, we use the Parzen lag window.
Parzen (1961b) proposed the Parzen lag window

1-6s246]s” |s| <3
2(1—[s])? 3 <lsl<1, ©)
0 [s| > 1

Als) =

and A(sy, s2) is given by

A(s1,82) = A(s1)A(s2)A(s1 — s2). (10)
The normalized bispectrum is estimated by
g(wl7w2) _ - fA(wlvu-iZ) . (1 1)
\/f(wl)f(wz)f(w1 + w2)

for more details about the estimation of spectrum and lag windows,
see [16]

This paper is organized as follows. In Section 2, some higher order
joint moments of the NSINAR(1) model up to order three, the spec-
tral and bispectral and normalized bispectral density functions are
calculated. Moreover, the estimates for the spectral, bispectral and
normalized bispectral density functions using a simulated realiza-
tion of size n=500 are calculated. Also, the linearity of the model
is investigated. In Section 3, the same measures are calculated for
the SGINAR(1)-II model. In Section 4, the same measures are cal-
culated for the DCGINAR(1) model.

2. THE NEW SKEW INAR(1) MODEL

Bourguignon and Vasconcellos (2016) introduced the NSINAR(1)
process. This type of models are called the true integer autoregres-
sive models and appear since needing for modelling and analysing
count data with positive and negative values. This model is defined



as the difference between Poisson INAR(1) model that introduced
by Al-Osh and Al-Zaid (1987) and the NGINAR(1) model that in-
troduced by Risti¢ et al.(2009) see [1] and [[11]. They defined the
NSINAR(1) model as

Zy =axZiq + (, (12)

d . .
where axZ; 1 = a*xX;_1 —«aoY;_; is the difference between the
negative binomial thinning and binomial thinning operators, where
the counting series o * X; ; and a0 Y;_; are independent random

X Y
> W,and a oY = > U,;, where {W;}
i=0 =0

is a sequence of i.i.d geometric random variables and {U,} is a
sequence of i.i.d Bernoulli random variables independent of {W;}
, Zy = Xy — Y; where X; ~ geometric (ﬁ), Y; ~ Poisson(\),

variables. o x X =

{ Z:} be a sequence of random variables has a Geometric-Poisson
(1, A) and ¢; has the distribution of €¢; —e;, where {¢;} and {e;}
are independent r.v’s and Z; and (;_; are independent for all [ > 1.
{e:} areii.dr.v’s with common poisson(A(1—cv)) distribution and
€; is a mixture of two random variables with geometric (1/(1 +
1)) and geometric (a/(1 + «)) distributions. The condition of the
stationarity of the process {Z;} is 0 < a < p/(1 + p) and the
condition of the non-stationarity of the process { Z; } is pu/(1+p) <
«a < 1. Here, our study is restricted to the stationary case.

The moment generating function of {; and Z; are given, respec-
tively, by (see [S])

[1+ a(l + p)(1 = e*)]era-o)e *-)

M) = i - e tad—e)]
eMes 1)
Mz(s) = M+ul—e)]

The mean and variance of Z; and (; are then given by

pz = p—X oy =p’+p+A

pe = (1—a)fp— A,

07 = I+ a)u[(l—a)(1+p) —al+ X1 -a).
The thinning operator has the following properties

() ElaxZ)=alp—2A).
(2) E(axZ)? =a%(u— )2+ ap(l + 2a + ap) + a.
(3) El(axZ)?=a’E(Z*)+a(l+a)E(X)+a(l —a)E(®Y)
=a?E(Z%) - ?E(Z) + a(p+ ).
2.1 The higher order joint central moments
(cumulants)

THEOREM 1. Let {Z,} be a stationary process satisfying
then,
the second- order central moment is calculated as
Cy(s) = a®(p? + p+ A) = a*C5(0).
The third- order central moment are calculated as
C3(0,0) = 2u® +3u? + u — A,
C3(0,8) = a®(2u® + 3p® + p — A) = a*C3(0,0),
Ca(s,5) = a2 C5(0,0) — aCs(0) 22"

(1-a) -~

PROOF. pi(s) is calculated as
W) = E(ZZyys) = E(Z(a % Zt+s;1 +¢t))
= Qps-1) + Hzhie, = 0 o) + TS Kzl
=20+ 4+ A2+ A= 2uN 4 (1 — o) (u— \)?
=a’ [l +p+ A+ (k= N)?,
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then, C(s) is calculated as

Co(s) = pus) — pi-

C5(0,0) is calculated as

C3(0,0) = p1(0,0) — 3z o) + 21%-

H(s,s) 1s calculated as

H(s,s) = E(ZtZt+sZt+s) = E(Zt [CK* Zips1+ Ct}Z)

=PE(Z1Zi1s 12145 1)~ P E(Z Zyy s 1) +a(p+N)E(Z,)+
20E(Z: Zp151)E(G) + E(CR)E(Zy)

= s 1,51+ 200 —ps ) Falpt N pz +pzlof +pg]
= o?ps-1,6-1) + [2apc —a?][p® +pA Aot + (n—A)? 20 —
2 +a(p+ Npz + pzlo? + p]

= 000+ et~ 02l ) Soing ot T 4 [(u
A)?[20p¢ — 0®] + a(p+ Nz + pzlof + Ng]] Yoo @

= a® 0,0y +([2ap¢ —a®][u? +u+/\])“ I‘L) H(p=2)?[2apc —

a?] + a(p+ Npz + pzlo? + p2)| 2,

then, C5(s, s) is calculated as
Cs(s,8) = ps,) — HIE(Z74 ) + 2] + 2187
= 062#(571,371)—a2u(s—1)+Ot(,u+)\)uz+20¢u(sfl),ug+uz[Ug—F
pel = 2pzlogics 1y + pzpe,) — pzE((ax Zops 1 +G)?) +20°
= & p(s-1,5-1) =~ ps- 1y Fa(pAN) pz 420 ) e+ pzo i+
13 = 2pzlaps 1) + pzic) = pz[E(ax Zips1)? + E(G) +
20E(G)E(Zpts-1) + 2487 =
P fi(s-1,5-1) — P pu(s—1) (N pz + 2051y g + Pz [Uf +
ng] - 2uz[au<s 1y + kzpe] — pzlof + pEl - 2appe —
pal0? (22, 2) = 02 E(Zuger) + i+ V] + 2
= Plu1sy — pzB(Z7 1) = 2pzmesy + 20°] —
ey W] = a*Ch(s 18 1)~ a*Ch(s 1)
=a?Cs(s—1,s—1) - a2a5*102( )
= a?%C3(0,0) — a2Cy(0) 520 a* =D a? = o25C5(0,0) —

a2Cy(0) 2%
H(0,s) s calculated as
wo,s) = E(Z4 2y 2y s) = E(Zy Zy[ook Zyypso1 + (i)
= aB(Z:ZZys1) + E(Z2)E(G) = ap,s—1) + [2p° + p+
X2+ A — 2[(1 — a)(— \)]
= @ 0,0) + T 207 4 p+ A2+ X = 2uA][(1 — @) (u — N)]
= a®[6p3 — 6Au? + 612 + 3uAZ — 322 = X3 — X+ p] + (1 —
a®) (= N[2p* + p+ A2+ X —2p)].
Then C3(0, s) is calculated as
C3(0,8) = wo,s) = Hzlio) + 20(s)] + 24°
= (=) [2p% + p+ 22 + A= 2pA] + o pu[1 + 50— 2Mp+ 4p®] —
QA1+ 2N = (=N 202 + p+ A2+ X = 2uA+2(a®[p® + p+
Al (=02 +2(n = 2)°.
H(s,r) is calculated as
fi(s,m) = @75 pigs, o+ (1=a” %) [ [P+ p+ A+ (1 =A)?][u—A].
0y and p(o,0y are given by Bourguignon and Vasconcellos (see
(50). =

2.2 The spectral, bispectral and normalized bispctral
density functions of the NSINAR(1)

The spectral density function is given by (see [3])

(I—a®)(p* +pu+2)
2n(1+ a? — 2acosw)’

fz(w) =

—nm<w<m. (13)



THEOREM 2. The bispectral density function is calculated as

Folwn,ws) = ﬁ[@,(o,m + C5(0,0) {1 (—wr) + 1 (—w2)
s + @)} + (Ca(0,0) + 52D (i)
+ha(ws) 4 ha(—w1 —w2)}

*j(lcii(z)){hl(wl) + hy(w2) + hi(—w1 —we)}
+(03(O, 0) + %){hg(—wl — w2)h1(—w2)
+ha(—wy — wa)hy (—wy) + ha(w2)hi(—wr)
+ha(wi)hy(—w2) + ha(wi)hy (w1 + ws)
+ha(wa)hy (w1 +w2)}
_?C(0)

a(l— a){hl( 1 — w2)hi(—ws)

+hi(—wi — wa)hi(=wi) + hy(w2)hi (—wi)
+hy(w1)hy(—w2) + hi(w1)hy (w1 + wa)
(

+hi(w2)hy (w1 + wa)}l, (14)
where hy(wy) = 1?2:516 and ha(wy) = %, k=1,2.

PROOF. The proof is too long to included it here. m
The normalized bispectral density function is calculated by (E[),
where fz(w) and fz(w;,ws) are respectively given by and
@@

2.3 Estimation of spectrum

Estimates of the spectral, bispectral and normalized bispectral

density functions are calculated using the smoothed periodogram
method using Parzen lag window and simulated series from the
NSINAR(1) model.
The theoretical spectrum fz(w), theoretical bispectral and normal-
ized bispectral modulus of fz (w1, ws) and gz(wy,ws) are respec-
tively computed by setting o = .25, 4 = 5 and A = 3 in (13),
and @ Fig. [1] represent the simulated series of {Z;,t =
1,...,500} from the NSINAR(1) model with o« = .25, A = 3 and
p = 5 that defined by (12). Fig. ] represent theoretical spectrum
and the estimate of the spectral density using Parzen window with
M=7 as in (7) and (). Fig. ] and Fig. [ represent the theoretical
bispectrum and normalized bispectrum modulus. Fig. [5|and Fig. |§|
represent the estimate of the bispectrum and normalized bispectrum
modulus with M=7 by Parzen window using (EI), @) and (EI)

List of Tables
|11 Theoretical bispectral modulus of NSINAR(T) with |
| a=.25,A=3andpu=5............. 12
2 Theoretical normalized bispectral modulus of NSI- |
| NAR(I) withaw = 25, A =3and p =5 ... .. 12

It is clear that the values of the normalized bispectrum modulus
given in Table[2] show that the normalized bispectrum modulus of
the NSINAR(1) model is more flat than the non-normalized one
given in Table [T]. This indicates that the test of linearity given by
Subba Rao and Gabr (1980) and its modification given by Hinich
(1982) can be used for integer valued time series models.
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Fig. 1. Simulated series of NSINAR(1) model with & = .25, A = 3 and
n=>5.
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Fig. 2. The theoretical spectrum is represented by a solid line and esti-
mated spectrum is represented by a dash line.
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Fig. 3. Theoretical bispectral modulus of the NSINAR(1) with @ =
25, =3and = 5.



Theoretial normalized bispectrum modulus

Fig. 4. Theoretical normalized bispectral modulus of NSINAR(1) with
a=.25,A=3and p =5.

-
[X]
i

-
=

@

-}

Estimate bispectrum modulus

Fig. 5. Estimate bispectral modulus of NSINAR(1) at M=7.
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Estimate normalized bispectrum modulus

Fig. 6. Estimate normalized bispectral modulus of NSINAR(1) at M=7.
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3. THE SHIFTED GEOMETRIC INAR(1) MODEL(
SGINAR(1)-II)

Shifted geometric INAR(1) of type-II (in short, SGINAR(1)-1I
model introduced by Nasti¢ (2012). It has the same approach that
taken by Bakouch and Risti¢ (2010) for ZTPINAR(1) process but
SGINAR(1)-II model is based on negative binomial thinning op-
erator. A process {X;} is said to be SGINAR(1)-II if it satisfies

o m with probability ﬁ

X = { ok Xy—q + 1, with probability 74 as)

29,90

where the operator ”x” is defined as

X1

axX; 1= » Vi, ac(0,1),

=1

where {Y;} is a sequence of i.i.d random variables with geomet-
ric (H%a) distribution independent of X; 1, {X;} is a stationary
process has shifted geometric (ﬁ) distribution and {7, } are i.i.d
random variables independent of Y; and of X;_;, 4 > 1. The pgf of
X, and 7, are given by respectively (see[9])

¢x(8) = 13

¢7z(3) = 1+o¢1—o¢s (a(ljms + Hiafﬂn 1+:7y,s) .

The mean and variance of X; and n, are then given by respectively
px =14 p, 0% = p(l+p),

fn, = (L+p—ap), ol =p(l —a+p—a’p—2a%).

For more information about the model and the binomial thinning
operator see [9] and [[11].

3.1 Higher order joint moments and cumulants

THEOREM 3. Let {X,} be a stationary process satisfying
then,
The first order moment and cumulant for SGINAR(1)-1I are given

by px .
The second order joint moments are calculated as

oy = (14 p)(1 4 2p),

o =+ 1) (agtty )+ (1 + )2,

Then, the second order joint central moment is calculated as
Cals) = [£E]1°C2(0) = (£4)°p (1 +1).

The third order joint moments are calculated as

Bo,0) = 6p% +12p% + T + 1,

1o,s) = (75)°(4p® +3p) (p+ 1) + (p + 1) (Bp +2u% + 1),

Bes = {la5) (2 + 3p — 20p® + ap)(8E) +
(@®7)° (20 — dap —2ap®) (F55) + (4255) (1 = 2ap” +2p4° —
3ap+3p — o),

ap

tes,ry = (3357 (Bis,s) — H(s) x) + B(s) Px -

Then, the third order joint central moments are calculated

C5(0,0) = (L + p)p(1 +2p) = p (2p® +3p+ 1),
C0,8) = (22)7C5(0,0) = (£25) g (24 + 3+ 1),

a? s Ie% a?
03(575) = (1+ﬁ) 03(070) + [1+#H(1 + Oé) + 2(1 + lu‘)[lJrZ -

. 2
() - (150)°
ap 7&2
I+p I+p

N
= (0*34) @u — da = 20p)u(42) + (agts) (G +



03(57 T) = (%)T7503(8, 8)'
The fourth-joint moments are calculated as
1(0,0,5) = T H0,0,5-1) T Knkt(0,0), § > 0,

H(o,s,7) = %M(O,s,r—l) + H(0,s)Hny T > 8 > 0,
a2 [e3

/-‘L(O,s,s) ﬁ#(o,stsfl) + ﬁ(l + a)/.,t(()7s,1) +
29 0,51y + (14 3p — Ba — 2pa® + 2p° — 2ap®)(1 +
3p+2p2),
H(s,mu) = %M(S,T,u—l) + Hnl(s,m), U >7>5>0,
H(s,s,v) %/’L(s,s,vfl) + Hnl(s,s), VU > s

_ o3p a?p
(s, 5,8) = T35 ps—1,5-1,5-1) T3 775 (L) +pglpi(s-1,5-1) +
1[I+ a)(1+2a) +3pu,(1+a) +3(1 +3u—3ap —2ua® +
20% = 2a0®) ) pags-1) + (L4 p) (1 + Tp — Tap — 12p0° +12p4% —
12ap? — 603y — 6022 + 6 — 6ua).

> 0,

Then, the fourth order joint cumulants are calculated as

C’4(0,0, S) = %6'4(07 O,S — 1), s> 07

Ci(0,5,5) = 24C4(0,5— 1,5 — 1) + 2 (14 ) C3(0, 5 — 1),
s >0,

C4(0,8,u) = %C@(O,s,u —1),u>s>0,
C4(S,T,U) = %04(877—7’“ - 1)7 u 2 T Z S 2 07

Cy(s,s,8) = %04(3 -1,s—1,s—1) +3‘1’i—’;(1 +a)Cs(s —
Ls=1)+ (1 +a)(1+2a),

C4(S,S,’LL) = %C4(S,S,’LL* 1)7 u 2 S 2 0.

PROOF. The proof of this theorem is similarly to the proof of
theorem 1 in section 2, by using the definition of the SGINAR(1)-
IT and higher order moments and cumulants and the properties of
the negative binomial thinning operator. m

3.2 The spectral, bispectral and normalized bispectral
density functions

The spectral density function is given by Nasti¢ (2012) (see[9])

p(L+ p) (1 +2p + 2p% (1 — o))

14 2u + p2(1 + a?) — 2ap(l + p) cosw)
(16)

Fx(w) = 27 (

The normalized spectral density function is calculated as

(14 2p+2p2%(1 — a?))
gx (W) = 5 . :
2m(1+ 2+ p? (1 + a2) — 2ap(l 4 1) cosw)
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THEOREM 4. The bispectral density function is calculated as

1
Ix(wi,we) = W[C:%((L 0) + C3(0,0){ H1(~w1)

+Hi(—w2) + Hi(wi +wa)} + (C3(0,0)
(14 ) +2(1 + p)e(l — £4)]C2(0)

- )
1—«

{Hz(w1) + Ha(w2) + Ha(—w1 — w2)}

(1 +a)+2(1 + pa(l - $)]C2(0)

+ 11—«

{Hi(w1) + H1(w2) + Hi(—w1 — w2)}

+(CB(070)

(A +e) 20+ plal - ﬁ)]Cz(O))
11—«

{H1(—w2)H2(—w1 —wz)

+H1(—w1)H2(—w1 —wz)

+H;(—wa)Ha(wy) + Hy(—wq)Ha(w2)

+Hi (w1 +wa)Ho(wy) + Hi (w1 + w2)Ha(we)}

[0+ @)+ 201+ pall = 2¢O
l1-—«

{Hi(—w2)Hi(—w1 — w2)

+Hy(—wi)Hy(—wi — wa)

+Hy (~w2)Hy(w1) + Hy(—wi) Hy (w2)

+H: (w1 + w2)Hy(wr)

+Hy (w1 +w2)Hy(w2)}], (17
where Hy (wy,) = _Trpeh and Hy(wy) = i‘+§elwk

1- QB ciwg _a?u iwy
T+n 1 TFu €

with k = 1, 2.

PROOF. The proof is too long to included it here. m
The normalized bispectral density function is calculated as (6),

where fx (w1,w2) and fx (w;) are defined in and .

3.3 Estimation of spectrum

The estimates of the spectral, bispectral and normalized bispectral
density functions are calculated using the smoothed periodogram
method based on the Parzen lag window using simulated series
{Xt,t=1,2,...,500} from SGINAR(1)-II model.

The theoretical spectrum fx (w), theoretical bispectral and normal-
ized bispectral modulus of fx (w1, ws) and gx (w1, ws) are respec-
tively computed by setting ¢+ = 2.6 and o = .6 in (T7) and (6. Fig.
mrepresents the simulated series of SGINAR(1)-1I with p = 2.6
and o = .6. Fig. [8] represents theoretical spectrum and the esti-
mate spectrum by Parzen window with M=7 as in (7) and (). Fig.
[ and Fig. [T0] represent the theoretical bispectrum and normalized
bispectrum modulus. Fig. E and Fig. @represent the estimate of
the bispectrum and normalized bispectrum modulus with M=7 by
Parzen window using (8), (TT) and (I0).

From Fig. [0} the normalized bispectrum modulus of the
SGINAR(1)-II model is more flat than the non-normalized bispec-
trum modulus given in Fig.[9], since the values of the normalized
bispectrum modulus lies between (0,2) and the non-normalized bis-
pectrum modulus lies between (0,15).
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Fig. 7. Simulated series of SGINAR(1)-II with p+ = 2.6 and o« = .6. Fig. 10. The theoretical normalized bispectral modulus of SGINAR(1)-II
with 4 = 2.6 and o = .6.
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Fig. 8. Theoretical spectrum is represented by a solid line and estimated
spectrum is represented by a dash line at M=7. Fig. 11. Estimate bispectral modulus of SGINAR(1) at M=7.
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Fig.9. The theoretical bispectral modulus of SGINAR(1)-1I with 4 = 2.6 Fig. 12. Estimate normalized bispectral modulus of SGINAR(1) at M=7.
and o = .6.



4. THE DEPENDENT COUNTING GEOMETRIC
INAR(1) MODEL

Risti¢ et al. (2013) introduced the DCGINAR(1) model based on
generalized binomial thinning operator type-I with a geometric
marginal (ey). They defined the DCGINAR(1) as

X,=oegX,1+e, t€Z a6c(0,1), (18)

where the operator "oy’ is defined as « o9 X = Zle U;,i € N,
{U,} is a sequence of dependent Bernoulli(cr) random variable de-
fined as U; = (1 — V;)W; + V;Z, {W,} is a sequence of i.i.d ran-
dom variable with Bernoulli(c) distribution, {V;} is a sequence of
i.i.d random variable with Bernoulli(6) distribution, Z is a random
variable with Bernoulli(c) distribution, W;, V; and Z are indepen-
dentV4,j € N and {U,} are independent of X; and ,, for any 4,
and m. {X;} has Geometric (11-;) distribution, s > O and {e; } is a
sequence i.i.d r.v’s distributed as a mixture of zero and two geomet-
rically random variables. This model satisfy these conditions,{e; }
is a sequence i.i.d random variables such that Cov(g;, X) = 0,
s < t.,{U,} are independent of X ; and €, and {U; } used for gen-
erating X and X, representing the counting series of the process
{X} are mutually independent for ¢ # s.
The pgf of U;, €; and X, are given by respectively (see[12])
ou,(s) =1—a+as,
p(s) = (A+a(1-0)p—a(1-0)us)(1+(a+b-abd) p—(at+6-ab)us)

€ (I+p—ps)(1+(a+6-200) p—(a+6-2a6)us) ’
¢x(8) = Tr -
The mean and variance of X and ¢, are respectively given by
px = p, 0% = p(l+p),
pe, = (1 —a)p, 02, = (1 - a)u(l + (1 +a—2a6%)p).
The second and third moments of ¢, are respectively calculated as

E(E?) = (1-a)p+2(a—1)(abd® - 1)u?, (19)
E@E) = (1-a)u+6(a—1)(ad? —1)u?

—6(a — 1)(—a?6?

+2a260% — af® — af® + 1)ub. (20)

Some properties of the operator "ey’:-
Let X,Y be any two random variables with finite first, second and
third moments, o € (0,1) and 6 € (0, 1), then

(1) E(ceg X) = aFE(X),

(2) B(aeg X)? = ala+ (1 —a)f?)E(X?) + a(l — a)(1 —
0?)E(X)

3) E(Y(a e X)) = aB(XY).

4) E(xeg X)3 = [a® — 3020 + 20302 — 3a30% + 30262 +
af®|E(X3) + [9a202 — 603603 — 1202602 — 3003 + 3a6? +
3a2+9020% —3a%| E(X?)+[9a%0% —3a2 — 6020 — 60302 —
3ab? + a + 203 + 2003 + 40303 E(X).

For more details about the model and the properties of the general-
ized binomial thinning type-I see [12].

4.1 Higher order joint moments and cumulants

THEOREM 5. Let {X;} be a stationary process satisfying (I8)

then,
The first-order moment and first cumulant are given by jix .
The second-order joint moment is calculated as

=af| — 2+ =afpu(l+p) +p2, s> 0and
1i(s) oy — K]+ p p(l+p) +p?, s >
H0)y=p(142p).
Then, the second order joint central moment is calculated as
Ca(s) = a®*Cy(0) = a®p(1+ p), s > 0.
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The third-order moments are calculated as

11(0,0) = p(1 + 64 + 642),

Bo,s) = 110,00 — Hioy] + piroy = p2(1 + 2p) + op(l +
5u+4p?), s >0,

tis,s) = lala + (1 — a)0?)]*po,0) + (o1 — a)(1 — 62) +

a’—(a(a —a)02))*
2apte] (ko) — 1) a(lf[o(t(otﬁl,o)é)gg))] ]+ (a1 — )1 - 6%) +

2\1s
2ap1]p? + plp? + o)) RN,
H(s,m) = O‘Tis(.u’(s,s) - //'(S)M) + H(s)H, T > s.
Then, the third-order joint central moments are calculated as
C5(0,0) = p(1 + 3u+2u?),
C3(0,u) = a*C5(0,0) = a®u(1 + 3u + 2u?), u > 0,
Cs(s, 8) = [a(a + (1 — a)0?)]*C3(0, 02) +[a(l—a)(1—6%) +
2na(l - a)9]Ca(0)[Leltelet o)) o > g,
C(s,7) = a™ *Cs(s, s).
The fourth-order moments are calculated as
H(0,0,5) = Ctfh(0,0,s—1) T H(0,0) He»
(0,s,8) = o+ (1 —)0?) po,5-1,5-1) + 2(1 — o) pp+ (1 —
@) (1 = 60%))po,s-1) + 1100y (E(€?)),
H(0,s,7) = AXH(0,s,7-1) + H(0,s)He s
H(s,m0) = Q(s,7,0-1) + H(s,m) e,
Usss) = @ — 302603 + 2a%0% — 3a%0% + 3a26% +
ab3p(s-1,5-1,5-1) + [90302 — 6a30% — 12026% — 300> + 30.6% +
3a®+9a260% =30 pu(s-1,s-1) +[90?6% — 30 — 60263 — 60262 —
3a0? + o+ 203 + 2a6® + 40303 | o1y + pE(e?) + 3pe[a(a +
(1=a)0*)pu(s—1,5-1) (1 =) (1=0%) p(s-1)] +3E(?) p1s-1)
where E(c?) and E(&3) are given by and respectively.
The fourth-order joint cumulants are calculated as
Cy(v,v,v) = [0® 30202 +2020% - 30202+ 30202+ Cy (v—
1Lv—1,0—1) 4+ [90302 — 6a30> — 120262 — 3a6® + 3a6? +
3a? +9a20% — 3a°|C3(v —1,v — 1) + [90262 — 302 — 6a20% —
60302 — 3a0? + a + 203 + 2a60% + 40303 Cy (v — 1),
C4(0,v,v) = ala+(1-a)0?)Cy(0,v—1,v—1)+a(1—a)(1-
02)04(071) - 1)7
Cy(0,7,v) = aCy(0, 7, v — 1), v > T >
04(7_7 T, S) = CVC4(7-, 7,8 — 1)7 S Z T Z 07
C4(Sv7-7 U) = 0504(8,7',’[} - 1)’ v Z T Z S

PROOF. The proof is similar to the proof of theorem 1 using the
definitions of the DCGINAR(1) and the properties of the general-
ized thinning operator. m

4.2 The spectral, bispectral and normalized bispectral
density functions

The non-normalized spectral density function fx(w) of DCGI-
NAR(1) is calculated as

frlw) = HAEW0 =0

" 2n(1 + a2 — 2acosw)
The normalized spectral density function gx (w) is calculated as

(1-a?
14+ a2 —2acosw)’

gx(w) = 27 (



THEOREM 6. The bispectral density function fx(wi,ws) of
DCGINAR(1) is calculated as

Fre(wnwn) = ﬁ[Cg(QO){l—l-Fl(—wl) + Py (~ws)
+Fi (w1 +w2)}
+(C5(0,0)
(1= a)(1 = 6%) +2p(1 - a)92]02(0))
(1-ala+(1-a)8?))
{Fo(w1) + Fo(w2) + Fa(—w1 — wa)}
(1 —a)(1 = 6%) +2u(1 — )8%]C2(0)

+ (1 —ala+ (1— a)o2) S ()
+Fi(w2) + F1(—wy —w2)}

+(C5(0,0)

(1= a)(1 = 6%) +2p(1 - 04)92]02(0))

(1-a(a+(1—-a)p?))
{Fa(—w1 — w2) Fi(—w2) + Fa(—w1 — wa) Fi(—wy)
+E (wi) Fi(—w2) + Fa(we2) Fi (—wi)
+F(w1)Fi (w1 + w2) + Fo(we) Fi (w1 + w2)}
+ [(1—a)(1—06%) +2u(1 - Q)GQ}Cz(O))
(1—-a(a+(1-a)8?))
{Fl(_‘*’l — wo)Fi(—ws) + Fi(—wi — wa) F1(—w1)
+Fy(w1)Fi(—w2) + Fi(we) Fy (—w)
+F1 (w1) F1 (w1 + w2) + Fi(we) Fy (w1 + w2)}], (22)

aetwk

where Iy (wy) = 1%¢ =2 and

_ ala+(1-a)62)e’vE
FQ(wk) T 1—(a(a+(1—a)02))eik

Wy

withk = 1,2.

PROOF. The proof is too long to be included here. m
The normalized bispectral density function is calculated by (6),

where fx (w1,ws) and f(w;) are given by and (21).

NOTATION 7. The higher order moments, cumulants , spec-
trum, bispectrum and normalized bispectrum for the GINAR(I)
model that introduced by Al-Zaid and Al-Osh (1988) can be con-
cluded by setting 0 = O in the higher order moments, cumulants,
spectrum, bispectrum and normalized bispectrum of the DCGI-
NAR(1).

4.3 Estimation of the spectrum

Estimates of the spectrum, the bispectrum and normalized bis-
pectrum using the smoothed periodogram method using the Parzen
window and simulated series from the DCGINAR(1) model are cal-
culated.

The theoretical spectrum fx (w), theoretical bispectral and normal-
ized bispectral density of fx (w1,ws) and gx (w1, ws) are respec-
tively obtained by setting o = .6, 0 = .7 and p = 1.8 in 1)), 22)
and (6). Fig. [T3] represents the simulated series of DCGINAR(1)
witha = .6,6 = .Tand p = 1.8. Fig.represents the theoretical
spectrum and the estimate spectrum using Parzen lag window with
M=7 from (7) and (9). Fig.[I3)and Fig.[T6|represent the theoretical
bispectral and normalized bispectral modulus. Fig. |'11| and Fig. @
represent the estimate of the bispectrum and normalized bispectrum
modulus with M=7 by Parzen window using (8), (I0) and (9).

From Fig. [T3] and Fig. [T6] the normalized bispectrum modulus of
the DCGINAR(1) is more flat than the non-normalized bispectrum
modulus, since the the values of the normalized bispectrum modu-
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Fig. 13. Simulated series of DCGINAR(1) with « = .6, § = .7 and
n=1.38.
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Fig. 15. Theoretical bispectral modulus of DCGINAR(1) with a = .6,
0 =.7Tand p = 1.8.
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Fig. 16. Theoretical normalized bispectral modulus with oo = .6, 0 = .7
and p = 1.8 of DCGINAR(]).
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Fig. 17. Estimate bispectral modulus of DCGINAR(1) at M=7.
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Fig. 18. Estimate normalized bispectral modulus of DCGINAR(1) at
M=T7.
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lus lies between (0.5,2) and the values of the non-normalized bis-
pectrum modulus lies between (0,12).

S. CONCLUSIONS

Bispectrum and normalized bispectrum are used for checking
the linearity of the models. The higher order moments, spec-
trum, bispectrum and normalized bispectrum of the NSINAR(1),
SGINAR(1)-II and DCGINAR(1) models are computed. The spec-
trum, bispectrum and normalized bispectrum are estimated using
a smoothed periodogram based on the Parzen lag window and us-
ing a simulated series from each model. Moreover, the higher or-
der moments, spectrum and bispectrum for the GINAR(1) are con-
cluded as a special case of the DCGINAR(1) model. The normal-
ized bispectrum modulus of these models are more flat than the
non-normalized bispectrum modulus, so the test of linearity that
given by Subba Rao and Gabr (1980) and its modification given by
Hinich (1982) can be used for integer valued time series models.
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T 18.95
957 18.75 18.37 17.67
907 18.19 17.67 16.87 1589 14.81
851 17.34  16.72 15.89 1491 13.88 12.86 11.89
807 16.30 15.64 1481 13.88 1292 1198 11.10 10.30 9.58
5w 15.16 1450 13.72 1286 1198 11.14 1034 9.62 898 842 7.94
07 14.02 1339 12.67 11.89 11.10 10.34 9.63 8.99 842 793 1750 7.5 6.86
651 1293 1235 11.69 11.00 10.30 9.62 8.99 8.42 792 748 7.11 6.80 6.55 6.35
.607 1192 1140 10.82 10.20 9.58 8.98 8.42 7.92 747 7.09 676 649 6.27
S57 11.02 1056 10.04 9.50 8.95 8.42 8.93 7.48 7.09 6775 646 6.23
50w 10.22  9.82 9.37 8.89 8.41 7.94 7.50 7.11 6.76 646 6.21
A5T 9.54 9.19 8.80 8.38 7.95 7.54 7.15 6.80 6.49 6.23
40w 8.95 8.65 8.31 7.94 7.54 7.20 6.86 6.55 6.27
357 8.45 8.20 7.91 7.59 7.26 6.93 6.63 6.35
30w 8.04 7.83 7.58 7.30 7.01 6.72 6.45
257 7.71 7.54 7.32 7.08 6.82 6.57
20m 7.45 7.31 7.13 6.92 6.69
A5 7.25 7.14 6.99 6.81
10w 7.11 7.03 6.91
.057 7.02 6.97
0 7.00
Wy ‘
wp | 0 057 107 57 207 257 307 357 A0 457 S0m S557  .60m 657
Table 1.
Theoretical bispectral modulus of NSINAR(1) with o = .25, A = 3 and p = 5.
T 7319
957 7322 7328 7340
907 7331 7340 7353 7369 7387
857 7345 7355 7369 7385 7402 7420 .7436
807 7362 7373 7387 7402 7419 7435 7451 7465 7478
57 7380 7391 7405 7420 7435 7451 7466 7479 7491 7501 .7510
107 7399 7409 7422 7436 7451 7466 7479 7492 7503 7513 7522 7529 7534
651 7416 7426 7438 7451 7465 7479 7492 7504 7515 7524 7532 7538 7544 7548
.607 7432 7441 7452 7465 7478 7491 7503 7515 7525 7534 7541 7547 7552
S57 7447 7455 7465 7476 7489 7501 7513 7524 7534 7542 7549 7555
507 7459 7466 7476 7487 7498 7510 7522 7532 7541 7549 7555
A57 7470 7476 7485 7495 7506 7518 7529 7538 7547 7555
407 7479 7485 7493 7502 7513 7524 7534 7544 7552
357 7487 7492 7499 7508 7519 7529 7539 7548
307 7494 7498 7505 7513 7523 7533 7542
257 7499 7502 7509 7517 7526 7536
207 7503 7506 7512 7520 7528
157 7506 7509 7514 7521
107 7508 7510 7515
.057 751 7511
0 75104
W2
wp | 0 057 107 157 207 257 307 357 A0m AST S0m S57 601 651
Table 2.

Theoretical normalized bispectral modulus of NSINAR(1) with o = .25, A\ = 3 and x = 5.
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