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ABSTRACT
In this paper, some higher order moments, spectral and bispec-
tral density functions for some integer autoregressive of order
one (INAR(1)) models are calculated. These models are the new
skew INAR(1) (NSINAR(1)), the shifted geometric INAR(1) type-
II (SGINAR(1)-II) and the dependent counting geometric INAR(1)
(DCGINAR(1)). The spectrum, bispectrum and normalized bispec-
trum are estimated using the one and two dimensional lag windows
as in Subba Rao and Gabr(1984). A realization is generated for
each model of size n=500 for estimation. Also, the bispectral den-
sity function and normalized bispectral density function are used
for studying the linearity of integer valued time series models.
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1. INTRODUCTION
Integer valued time series used in many fields in life such as

medicine, economics, etc,. . . . McKenzie (1985) introduced integer
valued autoregressive (INAR) models by replacing the scalar mul-
tiplication in the standard AR by thinning operator. The thinning
operator defined as a probabilistic operation that can be applied to
random counts when the thinning operator deletes some of these
counts, the size of the shrinked counts is still integer-valued so,
INAR is the best model for modelling large counting values in-
stead of approximating it into continuous-valued models. The first
and most popular thinning operator is the binomial thinning op-
erator that introduced by Steutel and Van Harn (1979) based on
the sum of Bernoulli counting series. After that, there are many
types of thinning operators appears such as geometric and nega-
tive binomial thinning operators, thinning operators with dependent
structure, mixed thinning operator, operators acting on true integer
autoregressive, etc. . . . Through the last three decades statisticians
tried to made the INAR models more realistic and flexible for prac-
tical purposes of modelling the observed data, thus they made some
modifications on INAR. Some of them, modify the marginal distri-
bution of INAR, others, modify the order of the model and others
modify the thinning operators of the models. Al-Osh and Al-Zaid
(1987) defined the INAR(1) based on the binomial thinning opera-

tor as

Xt = α ◦Xt + εt, t ∈ Z,

where the operator ’◦’ is defined as α ◦ X =
X∑
i=1

Yi, α ∈ (0, 1),

{Yi} is a sequence of i.i.d Bernoulli random variables with prob-
ability α. {εt} is a sequence of i.i.d non-negative integer valued
random variables with mean µ and variance σ2, thinning opera-
tions are performed independently of each other and of {εt} and
{Xs}s<t. The probability generating function (pgf) of εt is given
by

Φε(s) =
ΦX(s)

ΦX(1− α+ αs)
.

The first four moments of εt using the pgf are given by
E(εt) = Φ

′
εt

(1),

E(ε2t ) = Φ
′
εt

(1) + Φ
′′
εt

(1),

E(ε3t ) = Φ
′
εt

(1) + 3Φ
′′
εt

(1) + Φ
′′′
εt

(1),

E(ε4t ) = Φ
′
εt

(1) + 7Φ
′′
εt

(1) + 6Φ
′′′
εt

(1) + Φ
′′′′
εt

(1).
If {Xt} is stationary process to k-th order, then the k-th order joint
moment of
Xt, Xt+s1 , · · · ,Xt+sk−1 is a function of k-1 parameters defined
by

µX(s1, s2, ..., sk−1) = E(XtXt+s1 ...Xt+sk−1),

with

µ = E(Xt).

The k-th order joint centeral moments are given by
Ck(t1, t2, ..., tk−1) = E[(Xt − µ)(Xt+t1 − µ)(Xt+t2 −
µ)...(Xt+tk−1 − µ)].
Leonov and Shiryaev (1959) derived relations between joint mo-
ments and joint cumulants of a stationary time series

Cum(Xt) = E(Xt), (1)

C2(t1) = µ(t1) − µ
2, (2)

C3(t1, t2) = E[(Xt − µ)(Xt+t1 − µ)(Xt+t2 − µ)], (3)

From (2) and (3) the second- and third-cumulants are the same as
the second- and third-order central moments. The second and third
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order cumulants satisfy the following symmetry relations

C2(t) = C2(−t),

C3(0, t) = C3(t, 0) = C3(−t,−t)
= C3(0,−t) = C3(−t, 0) = C3(t, t),

C3(s, s+ t) = C3(s+ t, s) = C3(−s, t)
= C3(t,−s) = C3(−s− t,−t) = C3(−t,−t− s),

for s ≥ 0 and t ≥ 0.

1.1 The spectral and bispectral density functions
The spectral density (second-order spectrum) , f(.), of {Xt} can
be expressed as the Fourier transform of autocovariance function
(C2(.)),

fX(ω) =
1

2π

∞∑
t1=−∞

C2(t1) e−it1ω , − π ≤ ω ≤ π, (4)

where
∑∞
t1=−∞ | C2(t1) |<∞ .

The bispectral and normalized bispectral density functions are
given respectively as

fX(ω1, ω2) =
1

(2π)2

∞∑
t1=−∞

∞∑
t2=−∞

C3(t1, t2) e−i(t1ω1+t2ω2),

(5)

g(ω1, ω2) =
f(ω1, ω2)√

f(ω1)f(ω2)f(ω1 + ω2)
, (6)

where −π ≤ ω1, ω2 ≤ π. The bispectral density function exists
for all ω1, ω2 if
∞∑

t1=−∞

∞∑
t2=−∞

|C3(t1, t2)| <∞.

The bispectral density function is a complex valued function takes
the form

fX(ω1, ω2) = r(ω1, ω2) + iq(ω1, ω2).

The modulus and phase of the bispectral density function are given
respectively, by

|fX(ω1, ω2)| = (r2(ω1, ω2) + q2(ω1, ω2))
1
2 ,

phase = tan−1(
q(ω1, ω2)

r(ω1, ω2)
).

The bispectral density function provides us useful information
about the non-linearity of the process. For continuous non-
Gaussian time series the modulus of the normalized bispectrum is
flat.

1.2 Estimation of spectrum
There are many methods for estimating the spectrum and bispec-
trum, but in this paper we interested in estimating the spectrum and
bispectrum using the smoothed periodogram using the Parzen lag
window. The smoothed spectral and bispectral density functions are

respectively given by

f̂(ω) =
1

2π

n∑
s=−n

λ(
s

M
)e−isωĈ2(s)

=
1

2π

n∑
s=−n

λ(
s

M
)Ĉ2(s) cosωs, (7)

and

f̂(ω1, ω2) =
1

4π2

N−1∑
s1=−(N−1)

N−1∑
s2=−(N−1)

λ(
s1
M
,
s2
M

)

×Ĉ3(s1, s2)e−is1ω1−is2ω2 , (8)

where Ĉ2(s), Ĉ2(s1, s2) are given by

Ĉ2(s) =
1

N − s

N−|s|∑
t=1

(Xt−X̄)(Xt+|s|−X̄),

X̄ =
1

N

N∑
t=1

Xt,

Ĉ3(s1, s2) =
1

N

N−γ∑
t=1

(Xt − X̄)(Xt+s1 − X̄)(Xt+s2 − X̄),

where s1, s2 ≥ 0, γ = max(s1, s2), s = 0,±1,±2, . . . ,±(N −
1), −π ≤ ω1, ω2 ≤ π , ”λ(.)” is one-dimensional lag window
and ”λ( s1

M
, s2
M

)” is two-dimensional lag window [Parzen, Daniell,
Tukey Hamming ,...]. In this paper, we use the Parzen lag window.
Parzen (1961b) proposed the Parzen lag window

λ(s) =

 1− 6s2 + 6 |s|3
2(1− |s|)3
0

|s| ≤ 1
2

1
2
< |s| ≤ 1
|s| > 1

, (9)

and λ(s1, s2) is given by

λ(s1, s2) = λ(s1)λ(s2)λ(s1 − s2). (10)

The normalized bispectrum is estimated by

ĝ(ω1, ω2) =
f̂(ω1, ω2)√

f̂(ω1)f̂(ω2)f̂(ω1 + ω2)
. (11)

for more details about the estimation of spectrum and lag windows,
see [16]
This paper is organized as follows. In Section 2, some higher order
joint moments of the NSINAR(1) model up to order three, the spec-
tral and bispectral and normalized bispectral density functions are
calculated. Moreover, the estimates for the spectral, bispectral and
normalized bispectral density functions using a simulated realiza-
tion of size n=500 are calculated. Also, the linearity of the model
is investigated. In Section 3, the same measures are calculated for
the SGINAR(1)-II model. In Section 4, the same measures are cal-
culated for the DCGINAR(1) model.

2. THE NEW SKEW INAR(1) MODEL
Bourguignon and Vasconcellos (2016) introduced the NSINAR(1)
process. This type of models are called the true integer autoregres-
sive models and appear since needing for modelling and analysing
count data with positive and negative values. This model is defined
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as the difference between Poisson INAR(1) model that introduced
by Al-Osh and Al-Zaid (1987) and the NGINAR(1) model that in-
troduced by Ristic̀ et al.(2009) see [1] and [11]. They defined the
NSINAR(1) model as

Zt = α ? Zt−1 + ζt, (12)

where α?Zt−1
d
= α∗Xt−1−α◦Yt−1 is the difference between the

negative binomial thinning and binomial thinning operators, where
the counting series α ∗Xt−1 and α ◦ Yt−1 are independent random

variables. α ∗ X =
X∑
i=0

Wi and α ◦ Y =
Y∑
i=0

Ui, where {Wi}

is a sequence of i.i.d geometric random variables and {Ui} is a
sequence of i.i.d Bernoulli random variables independent of {Wi}
, Zt = Xt − Yt where Xt ∼ geometric ( µ

1+µ
), Yt ∼ Poisson(λ),

{ Zt} be a sequence of random variables has a Geometric-Poisson
(µ, λ) and ζt has the distribution of εt −εt, where {εt} and {εt}
are independent r.v’s and Zt and ζt−l are independent for all l ≥ 1.
{εt} are i.i.d r.v’s with common poisson(λ(1−α)) distribution and
εt is a mixture of two random variables with geometric (µ/(1 +
µ)) and geometric (α/(1 + α)) distributions. The condition of the
stationarity of the process {Zt} is 0 ≤ α ≤ µ/(1 + µ) and the
condition of the non-stationarity of the process {Zt} is µ/(1+µ) ≤
α ≤ 1. Here, our study is restricted to the stationary case.
The moment generating function of ζt and Zt are given, respec-
tively, by (see [5])

Mζ(s) =
[1 + α(1 + µ)(1− es)]e[λ(1−α)(e−s−1)]

[1 + µ(1− es)][1 + α(1− es)]
,

MZ(s) =
eλ(e

−s−1)

[1 + µ(1− es)]
.

The mean and variance of Zt and ζt are then given by

µZ = µ− λ, σ2
Z = µ2 + µ+ λ,

µζ = (1− α)[µ− λ],

σ2
ζ = (1 + α)µ[(1− α)(1 + µ)− α] + λ(1− α).

The thinning operator has the following properties

(1) E(α ? Z) = α(µ− λ).

(2) E(α ? Z)2 = α2(µ− λ)2 + αµ(1 + 2α+ αµ) + αλ.

(3) E(α ? Z)2 = α2E(Z2) + α(1 + α)E(X) + α(1− α)E(Y )
= α2E(Z2)− α2E(Z) + α(µ+ λ).

2.1 The higher order joint central moments
(cumulants)

THEOREM 1. Let {Zt} be a stationary process satisfying (12)
then,
the second- order central moment is calculated as
C2(s) = αs(µ2 + µ+ λ) = αsC2(0).
The third- order central moment are calculated as
C3(0, 0) = 2µ3 + 3µ2 + µ− λ,
C3(0, s) = αs(2µ3 + 3µ2 + µ− λ) = αsC3(0, 0),

C3(s, s) = α2sC3(0, 0)− αC2(0)α
s−α2s

(1−α) .

PROOF. µ(s) is calculated as
µ(s) = E(ZtZt+s) = E(Zt(α ? Zt+s−1 + ζt))

= αµ(s−1) + µZµζt = αsµ(0) + 1−αs
1−α µZµζt

= αs[2µ2 + µ+ λ2 + λ− 2µλ] + (1− αs)(µ− λ)2

= αs[µ2 + µ+ λ] + (µ− λ)2,

then, C2(s) is calculated as
C2(s) = µ(s) − µ2

Z .
C3(0, 0) is calculated as
C3(0, 0) = µ(0,0) − 3µZµ(0) + 2µ3

Z .
µ(s,s) is calculated as
µ(s,s) = E(ZtZt+sZt+s) = E(Zt[α ? Zt+s−1 + ζt]

2)
= α2E(ZtZt+s−1Zt+s−1)−α2E(ZtZt+s−1)+α(µ+λ)E(Zt)+
2αE(ZtZt+s−1)E(ζt) +E(ζ2t )E(Zt)
= α2µ(s−1,s−1)+[2αµζ−α2]µ(s−1)+α(µ+λ)µZ+µZ [σ2

ζ+µ2
ζ ]

= α2µ(s−1,s−1)+[2αµζ−α2][µ2+µ+λ]αs−1+(µ−λ)2[2αµζ−
α2] + α(µ+ λ)µZ + µZ [σ2

ζ + µ2
ζ ]

= α2sµ(0,0)+[2αµζ−α2][µ2+µ+λ]
∑s−1
i=0 α

s−(i+1)α2i+[(µ−
λ)2[2αµζ − α2] + α(µ+ λ)µZ + µZ [σ2

ζ + µ2
ζ ]]
∑s−1
j=0 α

2j

= α2sµ(0,0)+([2αµζ−α2][µ2+µ+λ])α
s−α2s

α(1−α) +[(µ−λ)2[2αµζ−
α2] + α(µ+ λ)µZ + µZ [σ2

ζ + µ2
ζ ]]

1−α2s

1−α2 ,

then, C3(s, s) is calculated as
C3(s, s) = µ(s,s) − µ[E(Z2

t+s) + 2µ(s)] + 2µ3

= α2µ(s−1,s−1)−α2µ(s−1)+α(µ+λ)µZ+2αµ(s−1)µζ+µZ [σ2
ζ+

µ2
ζ ]− 2µZ [αµ(s−1) +µZµζt ]−µZE((α ?Zt+s−1 + ζt)

2) + 2µ3

= α2µ(s−1,s−1)−α2µ(s−1)+α(µ+λ)µZ+2αµ(s−1)µζ+µZ [σ2
ζ+

µ2
ζ ]− 2µZ [αµ(s−1) + µZµζt ]− µZ [E(α ? Zt+s−1)2 +E(ζt

2) +

2αE(ζt)E(Zt+s−1) + 2µ3 =
α2µ(s−1,s−1)−α2µ(s−1) +α(µ+λ)µZ +2αµ(s−1)µζ +µZ [σ2

ζ +

µ2
ζ ] − 2µZ [αµ(s−1) + µZµζt ] − µZ [σ2

ζ + µ2
ζ ] − 2αµ2

Zµζ −
µZ [α2E(Z2

t+s−1)− α2E(Zt+s−1) + α(µ+ λ)] + 2µ3

= α2[µ(s−1,s−1) − µZE(Z2
t+s−1) − 2µZµ(s−1) + 2µ3] −

α2[µ(s−1) − µ2
Z ] = α2C3(s− 1, s− 1)− α2C2(s− 1)

= α2C3(s− 1, s− 1)− α2αs−1C2(0)

= α2sC3(0, 0) − α2C2(0)
∑s−1
i=0 α

s−(i+1)α2i = α2sC3(0, 0) −
α2C2(0)α

s−α2s

α(1−α) .

µ(0,s) is calculated as
µ(0,s) = E(ZtZtZt+s) = E(ZtZt[α ? Zt+s−1 + ζt])
= αE(ZtZtZt+s−1) + E(Z2

t )E(ζt) = αµ(0,s−1) + [2µ2 + µ +
λ2 + λ− 2µλ][(1− α)(µ− λ)]
= αsµ(0,0) + 1−αs

1−α [2µ2 + µ+ λ2 + λ− 2µλ][(1− α)(µ− λ)]

= αs[6µ3 − 6λµ2 + 6µ2 + 3µλ2 − 3λ2 − λ3 − λ + µ] + (1 −
αs)(µ− λ)[2µ2 + µ+ λ2 + λ− 2µλ].
Then C3(0, s) is calculated as
C3(0, s) = µ(0,s) − µZ [µ(0) + 2µ(s)] + 2µ3

= (µ−λ)[2µ2 +µ+λ2 +λ−2µλ]+αsµ[1+5µ−2λµ+4µ2]−
αsλ[1 + 2λ]− (µ−λ)[2µ2 +µ+λ2 +λ−2µλ+ 2(αs[µ2 +µ+
λ] + (µ− λ)2)] + 2(µ− λ)3.
µ(s,τ) is calculated as
µ(s,τ) = ατ−sµ(s,s)+(1−ατ−s)[αs[µ2+µ+λ]+(µ−λ)2][µ−λ].
µ(0) and µ(0,0) are given by Bourguignon and Vasconcellos (see
[5]).

2.2 The spectral, bispectral and normalized bispctral
density functions of the NSINAR(1)

The spectral density function is given by (see [5])

fZ(ω) =
(1− α2)(µ2 + µ+ λ)

2π(1 + α2 − 2α cosω)
, − π ≤ ω ≤ π. (13)
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THEOREM 2. The bispectral density function is calculated as

fZ(ω1, ω2) =
1

(2π)2
[C3(0, 0) + C3(0, 0){h1(−ω1) + h1(−ω2)

+h1(ω1 + ω2)}+ (C3(0, 0) +
α2C2(0)

α(1− α)
){h2(ω1)

+h2(ω2) + h2(−ω1 − ω2)}

− α
2C2(0)

α(1− α)
{h1(ω1) + h1(ω2) + h1(−ω1 − ω2)}

+(C3(0, 0) +
α2C2(0)

α(1− α)
){h2(−ω1 − ω2)h1(−ω2)

+h2(−ω1 − ω2)h1(−ω1) + h2(ω2)h1(−ω1)

+h2(ω1)h1(−ω2) + h2(ω1)h1(ω1 + ω2)

+h2(ω2)h1(ω1 + ω2)}

− α
2C2(0)

α(1− α)
{h1(−ω1 − ω2)h1(−ω2)

+h1(−ω1 − ω2)h1(−ω1) + h1(ω2)h1(−ω1)

+h1(ω1)h1(−ω2) + h1(ω1)h1(ω1 + ω2)

+h1(ω2)h1(ω1 + ω2)}], (14)

where h1(ωk) = αeiωk

1−αeiωk and h2(ωk) = α2eiωk

1−α2eiωk
, k=1,2.

PROOF. The proof is too long to included it here.
The normalized bispectral density function is calculated by (6),
where fZ(ω) and fZ(ω1, ω2) are respectively given by (13) and
(14) .

2.3 Estimation of spectrum
Estimates of the spectral, bispectral and normalized bispectral

density functions are calculated using the smoothed periodogram
method using Parzen lag window and simulated series from the
NSINAR(1) model.
The theoretical spectrum fZ(ω), theoretical bispectral and normal-
ized bispectral modulus of fZ(ω1, ω2) and gZ(ω1, ω2) are respec-
tively computed by setting α = .25, µ = 5 and λ = 3 in (13),
(14) and (6). Fig. 1 represent the simulated series of {Zt, t =
1, ..., 500} from the NSINAR(1) model with α = .25, λ = 3 and
µ = 5 that defined by (12). Fig. 2 represent theoretical spectrum
and the estimate of the spectral density using Parzen window with
M=7 as in (7) and (9). Fig. 3 and Fig. 4 represent the theoretical
bispectrum and normalized bispectrum modulus. Fig. 5 and Fig. 6
represent the estimate of the bispectrum and normalized bispectrum
modulus with M=7 by Parzen window using (8), (10) and (9).

List of Tables

1 Theoretical bispectral modulus of NSINAR(1) with
α = .25, λ = 3 and µ = 5. . . . . . . . . . . . . . 12

2 Theoretical normalized bispectral modulus of NSI-
NAR(1) with α = .25, λ = 3 and µ = 5. . . . . . 12

It is clear that the values of the normalized bispectrum modulus
given in Table 2 show that the normalized bispectrum modulus of
the NSINAR(1) model is more flat than the non-normalized one
given in Table 1 . This indicates that the test of linearity given by
Subba Rao and Gabr (1980) and its modification given by Hinich
(1982) can be used for integer valued time series models.

Fig. 1. Simulated series of NSINAR(1) model with α = .25, λ = 3 and
µ = 5.

Fig. 2. The theoretical spectrum is represented by a solid line and esti-
mated spectrum is represented by a dash line.

Fig. 3. Theoretical bispectral modulus of the NSINAR(1) with α =
.25, λ = 3 and µ = 5.
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Fig. 4. Theoretical normalized bispectral modulus of NSINAR(1) with
α = .25, λ = 3 and µ = 5.

Fig. 5. Estimate bispectral modulus of NSINAR(1) at M=7.

Fig. 6. Estimate normalized bispectral modulus of NSINAR(1) at M=7.

3. THE SHIFTED GEOMETRIC INAR(1) MODEL(
SGINAR(1)-II)

Shifted geometric INAR(1) of type-II (in short, SGINAR(1)-II
model introduced by Nastić (2012). It has the same approach that
taken by Bakouch and Ristić (2010) for ZTPINAR(1) process but
SGINAR(1)-II model is based on negative binomial thinning op-
erator. A process {Xt} is said to be SGINAR(1)-II if it satisfies

Xt =

{
ηt with probability 1

1+µ

α ∗Xt−1 + ηt with probability µ
1+µ

, (15)

where the operator ”∗” is defined as

α ∗Xt−1 =

Xt−1∑
i=1

Yi, α ∈ (0, 1),

where {Yi} is a sequence of i.i.d random variables with geomet-
ric ( 1

1+α
) distribution independent of Xt−1, {Xt} is a stationary

process has shifted geometric ( 1
1+µ

) distribution and {ηt} are i.i.d
random variables independent of Yi and of Xt−i, i ≥ 1. The pgf of
Xt and ηt are given by respectively (see[9])
φX(s) = s

1+µ−µs ,

φη(s) = 1
1+α−αs

(
α(1+µ)

µ
s+ µ−α(1+µ)

µ
s

1+µ−µs

)
.

The mean and variance ofXt and ηt are then given by respectively
µX = 1 + µ, σ2

X = µ(1 + µ),
µηt = (1 + µ− αµ), σ2

ηt
= µ(1− α+ µ− α2µ− 2α2).

For more information about the model and the binomial thinning
operator see [9] and [11].

3.1 Higher order joint moments and cumulants
THEOREM 3. Let {Xt} be a stationary process satisfying (15)

then,
The first order moment and cumulant for SGINAR(1)-II are given
by µX .
The second order joint moments are calculated as
µ(0) = (1 + µ)(1 + 2µ),

µ(s) = µ(µ+ 1)
(
α µ
µ+1

)s
+ (1 + µ)2.

Then, the second order joint central moment is calculated as
C2(s) = [ αµ

1+µ
]sC2(0) = ( αµ

1+µ
)sµ (µ+ 1) .

The third order joint moments are calculated as
µ(0,0) = 6µ3 + 12µ2 + 7µ+ 1,
µ(0,s) = ( αµ

1+µ
)s(4µ2 + 3µ) (µ+ 1) + (µ+ 1) (3µ+ 2µ2 + 1),

µ(s,s) = {(α µ
µ+1

)s(2µ2 + 3µ − 2αµ2 + αµ)(µ+1
1−α ) +

(α2 µ
µ+1

)s(2µ2−4αµ−2αµ2)(µ+1
1−α )+(µ+1

1−α )(1−2αµ2 +2µ2−
3αµ+ 3µ− α),
µ(s,τ) = ( αµ

1+µ
)τ−s(µ(s,s) − µ(s)µX) + µ(s)µX .

Then, the third order joint central moments are calculated
as
C3(0, 0) = (1 + µ)µ(1 + 2µ) = µ (2µ2 + 3µ+ 1) ,
C3(0, s) = ( αµ

1+µ
)sC3(0, 0) = ( αµ

1+µ
)sµ (2µ2 + 3µ+ 1) ,

C3(s, s) = ( α
2µ

1+µ
)sC3(0, 0) + [ αµ

1+µ
(1 + α) + 2(1 + µ)[ α

2µ
1+µ
−

( αµ
1+µ

)2]]C2(0)
( αµ1+µ )s−(α

2µ
1+µ )s

αµ
1+µ−

α2µ
1+µ

=
(
α2 µ

µ+1

)s
(2µ − 4α − 2αµ)µ(µ+1

1−α ) +
(
α µ
µ+1

)s
(3α +

1)µ(µ+1
1−α ),

5



International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.9, August 2018

C3(s, τ) = ( αµ
1+µ

)τ−sC3(s, s).

The fourth-joint moments are calculated as
µ(0,0,s) = αµ

1+µ
µ(0,0,s−1) + µηµ(0,0), s > 0,

µ(0,s,τ) = αµ
1+µ

µ(0,s,τ−1) + µ(0,s)µη, τ > s > 0,

µ(0,s,s) = α2µ
1+µ

µ(0,s−1,s−1) + αµ
1+µ

(1 + α)µ(0,s−1) +

2 αµ
1+µ

µηµ(0,s−1) + (1 + 3µ − 3αµ − 2µα2 + 2µ2 − 2αµ2)(1 +

3µ+ 2µ2),
µ(s,τ,u) = αµ

1+µ
µ(s,τ,u−1) + µηµ(s,τ), u > τ > s > 0,

µ(s,s,v) = αµ
1+µ

µ(s,s,v−1) + µηµ(s,s), v > s > 0,

µ(s, s, s) = α3µ
1+µ

µ(s−1,s−1,s−1)+3 α
2µ

1+µ
[(1+α)+µη]µ(s−1,s−1)+

αµ
1+µ

[(1 +α)(1 + 2α) + 3µη(1 +α) + 3(1 + 3µ− 3αµ− 2µα2 +

2µ2− 2αµ2)]µ(s−1) + (1 +µ)(1 + 7µ− 7αµ− 12µα2 + 12µ2−
12αµ2 − 6α3µ− 6α2µ2 + 6µ3 − 6µ3α).

Then, the fourth order joint cumulants are calculated as
C4(0, 0, s) = αµ

1+µ
C4(0, 0, s− 1), s ≥ 0,

C4(0, s, s) = α2µ
1+µ

C4(0, s− 1, s− 1) + αµ
1+µ

(1 +α)C3(0, s− 1),
s ≥ 0,
C4(0, s, u) = αµ

1+µ
C4(0, s, u− 1), u ≥ s ≥ 0,

C4(s, τ, u) = αµ
1+µ

C4(s, τ, u− 1), u ≥ τ ≥ s ≥ 0,

C4(s, s, s) = α3µ
1+µ

C4(s− 1, s− 1, s− 1) + 3 α
2µ

1+µ
(1 + α)C3(s−

1, s− 1) + αµ
1+µ

(1 + α)(1 + 2α),

C4(s, s, u) = αµ
1+µ

C4(s, s, u− 1), u ≥ s ≥ 0.

PROOF. The proof of this theorem is similarly to the proof of
theorem 1 in section 2, by using the definition of the SGINAR(1)-
II and higher order moments and cumulants and the properties of
the negative binomial thinning operator.

3.2 The spectral, bispectral and normalized bispectral
density functions

The spectral density function is given by Nastić (2012) (see[9])

fX(ω) =
µ(1 + µ)(1 + 2µ+ 2µ2(1− α2))

2π(1 + 2µ+ µ2(1 + α2)− 2αµ(1 + µ) cosω)
.

(16)
The normalized spectral density function is calculated as

gX(ω) =
(1 + 2µ+ 2µ2(1− α2))

2π(1 + 2µ+ µ2(1 + α2)− 2αµ(1 + µ) cosω)
.

THEOREM 4. The bispectral density function is calculated as

fX(ω1, ω2) =
1

(2π)2
[C3(0, 0) + C3(0, 0){H1(−ω1)

+H1(−ω2) +H1(ω1 + ω2)}+ (C3(0, 0)

−
[(1 + α) + 2(1 + µ)α(1− µ

1+µ
)]C2(0)

1− α
)

{H2(ω1) +H2(ω2) +H2(−ω1 − ω2)}

+
[(1 + α) + 2(1 + µ)α(1− µ

1+µ
)]C2(0)

1− α
{H1(ω1) +H1(ω2) +H1(−ω1 − ω2)}
+(C3(0, 0)

−
[(1 + α) + 2(1 + µ)α(1− µ

1+µ
)]C2(0)

1− α
)

{H1(−ω2)H2(−ω1 − ω2)

+H1(−ω1)H2(−ω1 − ω2)

+H1(−ω2)H2(ω1) +H1(−ω1)H2(ω2)

+H1(ω1 + ω2)H2(ω1) +H1(ω1 + ω2)H2(ω2)}

+
[(1 + α) + 2(1 + µ)α(1− µ

1+µ
)]C2(0)

1− α
{H1(−ω2)H1(−ω1 − ω2)

+H1(−ω1)H1(−ω1 − ω2)

+H1(−ω2)H1(ω1) +H1(−ω1)H1(ω2)

+H1(ω1 + ω2)H1(ω1)

+H1(ω1 + ω2)H1(ω2)}], (17)

where H1(ωk) =
αµ
1+µ e

iωk

1− αµ
1+µ e

iωk
and H2(ωk) =

α2µ
1+µ e

iωk

1−α
2µ

1+µ e
iωk

with k = 1, 2.

PROOF. The proof is too long to included it here.
The normalized bispectral density function is calculated as (6),
where fX(ω1, ω2) and fX(ω1) are defined in (17) and (16).

3.3 Estimation of spectrum
The estimates of the spectral, bispectral and normalized bispectral
density functions are calculated using the smoothed periodogram
method based on the Parzen lag window using simulated series
{Xt, t = 1, 2, . . . , 500} from SGINAR(1)-II model.
The theoretical spectrum fX(ω), theoretical bispectral and normal-
ized bispectral modulus of fX(ω1, ω2) and gX(ω1, ω2) are respec-
tively computed by setting µ = 2.6 and α = .6 in (17) and (6). Fig.
7 represents the simulated series of SGINAR(1)-II with µ = 2.6
and α = .6. Fig. 8 represents theoretical spectrum and the esti-
mate spectrum by Parzen window with M=7 as in (7) and (9). Fig.
9 and Fig. 10 represent the theoretical bispectrum and normalized
bispectrum modulus. Fig. 11 and Fig. 12 represent the estimate of
the bispectrum and normalized bispectrum modulus with M=7 by
Parzen window using (8), (11) and (10).
From Fig. 10, the normalized bispectrum modulus of the
SGINAR(1)-II model is more flat than the non-normalized bispec-
trum modulus given in Fig. 9 , since the values of the normalized
bispectrum modulus lies between (0,2) and the non-normalized bis-
pectrum modulus lies between (0,15).
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Fig. 7. Simulated series of SGINAR(1)-II with µ = 2.6 and α = .6.

Fig. 8. Theoretical spectrum is represented by a solid line and estimated
spectrum is represented by a dash line at M=7.

Fig. 9. The theoretical bispectral modulus of SGINAR(1)-II with µ = 2.6

and α = .6.

Fig. 10. The theoretical normalized bispectral modulus of SGINAR(1)-II
with µ = 2.6 and α = .6.

Fig. 11. Estimate bispectral modulus of SGINAR(1) at M=7.

Fig. 12. Estimate normalized bispectral modulus of SGINAR(1) at M=7.
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4. THE DEPENDENT COUNTING GEOMETRIC
INAR(1) MODEL

Ristić et al. (2013) introduced the DCGINAR(1) model based on
generalized binomial thinning operator type-I with a geometric
marginal (•θ). They defined the DCGINAR(1) as

Xt = α •θ Xt−1 + εt, t ∈ Z, α, θ ∈ (0, 1), (18)

where the operator ’•θ’ is defined as α •θ X =
∑X
i=1 Ui, i ∈ N,

{Ui} is a sequence of dependent Bernoulli(α) random variable de-
fined as Ui = (1− Vi)Wi + ViZ, {Wi} is a sequence of i.i.d ran-
dom variable with Bernoulli(α) distribution, {Vi} is a sequence of
i.i.d random variable with Bernoulli(θ) distribution, Z is a random
variable with Bernoulli(α) distribution, Wi, Vj and Z are indepen-
dent ∀ i, j ∈ N and {Ui} are independent ofXl and εm for any i, l
andm. {Xt} has Geometric ( µ

1+µ
) distribution, µ > 0 and {εt} is a

sequence i.i.d r.v’s distributed as a mixture of zero and two geomet-
rically random variables. This model satisfy these conditions,{εt}
is a sequence i.i.d random variables such that Cov(εt,Xs) = 0,
s < t., {Ui} are independent of Xj and εk and {Ui} used for gen-
erating Xs and Xt, representing the counting series of the process
{Xt} are mutually independent for t 6= s.
The pgf of Ui, εt and Xt are given by respectively (see[12])
φUi(s) = 1− α+ αs,

φε(s) = (1+α(1−θ)µ−α(1−θ)µs)(1+(α+θ−αθ)µ−(α+θ−αθ)µs)
(1+µ−µs)(1+(α+θ−2αθ)µ−(α+θ−2αθ)µs) ,

φX(s) = 1
1+µ−µs .

The mean and variance of Xt and εt are respectively given by
µX = µ, σ2

X = µ(1 + µ),
µεt = (1− α)µ, σ2

εt
= (1− α)µ(1 + (1 + α− 2αθ2)µ).

The second and third moments of εt are respectively calculated as

E(ε2) = (1− α)µ+ 2(α− 1)(αθ2 − 1)µ2, (19)
E(ε3) = (1− α)µ+ 6(α− 1)(αθ2 − 1)µ2

−6(α− 1)(−α2θ2

+2α2θ3 − αθ3 − αθ2 + 1)µ3. (20)

Some properties of the operator ’•θ’:-
Let X,Y be any two random variables with finite first, second and
third moments, α ∈ (0, 1) and θ ∈ (0, 1), then

(1) E(α •θ X) = αE(X),

(2) E(α •θ X)2 = α(α + (1 − α)θ2)E(X2) + α(1 − α)(1 −
θ2)E(X)

(3) E(Y (α •θ X)) = αE(XY ).
(4) E(α •θ X)3 = [α3 − 3α2θ3 + 2α3θ3 − 3α3θ2 + 3α2θ2 +

αθ3]E(X3) + [9α3θ2 − 6α3θ3 − 12α2θ2 − 3αθ3 + 3αθ2 +
3α2+9α2θ3−3α3]E(X2)+[9α2θ2−3α2−6α2θ3−6α3θ2−
3αθ2 + α+ 2α3 + 2αθ3 + 4α3θ3]E(X).

For more details about the model and the properties of the general-
ized binomial thinning type-I see [12].

4.1 Higher order joint moments and cumulants
THEOREM 5. Let {Xt} be a stationary process satisfying (18)

then,
The first-order moment and first cumulant are given by µX .
The second-order joint moment is calculated as
µ(s) = αs[µ(0) − µ2] + µ2 = αsµ(1 + µ) + µ2, s ≥ 0 and
µ(0)=µ(1+2µ).

Then, the second order joint central moment is calculated as
C2(s) = αsC2(0) = αsµ(1 + µ), s ≥ 0.

The third-order moments are calculated as
µ(0,0) = µ(1 + 6µ+ 6µ2),
µ(0,s) = αs[µ(0,0) − µµ(0)] + µµ(0) = µ2(1 + 2µ) + αsµ(1 +
5µ+ 4µ2), s ≥ 0,
µ(s,s) = [α(α + (1 − α)θ2)]sµ(0,0) + [α(1 − α)(1 − θ2) +

2αµε](µ(0) − µ2)[α
s−(α(α+(1−α)θ2))s
α(1−[α(α+(1−α)θ2)] ] + ([α(1 − α)(1 − θ2) +

2αµε]µ
2 + µ[µ2

ε + σ2
ε ])[ 1−[α(α+(1−α)θ2)]s

1−[α(α+(1−α)θ2)] ],

µ(s,τ) = ατ−s(µ(s,s) − µ(s)µ) + µ(s)µ, τ > s.
Then, the third-order joint central moments are calculated as
C3(0, 0) = µ(1 + 3µ+ 2µ2),
C3(0, u) = αuC3(0, 0) = αuµ(1 + 3µ+ 2µ2), u ≥ 0,
C3(s, s) = [α(α+ (1− α)θ2)]sC3(0, 0) + [α(1− α)(1− θ2) +

2µα(1− α)θ2]C2(0)[α
s(1−(α(α+(1−α)θ2))s)
α(1−[α(α+(1−α)θ2)]) ], s ≥ 0,

C(s, τ) = ατ−sC3(s, s).
The fourth-order moments are calculated as
µ(0,0,s) = αµ(0,0,s−1) + µ(0,0)µε,
µ(0,s,s) = α(α+ (1−α)θ2)µ(0,s−1,s−1) + (2α(1−α)µ+α(1−
α)(1− θ2))µ(0,s−1) + µ(0)(E(ε2)),
µ(0,s,τ) = αµ(0,s,τ−1) + µ(0,s)µε,
µ(s,τ,υ) = αµ(s,τ,υ−1) + µ(s,τ)µε,
µ(s,s,s) = [α3 − 3α2θ3 + 2α3θ3 − 3α3θ2 + 3α2θ2 +
αθ3]µ(s−1,s−1,s−1) +[9α3θ2−6α3θ3−12α2θ2−3αθ3 +3αθ2 +
3α2+9α2θ3−3α3]µ(s−1,s−1)+[9α2θ2−3α2−6α2θ3−6α3θ2−
3αθ2 +α+ 2α3 + 2αθ3 + 4α3θ3]µ(s−1) +µE(ε3) + 3µε[α(α+
(1−α)θ2)µ(s−1,s−1)+α(1−α)(1−θ2)µ(s−1)]+3αE(ε2)µ(s−1),
where E(ε2) and E(ε3) are given by (19) and (20) respectively.
The fourth-order joint cumulants are calculated as
C4(v, v, v) = [α3−3α2θ3+2α3θ3−3α3θ2+3α2θ2+αθ3]C4(v−
1, v − 1, v − 1) + [9α3θ2 − 6α3θ3 − 12α2θ2 − 3αθ3 + 3αθ2 +
3α2 + 9α2θ3− 3α3]C3(v− 1, v− 1) + [9α2θ2− 3α2− 6α2θ3−
6α3θ2 − 3αθ2 + α+ 2α3 + 2αθ3 + 4α3θ3]C2(v − 1),
C4(0, v, v) = α(α+(1−α)θ2)C4(0, v−1, v−1)+α(1−α)(1−
θ2)C4(0, v − 1),
C4(0, τ, v) = αC4(0, τ, v − 1), v ≥ τ ≥ 0,
C4(τ, τ, s) = αC4(τ, τ, s− 1), s ≥ τ ≥ 0,
C4(s, τ, v) = αC4(s, τ, v − 1), v ≥ τ ≥ s ≥ 0.

PROOF. The proof is similar to the proof of theorem 1 using the
definitions of the DCGINAR(1) and the properties of the general-
ized thinning operator.

4.2 The spectral, bispectral and normalized bispectral
density functions

The non-normalized spectral density function fX(ω) of DCGI-
NAR(1) is calculated as

fX(ω) =
µ(1 + µ)(1− α2)

2π(1 + α2 − 2α cosω)
, − π ≤ ω ≤ π. (21)

The normalized spectral density function gX(ω) is calculated as

gX(ω) =
(1− α2)

2π(1 + α2 − 2α cosω)
.
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THEOREM 6. The bispectral density function fX(ω1, ω2) of
DCGINAR(1) is calculated as

fX(ω1, ω2) =
1

(2π)2
[C3(0, 0){1 + F1(−ω1) + F1(−ω2)

+F1(ω1 + ω2)}
+(C3(0, 0)

− [(1− α)(1− θ2) + 2µ(1− α)θ2]C2(0)

(1− α(α+ (1− α)θ2))
)

{F2(ω1) + F2(ω2) + F2(−ω1 − ω2)}

+(
[(1− α)(1− θ2) + 2µ(1− α)θ2]C2(0)

(1− α(α+ (1− α)θ2))
){F1(ω1)

+F1(ω2) + F1(−ω1 − ω2)}
+(C3(0, 0)

− [(1− α)(1− θ2) + 2µ(1− α)θ2]C2(0)

(1− α(α+ (1− α)θ2))
)

{F2(−ω1 − ω2)F1(−ω2) + F2(−ω1 − ω2)F1(−ω1)

+F2(ω1)F1(−ω2) + F2(ω2)F1(−ω1)

+F2(ω1)F1(ω1 + ω2) + F2(ω2)F1(ω1 + ω2)}

+(
[(1− α)(1− θ2) + 2µ(1− α)θ2]C2(0)

(1− α(α+ (1− α)θ2))
)

{F1(−ω1 − ω2)F1(−ω2) + F1(−ω1 − ω2)F1(−ω1)

+F1(ω1)F1(−ω2) + F1(ω2)F1(−ω1)

+F1(ω1)F1(ω1 + ω2) + F1(ω2)F1(ω1 + ω2)}], (22)

where F1(ωk) = αeiωk

1−αeiωk and

F2(ωk) = α(α+(1−α)θ2)eiωk
1−(α(α+(1−α)θ2))eiωk , with k = 1, 2.

PROOF. The proof is too long to be included here.
The normalized bispectral density function is calculated by (6),
where fX(ω1, ω2) and f(ωi) are given by (22) and (21).

NOTATION 7. The higher order moments, cumulants , spec-
trum, bispectrum and normalized bispectrum for the GINAR(1)
model that introduced by Al-Zaid and Al-Osh (1988) can be con-
cluded by setting θ = 0 in the higher order moments, cumulants,
spectrum, bispectrum and normalized bispectrum of the DCGI-
NAR(1).

4.3 Estimation of the spectrum
Estimates of the spectrum, the bispectrum and normalized bis-

pectrum using the smoothed periodogram method using the Parzen
window and simulated series from the DCGINAR(1) model are cal-
culated.
The theoretical spectrum fX(ω), theoretical bispectral and normal-
ized bispectral density of fX(ω1, ω2) and gX(ω1, ω2) are respec-
tively obtained by setting α = .6, θ = .7 and µ = 1.8 in (21), (22)
and (6). Fig. 13, represents the simulated series of DCGINAR(1)
with α = .6, θ = .7 and µ = 1.8. Fig. 14 represents the theoretical
spectrum and the estimate spectrum using Parzen lag window with
M=7 from (7) and (9). Fig. 15 and Fig. 16 represent the theoretical
bispectral and normalized bispectral modulus. Fig. 17 and Fig. 18
represent the estimate of the bispectrum and normalized bispectrum
modulus with M=7 by Parzen window using (8), (10) and (9).
From Fig. 15 and Fig. 16, the normalized bispectrum modulus of
the DCGINAR(1) is more flat than the non-normalized bispectrum
modulus, since the the values of the normalized bispectrum modu-

Fig. 13. Simulated series of DCGINAR(1) with α = .6, θ = .7 and
µ = 1.8.

Fig. 14. Theoretical spectrum and estimated spectrum at M=7.

Fig. 15. Theoretical bispectral modulus of DCGINAR(1) with α = .6,
θ = .7 and µ = 1.8.
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Fig. 16. Theoretical normalized bispectral modulus with α = .6, θ = .7
and µ = 1.8 of DCGINAR(1).

Fig. 17. Estimate bispectral modulus of DCGINAR(1) at M=7.

Fig. 18. Estimate normalized bispectral modulus of DCGINAR(1) at
M=7.

lus lies between (0.5,2) and the values of the non-normalized bis-
pectrum modulus lies between (0,12).

5. CONCLUSIONS
Bispectrum and normalized bispectrum are used for checking
the linearity of the models. The higher order moments, spec-
trum, bispectrum and normalized bispectrum of the NSINAR(1),
SGINAR(1)-II and DCGINAR(1) models are computed. The spec-
trum, bispectrum and normalized bispectrum are estimated using
a smoothed periodogram based on the Parzen lag window and us-
ing a simulated series from each model. Moreover, the higher or-
der moments, spectrum and bispectrum for the GINAR(1) are con-
cluded as a special case of the DCGINAR(1) model. The normal-
ized bispectrum modulus of these models are more flat than the
non-normalized bispectrum modulus, so the test of linearity that
given by Subba Rao and Gabr (1980) and its modification given by
Hinich (1982) can be used for integer valued time series models.
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π 18.95
.95π 18.75 18.37 17.67
.90π 18.19 17.67 16.87 15.89 14.81
.85π 17.34 16.72 15.89 14.91 13.88 12.86 11.89
.80π 16.30 15.64 14.81 13.88 12.92 11.98 11.10 10.30 9.58
.75π 15.16 14.50 13.72 12.86 11.98 11.14 10.34 9.62 8.98 8.42 7.94
.70π 14.02 13.39 12.67 11.89 11.10 10.34 9.63 8.99 8.42 7.93 7.50 7.15 6.86
.65π 12.93 12.35 11.69 11.00 10.30 9.62 8.99 8.42 7.92 7.48 7.11 6.80 6.55 6.35
.60π 11.92 11.40 10.82 10.20 9.58 8.98 8.42 7.92 7.47 7.09 6.76 6.49 6.27
.55π 11.02 10.56 10.04 9.50 8.95 8.42 8.93 7.48 7.09 6.75 6.46 6.23
.50π 10.22 9.82 9.37 8.89 8.41 7.94 7.50 7.11 6.76 6.46 6.21
.45π 9.54 9.19 8.80 8.38 7.95 7.54 7.15 6.80 6.49 6.23
.40π 8.95 8.65 8.31 7.94 7.54 7.20 6.86 6.55 6.27
.35π 8.45 8.20 7.91 7.59 7.26 6.93 6.63 6.35
.30π 8.04 7.83 7.58 7.30 7.01 6.72 6.45
.25π 7.71 7.54 7.32 7.08 6.82 6.57
.20π 7.45 7.31 7.13 6.92 6.69
.15π 7.25 7.14 6.99 6.81
.10π 7.11 7.03 6.91
.05π 7.02 6.97
0 7.00
ω2

ω1 0 .05π .10π .15π .20π .25π .30π .35π .40π .45π .50π .55π .60π 65π

Table 1.

Theoretical bispectral modulus of NSINAR(1) with α = .25, λ = 3 and µ = 5.

π .7319
.95π .7322 .7328 .7340
.90π .7331 .7340 .7353 .7369 .7387
.85π .7345 .7355 .7369 .7385 .7402 .7420 .7436
.80π .7362 .7373 .7387 .7402 .7419 .7435 .7451 .7465 .7478
.75π .7380 .7391 .7405 .7420 .7435 .7451 .7466 .7479 .7491 .7501 .7510
.70π .7399 .7409 .7422 .7436 .7451 .7466 .7479 .7492 .7503 .7513 .7522 .7529 .7534
.65π .7416 .7426 .7438 .7451 .7465 .7479 .7492 .7504 .7515 .7524 .7532 .7538 .7544 .7548
.60π .7432 .7441 .7452 .7465 .7478 .7491 .7503 .7515 .7525 .7534 .7541 .7547 .7552
.55π .7447 .7455 .7465 .7476 .7489 .7501 .7513 .7524 .7534 .7542 .7549 .7555
.50π .7459 .7466 .7476 .7487 .7498 .7510 .7522 .7532 .7541 .7549 .7555
.45π .7470 .7476 .7485 .7495 .7506 .7518 .7529 .7538 .7547 .7555
.40π .7479 .7485 .7493 .7502 .7513 .7524 .7534 .7544 .7552
.35π .7487 .7492 .7499 .7508 .7519 .7529 .7539 .7548
.30π .7494 .7498 .7505 .7513 .7523 .7533 .7542
.25π .7499 .7502 .7509 .7517 .7526 .7536
.20π .7503 .7506 .7512 .7520 .7528
.15π .7506 .7509 .7514 .7521
.10π .7508 .7510 .7515
.05π .751 .7511
0 .75104
ω2

ω1 0 .05π .10π .15π .20π .25π .30π .35π .40π .45π .50π .55π .60π 65π

Table 2.

Theoretical normalized bispectral modulus of NSINAR(1) with α = .25, λ = 3 and µ = 5.
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