
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 9, August 2018

20

Securing Web Applications against Structured Query
Language Injection Attacks using a Hybrid Approach:

Input Filtering and Web Application Firewall

Francis Kyalo Muia
Jomo Kenyatta University of
Agriculture and Technology,

Juja Main Campus
Institute of Computer science
and information Technology

Calvins Otieno, PhD
Jomo Kenyatta University of
Agriculture and Technology,

Eldoret Campus
Institute of Computer science
and information Technology

Dennis Njagi, PhD

Jomo Kenyatta University of
Agriculture and Technology,

Karen Campus
Institute of Computer Science
and information Technology

ABSTRACT

SQL injection is a type of attack used to gain, manipulate, or

delete information in any data-driven system regardless of

whether the system is online or offline and whether this

system is a web or non-web based. A common approach for

an attacker to launch SQLIA is by modifying the user input to

contain partial SQL queries and trick the server into executing

them. In this paper, a literature review of the SQL injection

attacks and their mitigation is presented. It shows that the

study of SQL injection in general has been conducted in

diverse range of areas. The main objective of this paper is to

give an elaborate study on different types of SQL injection,

their mitigation strategies, critiques of past approaches and

finally the knowledge gap. It seeks to create knowledge on

work done by others in the area of SQL injection attacks in

web applications which remains a threat up-to-date despite the

numerous studies done on the same field.

Keywords

Structured Query Language, Structured Query Language

Injection Attacks, Web Application Keywords.

1. INTRODUCTION
Over the last two decades there is tremendous growth of

websites. From government departments to different types of

organizations, agencies, banks and even small to medium

enterprises rely on web based applications for smooth running

of their processes and transactions. Websites have become the

important information release centers that manage large

amount of data for sharing among billions of users over the

Internet.

During the last few years most organizations preferred to have

web based applications to have a global market access which

in turn means more people accessing the web applications and

hence increased vulnerability scope. Despite these web based

applications having many advantages, there is also numerous

risks associated with them. They have to face many input

vulnerabilities including the SQL injection attacks (SQLIA).

SQLIA have become more popular among intruders due to

improvements in its techniques over the years. Over the last

few years SQLIA attacks have emerged as one of the serious

threats to the web based data driven applications. In fact, the

open Web Application Security Project has placed SQLIA in

top ten vulnerabilities for a web based application [13].

2. LITERATURE REVIEW

2.1 SQL Injection Concepts and Definition
When web server receives web user’s page request from web

browser, it interacts with application server. Application

server relays the page request to either a file system or

database where data is stored. The result of this interaction is

to create a dynamic web page that displays relative

information that is retrieved from the database or file system

in a web page, as shown in Figure 1 [1]. Most of relational

database management systems adopt Structured Query

Language (SQL) as their programming language [3]. The

computer security firm Imperva calls it the “most pernicious

vulnerability in human computer history” and says that

between 2005 and 2011, SQL attacks accounted for 83

percent of data breaches during that period [23].

Figure 1: Typical Web Application Architecture (Buehrer,

Weide, & Sivilotti, 2015)

Web application is the software program installed in web

server of a website. Web application usually has tree-tiers.

1) Presentation Tier: this is where the web browser captures

user input and displays the processed data using HTML,

JavaScript, Flash, etc. through Graphical User Interface

(GUI).

2) Common Gateway Interface (CGI) Tier: This tier lies

between presentation tier and database tier as the Server

Script Process (SSP) that encapsulates the business logic to

support web application. User’s data is processed and stored

into the database. Retrieved data is presented in presentation

tier through CGI tier from database according to web users’

requests. CGI tier processes web application data with PHP,

ASP, JSP, etc. and server script programming languages.

3) Database Tier: it is used to store data and also responsible

to authenticate access and provides data storage services. [4].

2.1.1 Definition of SQL Injection Attack (SQLIA):
SQL injection is a technique that exploits a security

vulnerability occurring in the database layer of an application.

http://blog.imperva.com/2011/09/sql-injection-by-the-numbers.html
http://blog.imperva.com/2011/09/sql-injection-by-the-numbers.html

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 9, August 2018

21

The vulnerability is present when user input is either

incorrectly filtered for string literal escape characters

embedded in SQL statements or user input is not strongly

typed and thereby unexpectedly executed. It is in fact an

instance of a more general class of vulnerabilities that can

occur whenever one programming or scripting language is

embedded inside another.

SQL queries that hackers deliberately craft may be interpreted

as user input if SQL query keywords are not filtered out

properly. Most of IDSs focus on monitoring IP and Network

layer of Internet protocol and do not effectively detect

SQLIA. Besides, SQLIA is difficult to detect and prevent as it

has many types, approaches and various evading SQLIA

detection and prevention techniques [11]. Victims of SQLIA

sometimes are not even aware of their information leakage

until the time after SQLIA has been successfully executed.

SQLIA is effective for all databases adopting SQL language

as programming language, e.g. MySQL, MS SQL Server,

DB2, Oracle, Sybase, etc. In the worst case, SQLIA also can

lead to the operating system of website being hijacked. The

symptoms of such attack may simultaneously affect multiple

portions of the system or some portion of the system at

different times [9].

SQLIA normally has three attack phases:

Reconnaissance phase: it reconnoiters that there is a

vulnerability in web application via iteratively attempting to

inject malicious input to a web application and carefully

observe the web application response. Besides, hackers may

utilize the diversity of databases to detect the database schema

information. Malicious SQLIA queries are launched into the

target web application to attack the Database Management

System (DMS) if any vulnerability is found.

Hackers will attempt to attack the operating system of the web

application after they have compromised the back-end

database.

2.2 Types of SQLIA
In this section, different kinds of SQLIAs which are known to

date are presented and discussed. For each attack type, a

descriptive name is provided, one or more attack intents, a

description of the attack, an attack example, and a set of

references to publications and Websites that discuss the attack

technique and its variations in greater detail. The different

types of attacks are generally not performed in isolation;

many of them are used together or sequentially, depending on

the specific goals of the attacker.

2.2.1 Tautologies
In logic, a tautology is a formula which is true in every

possible interpretation. In a tautology-based attack, the code

is injected using the conditional OR operator such that the

query always evaluates to TRUE [14]. Tautology-based SQL

injection attacks usually bypass user authentication and

extract data by inserting a tautology in the WHERE clause of

a SQL query. The query transforms the original condition into

a tautology, causes all the rows in the database table to be

open to an unauthorized user.

2.2.2 Illegal/Logically Incorrect Queries
This type of SQLIA is one of the manipulation categories of

attacks [12]. It is the preliminary step to gather important

information of the back-end database server type and

structure. Hackers deliberately submit illegitimate SQL

queries, i.e. logical incorrect in order to let the database server

to reject the queries and display error feedback message, e.g.

database server type, table and column name or syntax or

logical or type mismatches errors, etc. that aim to debug very

helpful information if the database has not been designed to

anti-SQLIA prevention [26]. E.g. if a hacker inserts a single

quotation in end of URL, the website returns error message

revealing some sever or database information. The attacker is

then definitely sure that the web application is vulnerable, and

they can use other types of SQLIA technologies to exploit the

back-end database and extract data from the back-end

database.

2.2.3 Union Query
This type of SQLIA lies under manipulation and code

Injection category. It is usually used for bypassing

authentication and unauthorized retrieval of confidential

information from back-end database. By inserting SQL

keyword “Union” and another SQL query that is proposed to

authorize and retrieve confidential data into one legal SQL

query so that the inserted SQLIA query bypasses the

authentication to retrieve both tables’ data. e.g. Original SQL

queries:

 Query = “SELECT * FROM employee;”

Malicious insert another query concatenated by “union” SQL

keyword:

Modified Query = “SELECT * FROM employee union

SELECT * FROM salary;” [14]

2.2.4 Piggy-Backed Queries
In this attack type, an attacker tries to inject additional queries

into the original query. We distinguish this type from others

because, in this case, attackers are not trying to modify the

original intended query; instead, they are trying to include

new and distinct queries that “piggy-back” on the original

query. As a result, the database receives multiple SQL

queries. The first is the intended query which is executed as

normal; the subsequent ones are the injected queries, which

are executed in addition to the first [26]. This type of attack

can be extremely harmful. If successful, attackers can

insert virtually any type of SQL command, including stored

procedures, into the additional queries and have them

executed along with the original query. Vulnerability to this

type of attack is often dependent on having a database

configuration that allows multiple statements to be contained

in a single string.

Example: If the attacker inputs [‟; drop table users - -] into

the password field, the application generates the query:

SELECT accounts FROM users WHERE login=’doe’ AND

pass=’’; drop table users -- ’

2.2.5 Stored Procedures

Stored procedure is a series of multiple executing commands

procedures. This type of SQLIA is a function call injection

category and can be deliberately crafted to execute malicious

codes so as to attack the operating system [17]. Furthermore,

stored procedure may create other type of vulnerabilities that

hackers may arbitrarily upload malicious codes to the server

or escalate their privileges. Stored procedures are set by

database programmers as an extra abstraction layer,

meanwhile it becomes as vulnerability of web application for

SQLIA [18].

2.2.6 Inference
In this attack, the query is modified to recast in the form of an

action that is executed based on the answer to a true/false

question about data values in the database. In this type of

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 9, August 2018

22

injection, attackers are generally trying to attack a site that has

been secured enough so that, when an injection has

succeeded, there is no usable feedback via database error

messages. Since database error messages are unavailable to

provide the attacker with feedback, attackers must use a

different method of obtaining a response from the database. In

this situation, the attacker injects commands into the site and

then observes how the function/response of the website

changes. By carefully noting when the site behaves the same

and when its behavior changes, the attacker can deduce not

only whether certain parameters are vulnerable, but also

additional information about the values in the database. There

are two well-known attack techniques that are based on

inference. They allow an attacker to extract data from a

database and detect vulnerable parameters [14].

2.2.7 Blind SQL injection

Blind SQL Injection is used when a web application is

vulnerable to an SQL injection but the results of the injection

are not visible to the attacker. The page with the vulnerability

may not be the one that displays data but will display

differently depending on the results of a logical statement

injected into the legitimate SQL statement called for that

page. This type of attack has traditionally been considered

time-intensive because a new statement needed to be crafted

for each bit recovered, and depending on its structure, the

attack may consist of many unsuccessful requests. Recent

advancements have allowed each request to recover multiple

bits, with no unsuccessful requests, allowing for more

consistent and efficient extraction [14]. There are several

tools that can automate these attacks once the location of the

vulnerability and the target information has been established.

2.2.8 Second order SQL injection
Second order SQL injection occurs when submitted values

contain malicious commands that are stored rather than

executed immediately. In some cases, the application may

correctly encode an SQL statement and store it as valid SQL.

Then, another part of that application without controls to

protect against SQL injection might execute that stored SQL

statement. This attack requires more knowledge of how

submitted values are later used. Automated web application

security scanners would not easily detect this type of SQL

injection and may need to be manually instructed where to

check for evidence that it is being attempted.

2.3 SQL Injection Counter Measures.
After having successfully detected a vulnerability or any kind

of attack that exploits the vulnerability, other schemes could

be applied to cure the system. In usual case, there are mainly

two types of schemes; some are for prevention and others are

for curing the system once it is under attack. In case of SQL

Injection, those schemes which work for preventing SQL

injection also do the curing of the system (or application) in

early stage. Hence, in plain term, we could call the schemes

‘countermeasures’.

Below are some of the countermeasures.

2.3.1 Amnesia
AMNESIA is a model-based technique that combines static

analysis and run-time monitoring [6]. In its static phase,

AMNESIA uses static analysis to build models of the

different types of queries an application can legally generate

at each point of access to the database. In its dynamic phase,

AMNESIA intercepts all queries before they are sent to the

database and checks each query against the statically built

models. Queries that violate the model are identified as

SQLIAs and prevented from executing on the database. In

their evaluation, the authors have shown that this technique

performs well against SQLIAs.

2.3.2 SQLrand Scheme
SQLrand provides a framework that allows developers to

create SQL queries using randomized keywords instead of the

normal SQL keywords. A proxy between the web application

and the database intercepts SQL queries and de-randomizes

the keywords. The SQL keywords injected by an attacker

would not have been constructed by the randomized

keywords, and thus the injected commands would result in a

syntactically incorrect query. Since SQLrand uses a secret

key to modify keywords, its security relies on attackers not

being able to discover this key. SQLrand requires the

application developer to rewrite code [27].

2.3.3 SQL DOM Scheme
SQL DOM (a set of classes that are strongly-typed to a

database schema) framework [7]. They closely consider the

existing flaws while accessing relational databases from the

OOP Language’s point of view. They mainly focus on

identifying the obstacles in the interaction with the database

via CLIs. SQL DOM object model is the proposed solution to

tackle these issues through building a secure environment

(i.e., creation of SQL statement through object manipulation)

for Communication. The qualitative evaluation of this

approach has shown many advantages and benefits in terms

of: error detection during compile time, reliability, testability,

and maintainability.

2.3.4 SQLIA Prevention Using Stored Procedures
Stored procedures are subroutines in the database which the

applications can make a call to [15]. The prevention in these

stored procedures is implemented by a combination of static

analysis and runtime analysis. The static analysis used for

commands identification is achieved through stored

procedure parser and the runtime analysis by using a

SQLChecker for input identification. Webs SARI (Web

application Security by Static Analysis and Runtime

Inspection) was used and implemented on 230 open source

applications on SourceForge.net. The approach was effective,

however it failed to remove the SQLIVs (SQL Injection

Vulnerabilities). It was only able to list the input either white

or black.

2.3.5 Parse Tree Validation Approach
[6] adopted the parse tree framework. They compared the

parse tree of a particular statement at runtime and its original

statement. They stopped the execution of Statement unless

there is a match. This method was tested on a student Web

application using SQLGuard. Although this approach is

efficient, it has two major drawbacks: additional overheard

computation and listing of input only (black or white).

2.3.6 Dynamic Candidate Evaluations Approach
[13] Propose CANDID (Candidate evaluation for Discovering

Intent Dynamically). It is a Dynamic Candidate

Evaluations method for automatic prevention of SQL

Injection attacks. This framework dynamically extracts the

query structures from every SQL query location which are

intended by the developer (programmer). Hence, it solves

the issue of manually modifying the application to create the

prepared statements. Though this tool is shown to be efficient

for some cases, it fails in many other cases. For example, it is

inefficient when dealing with external functions and when

applied at a wrong level. Besides that, sometimes it also fails

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 9, August 2018

23

due to the limited capability of the scheme.

2.3.7 Ali et al.’s Scheme
[2] Adopt the hash value approach to further improve the user

authentication mechanism. They use the user name and

password hash values. SQLIPA (SQL Injection Protector

for Authentication) prototype was developed in order to

test the framework. The username and password hash values

are created and calculated at runtime for the first time the

particular user account is created. Hash values are stored in

the user account table. Though the proposed framework was

tested on few sample data and had an overhead of 1.3 mms, it

requires further improvement to reduce the overhead time. It

also requires to be tested with larger amount of data.

2.3.8 SQLCHECKER Approach
It checks whether the input queries conform to the expected

ones defined by the programmer. [2] A secret key is applied

for the user input delimitation. The analysis of SQLCHECK

shows no false positives or false negatives. Also, the

overhead runtime rate is very low and can be implemented

directly in many other Web applications using different

languages. It is a very efficient approach; however, once an

attacker discovers the key, it becomes vulnerable.

Furthermore, it also needs to be tested with online Web

applications.

2.3.9 Detecting Intrusions in Web Databases

(DIWeDa) Approach
[24] propose IDS (Intrusion Detection Systems) for the

backend databases. They use DIWeDa, a prototype which acts

at the session level rather than the SQL statement or

transaction stage, to detect the intrusions in Web applications.

DIWeDa profiles the normal behavior of different roles in

terms of the set of SQL queries issued in a session, and then

compares a session with the profile to identify intrusions. The

proposed framework is efficient and could identify SQL

injections and business logic violations too. However, with a

threshold of 0.07, the True Positive Rate (TPR) was found to

be 92.5% and the False Positive Rate (FPR) was 5%. Hence,

there is a great need of accuracy improvement (Increase of

TPR and decrease of FPR). It also needs to be tested against

new types of Web attacks [3].

2.3.10 Manual Approaches
[6] highlights the use of manual approaches in order to

prevent SQLI input manipulation flaws. In manual

approaches, defensive programming and code review are

applied. In defensive programming: an input filter is

implemented to disallow users to input malicious keywords or

characters. This is achieved by using white lists or black lists.

As regards to the code review, it is a low cost mechanism in

detecting bugs; however, it requires deep knowledge on

SQLIAs.

2.3.11 Automated Approaches
Besides using manual approaches, also highlights the use of

automated approaches. [2] The author notes that the two main

schemes are: Static analysis Find Bugs and Web

vulnerability scanning. Static analysis Find Bugs

approach detects bugs on SQLIAs, gives warning when an

SQL query is made of variable. However, for the Web

vulnerability scanning, it uses software agents to crawl, scans

Web applications, and detects the vulnerabilities by

observing their behavior to the attacks.

2.3.12 Parameterized statements
With most development platforms, parameterized

statements that work with parameters can be used

(sometimes called placeholders or bind variables) instead

of embedding user input in the statement [].A placeholder

can only store a value of the given type and not an

arbitrary SQL fragment. Hence the SQL injection would

simply be treated as a strange (and probably invalid)

parameter value. In many cases, the SQL statement is

fixed, and each parameter is a scalar, not a table. The user

input is then assigned (bound) to a parameter.

Unfortunately, prepared statements can also be vulnerable

to SQLIAs unless developers rigorously apply defensive

coding guidelines.

2.3.13 Escaping
A straightforward, though error-prone way to prevent

injections is to escape characters that have a special meaning

in SQL. The manual for an SQL DBMS explains which

characters have a special meaning, which allows creating a

comprehensive blacklist of characters that need translation.

For instance, every occurrence of a single quote (') in a

parameter must be replaced by two single quotes ('') to form a

valid SQL string literal.

For example, in PHP it is usual to escape parameters using the

function mySQLi_real_escape_string(); before sending the

SQL query:

$mySQLi = new mySQLi('hostname', 'db_username',

'db_password', 'db_name');

$query = sprintf("SELECT * FROM `Users` WHERE

UserName='%s' AND Password='%s'",

 $mySQLi->real_escape_string($username),

 $mySQLi->real_escape_string($password));

$mySQLi->query($query); [14]

2.3.14 Pattern check

Integer, float or Boolean, string parameters can be checked if

their value is valid representation for the given type. Strings

that must follow some strict pattern (date, UUID,

alphanumeric only, etc.) can be checked if they match this

pattern.

2.3.15 SecuBat: A Web Vulnerability Scanner
Author developed a scanner named as “SecuBat” that use

white box testing for identification of possible vulnerabilities.

This technique relies on three components named crawling,

attack and analysis components. This technique is

implemented in C and MS SQL server database. [16]. As the

popularity of the web increases and web applications become

tools of everyday use, the role of web security has been

gaining importance as well. The last years have shown a

significant increase in the number of web-based attacks. For

example, there has been extensive press coverage of recent

security incidences involving the loss of sensitive credit card

information belonging to millions of customers. Typical web

application security vulnerabilities result from generic input

validation problems. Examples of such vulnerabilities are

SQL injection and Cross-Site Scripting (XSS).

2.3.16 Automatic Revised Tool for Anti-Malicious

Injection
Writer believes that input validations are the main source of

vulnerabilities for SQL and XSS attacks. This technique first

checks for threats input areas in the HMTL form, cookies etc.

This technique then generates automatic validation technique.

https://en.wikipedia.org/wiki/Bind_variable
https://en.wikipedia.org/wiki/Scalar_%28computing%29
https://en.wikipedia.org/wiki/Table_%28database%29
https://en.wikipedia.org/wiki/Blacklist_%28computing%29
https://en.wikipedia.org/wiki/PHP

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 9, August 2018

24

This technique based on four components named spider,

analyzer, function producer and tester [17].

2.3.17 Eliminating SQL Injection Attacks - A

Transparent Defense Mechanism
This technique uses validation and run time checks to

safeguard the application against different types of attacks.

This technique has advantage that it can be merged with

existing application and also do not require any modification

in source code. This technique relies on string analysis for

static analysis and builds the SQL Graph. At the run time

checks the input is validated against the SQL graph built at

the static analysis phase. [18].

2.3.18 Defending Against Injection Attacks

through Context-Sensitive String Evaluation
The technique named as Context-Sensitive String Evaluation

(CSSE) use metadata information and context sensitive string

evaluation function. This technique also does not require

source code modification and programmer attention. This

technique is implemented in PHP and use context sensitive.

[19]. CSSE works by addressing the root cause why such

attacks can succeed, namely the ad-hoc serialization of user-

provided input. It provides a platform-enforced separation of

channels, using a combination of assignment of metadata to

user-provided input, metadata-preserving string operations

and context-sensitive string evaluation. CSSE requires neither

application developer interaction nor application source code

modifications. Since only changes to the underlying platform

are needed, it effectively shifts the burden of implementing

countermeasures against injection attacks from the many

application developers to the small team of security-savvy

platform developers.

2.3.19 D-WAV: A Web Application Vulnerabilities

Detection Tool using Characteristics of Web

Forms
This method is an automated testing methodology which

detect web vulnerabilities, for example, SQLIA and XSS. It

gets a target web structure with the assistance of given URL.

It makes test suites which consider the confidence of each one

test with evaluation. At last, these test suites are executed and

compared in order to make conclusion for HTML code

investigations. A Web Application Vulnerabilities

Detection Knowledge Repository is utilized to figure out if

the vulnerabilities exist or not. This technique implemented

into D-WAV. [20].

2.3.20 X-LOG Authentication Technique to

Prevent SQL Injection Attacks
In these technique three filtrations schemas are used named as

vulnerability guards, X Log authentication and stored

procedures. This technique has been used against many types

of attackers and it has proved to be an excellent one. [21].

This technique monitors the dynamically generated queries

with the Data model which is generated by X- Log Generator

at runtime and checks them for compliance. If the Data

Comparison violates the model, then it represents potential

SQLIA’ s and its prevented from executing on the database

and then reported.

2.3.21 Swaddler: An Approach for the Anomaly

based Detection of State Violations in Web

Applications
This technique is also used to protect stored procedures

against the SQLIA named “Saddler”. This technique also uses

static analysis and run time checks of validations. This

technique parses the SQL query and compares the user input

query with the original SQL query to identify any problem

with the input query. [14]. Swaddler analyzes the internal

state of a web application and learns the relationships between

the application’s critical execution points and the

application’s internal state. By doing this, Swaddler is able to

identify attacks that attempt to bring an application in an

inconsistent, anomalous state, such as violations of the

intended workflow of a web application.

2.3.23 Sania: Syntactic and Semantic Analysis for

Automated Testing against SQL Injection

This is a novel technique that tries to identify the possible

vulnerabilities for SQLIA at development and testing phase.

This technique uses syntactic and semantics of the queries for

possible detection of vulnerability for SQLIA attack. This

technique identifies the point where a malicious user can

exploit for SQLIA. This technique is implemented in a tool

named “sania”. [23]. Sania intercepts the SQL queries

between a web application and a database, and automatically

generates elaborate attacks according to the syntax and

semantics of the potentially vulnerable spots in the SQL

queries. In addition, Sania compares the parse trees of the

intended SQL query and those resulting after an attack to

assess the safety of these spots

2.3.24 SMask: Preventing Injection Attacks in Web

Applications by Approximating Automatic

Data/Code Separation
SMask is a technique that is used for detection of SQLIA and

XSS. This technique uses string masking for syntactical

analysis for differentiating the legal query and malicious one.

This technique uses pre and post processor for query

validation. [22]. By using string masking to persistently mark

legitimate code in string values, SMask is able to identify

code that was injected during the processing of an http

request. SMask works transparently to the application and is

implementable either by integration in the application server

or by source-to-source translation using code instrumentation.

2.3.25 Automated Protection of PHP

Applications against SQL-injection Attacks
This technique is based on static and dynamic analysis for

identification of SQLIA in a PHP code. This technique also

relies on code reengineering to protect legacy applications.

This technique tested in phpBB (PHP Bulletin board) and

produced amazing results. [24].

2.3.26 Using Automated Fix Generation to Secure

SQL Statements
This technique automatically eliminates the SQLIA

vulnerabilities from the java code. This technique uses the

prepared statement and changes the vulnerable part of the

query of the prepared statement. The Programmer can change

the vulnerable part of the code with the automatic generated

code. [5].

2.3.27 Web application Firewall
Since 2006, web application firewall research seems to have

been growing steadily and will probably continue its growth.

Internet security has been a rising trend and WAFs play a big

part in mitigating cyber threats. According to Symantec’s

2016 Security Report [32] crypto-ransomware was up 35% in

2015 from 2014, there were 36% more new malware variants

and in 2015 there were nine breaches where more than 10

million identities were exposed. Zero-day vulnerabilities more

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 9, August 2018

25

than doubled (+125%) between 2014 and 2015 with 54 new

vulnerabilities. Akamai Technologies has similar figures on

their Q1 of 2016 “akamai’s [state of the internet] / security”

report [29]. Comparing the first quarter of 2015 and 2016,

DDoS attacks have risen 125% and mega attacks (greater than

100 Gbps) 137%.

 2.3.28.1 Blacklist and whitelist algorithms
The majority of research work in WAFs is concentrated on

creating and improving algorithms to identify and prevent

cyber-attacks. They are further divided into two categories:

improving attack signature patterns to be more

comprehensive and/or efficient and self-learning algorithms.

The largest research motivation in this category is to prevent

SQL injections and quite justifiably so. Injections have been

the number one threat according to OWASP Top 10 in both

2010 and 2013 surveys. The next survey will be published

sometime in late 2016 or early 2017. A good example of

new algorithms for detecting injection attacks can be found

in “SQL Injection Attack Detection Method Using the

Approximation Function of Zeta Distribution” [30]. This

learning algorithm creates a zeta distribution profile for user

submitted strings and tries to determine if it is harmful or

not. For example, in normal data the symbol “SP”, also

known as “space”, is the most used symbol but in injection

strings the most used symbol is the asterisk, or “*”. Some

training data is required to create distinct categories for

profiles.

2.3.28.2 Comparison of existing WAFs
There are very few studies that compare WAFs or measure

their effectiveness. Among them is this study [31], which

compares the three most popular open source WAFs:

Comodo, ModSecurity by Trustwave SpiderLabs,

AQTRONIX WebKnigh [31 and Guardian@JUMPERZ.NET

[31]. It concluded that Comodo was the best one of them,

generating less false negatives than WebKnight and blocking

more attacks than Guardian. The study was a bit limited

because all the WAFs were used with their default settings

except for ModSecurity where the “Base” OWASP rules were

installed. WebKnight seemed to block all POST-requests

affecting the results significantly. In retrospect the study

measured the default configurations of three different WAFs

more than it measured their capabilities. How a WAF is tuned

has a significant effect on its performance as the study

“Estimates on the effectiveness of web application firewalls

against targeted attacks” [32] discusses. There were four

countermeasures that increased the effectiveness of a WAF

based on expert knowledge. Those were WAF operator

experience, the effort spent on tuning the WAF, automated

black box testing tools, and whether an operator was

monitoring the WAF.

 2.3.28.3 New WAF Implementations
Several new WAF implementations have been suggested by

the research community. The first one [29] is implemented

as a plugin for WebScarab, which is a java-based web

application testing tool from OWASP that intercepts and can

alter HTTP requests. This WAF blocks control flow

tampering attacks targeted at a web application. Control flow

tampering means that a URL is requested in the wrong

sequence which might result in an exploitation. To prohibit

attackers from control flow tampering the WAF has to build

a dependency graph that represents the relation of web pages

and later on when someone tries to access a page from the

wrong location the request is blocked. The difficulty of

building an accurate dependency graph increases as websites

become more dynamic in their content and when there are

changes to the structure of the web site.

2.3.29 URL Validation/Filtering Approach
In most security solutions, traffic dissection process is the first

operation before applying any security control. Typical HTTP

request: HTTP protocol is expressed in a human-readable

ASCII text. Headers use text to describe a request form a

client (browser) or a response from the server. An HTTP

request begins usually with a GET or POST method, followed

by the URL and the protocol version. The following headers

provide various information about the client, connection,

content, etc. These headers are separated by \r\n to distinguish

each header.

HTTP Request Dissection: The dissection module is able to

recognize request's components (headers and the body which

are separated \r\n characters). However, before making the

dissection, it has to get information about security rules.

Indeed, users are obliged to declare security rules for the body

and for each header. With the knowledge of headers involved

in the inspection process, the dissector will only extract and

parse these headers [27].

2.4 Critiques of past approaches of

preventing SQL injection attacks
Though many approaches and frameworks have been

identified and implemented in many interactive Web

applications, security still remains a major issue. SQL

Injection prevails as one of the top-10 vulnerabilities and

threat to online businesses targeting the backend databases.

Research of most of the above discusses methods, their

research has not been done exhaustively, testing has not been

carried out exhaustively or they are not effective in

prevention of SQL injection attacks. Hackers are in reality

very innovative and as the time is passing by, new attacks are

being launched that may need new ways of thinking about the

solutions we currently have at our hands.

2.4.1 Overview of shortcomings of some of the

existing approaches for mitigation of SQL

injection attacks
Although defensive coding practices remain the best way to

prevent SQL injection vulnerabilities, their application is

problematic in practice. Defensive coding is prone to human

error and is not as rigorously and completely applied as

automated techniques Moreover, approaches based on

defensive coding are weakened by the widespread promotion

and acceptance of so-called “pseudo remedies” [29]. Intrusion

Detection Systems (IDS’s) which uses learning based

techniques can provide no guarantees about their detection

abilities because their success is dependent on the quality of

the training set used. Amnesia-The primary limitation of this

technique is that its success is dependent on the accuracy of

its static analysis for building query models [30]. Proxy

filters-This approach is human-based and, like defensive

programming, requires developers to know not only which

data needs to be filtered, but also what patterns and filters to

apply to the data [31].

Taint based approach-The primary drawbacks of this

technique are that it assumes that adequate preconditions for

sensitive functions can be accurately expressed using their

typing system and that having input passing through certain

types of filters is sufficient to consider it not tainted.

Instruction set randomization-While this technique can be

very effective, it has several practical drawbacks: Firstly,

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 9, August 2018

26

since it uses a secret key to modify instructions, security of

the approach is dependent on attackers not being able to

discover the key; Secondly, the approach imposes a

significant infrastructure overhead because it require the

integration of a proxy for the database in the system. New

query development paradigm-By changing the development

paradigm in which SQL queries are created, these techniques

eliminate the coding practices that make most SQL Injection

Attacks possible. Although effective, these techniques have

the drawback that they require developers to learn and use a

new programming paradigm or query-development process.

Furthermore, because they focus on using a new development

process, they do not provide any type of protection or

improved security for existing legacy systems. White box

texting-The primary drawbacks of this technique are the

assumptions that preconditions for sensitive functions can be

adequately and accurately expressed using their type system

and forcing input to pass through certain types of filters is

sufficient to consider it reliable. For many types of functions

and applications, these assumptions do not hold

2.5. Knowledge Gap
After conducting the literature review it has been found that

most of existing researchers are currently working on new

ways to counter SQL injection attacks. Many of the suggested

approaches are either not able to detect and prevent all SQL

injection attacks or are resource intensive and therefore affects

performance of the web databases. In an attempt to address

these shortcomings, a hybrid approach that combines more

than one approach is therefore adopted. The approach which

is a combination of a web application firewall and a user input

filter works by providing a two layered security

check/mechanism for prevention of SQL injection. This

technique therefore improves previous technique of URL

filtering by reinforcing it using through the use of a web

application firewall as a second security mechanism which

therefore improves its effectiveness to a greater extend.

3. ACKNOLOWLEDGEMENT
I would like to acknowledge and thank my very supportive

supervisors, Dr. Calvins Otieno and Dr. Dennis Njagi who

have guided me in every step throughout the research period.

I appreciate deeply everything you have done for me over this

time of study and I will be forever grateful. Thanks for your

guidance, advice, friendship, and enthusiasm all throughout

the research duration.

4. REFERENCES

[1] [Angelo et al.] Angelo Ciampa, Corrado Aaron Visaggio,

Massimiliano Di Penta:” A heuristic-based approach for

detecting SQL-injection vulnerabilities in Web

applications”.

[2] “SQL Injection Tutorial,” Oracle Corp., 2009. [Online].

Available:http://stcurriculum.oracle.com/tutorial/SQLInj

ection/index.htm. [Accessed: Mar. 11, 2010].

[3] F. Valeur, D. Mutz, and G. Vigna, “A learning-based

approach to the detection of sql injection attacks”, in

proceedings of the conference on detection of intrusions

and Malware and vulnerability assessment (DIMVA),

2005.

[4] Lowe, D., and Henderson-Sellers, B. (2003b)

Characterizing Web Systems: Merging Information and

Functional Architectures. Architectural Issues of Web-

Enabled Electronic Business. V. K. S. Murthy, N.

Hershey, PA, USA, Idea Group Publishing.

[5] Using Automated Fix Generation to Secure SQL

Statements. Stephen Thomas, Laurie Williams. IEEE

Computer Society Washington, DC, USA: s.n., 2007.

SESS '07 Proceedings of the Third International

Workshop on Software Engineering for Secure Systems.

p. 9.

[6] W. G. Halfond, J. Viegas, and A. Orso, “A Classification

of SQL Injection Attacks and Countermeasures,” in Proc.

the International Symposium on Secure Software

Engineering, 2006

[7] R.A. McClure, I.H. Kruger, "SQL DOM: compile time

checking of dynamic SQL statements", Software

Engineering 2005. ICSE 2005. Proceedings. 27th

International Conference on, pp. 88-96, 15–21 May

2005.

[8] Kasra Amirtahmasebi, Seyed Reza Jalalinia, and Saghar

Khadem. A survey of SQL injection defense

mechanisms. The 4th International Conference for

Internet Technology and Secured Transactions (ICITST-

2012), pages 1-8, Nov 2014.

[9] [Shanmughaneethi et al., 2009] Shanmughaneethi, S.V.;

Shyni, S.C.E.; Swamynathan, S.; "SBSQLID: Securing

Web Applications with Service Based SQL Injection

Detection," Advances in Computing, Control, &

Telecommunication Technologies, 2009. ACT '09.

International Conference on, vol., no., pp.702-704, 28-29

Dec. 2009

[10] Servlet and jsp filters. Online document, Sun

Microsystems and Prentice Hall.

http://www.moreservlets.com/.

[11] Junjin, M., An Approach for SQL Injection Vulnerability

Detection. Proc. of the 6th International Conference on

Information Technology: New Generations, Las Vegas,

Nevada, April 2009, pp. 1411- 1414.

[12] A heuristic-based approach for detecting SQL-injection

vulnerabilities in web applications. Angelo Ciampa,

Corrado Aaron Visaggio , Massimiliano Di Penta. New

York : s.n., 2010. Proceeding SESS '10 Proceedings of

the 2010 ICSE Workshop on Software Engineering for

Secure Systems. pp. 43-49

[13] CANDID: Dynamic Candidate Evaluations for

Automatic Prevention of SQL Injection Attacks. Prithvi

Bisht, P. Madhusudan , V. N.Venkatakrishnan. 2,

February 2010, ACM Transactions on Information and

System Security (TISSEC), Vol. 13.

[14] Chandershekhar Sharma and S.C. Jain,‖Analysis and

Classification of SQL Injection Vulnerabilities and

Attacks on Web Applications,‖ Proc. IEEE Int. Conf. on

Advances in Engineering & Technology research

(ICAETR-2014),Dr. virendra Swarup group of

institutions, Unnao, India,pp.1-6, August 2014

[15] Preventing SQL injection attacks in stored

procedures. Ke Wei, Muthuprasanna, M. And

Kothari, S. 2012. Australian Software Engineering

Conference, 2012. pp. 18-21.

[16] SecuBat: a web vulnerability scanner. Kals, Stefan, et al.

New York, NY, USA: s.n., 2013. WWW '13 Proceedings

of the 15th international conference on World Wide

Web. pp. 247-256.

[17] An Automatic Revised Tool for Anti-Malicious

Injection. Lin, Jin-Cherng and Chen, Jan-Min. Seoul:

s.n., 2006. The Sixth IEEE International Conference on

Computer and Information Technology, 2006. CIT '06. p.

http://www.moreservlets.com/

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 9, August 2018

27

164.

[18] Eliminating SQL Injection Attacks – A Transparent

Defense Mechanism. Muthuprasanna, M., Wei, Ke and

Kothari, S. Philadelphia, PA: son. 2015. Eighth

IEEE International Symposium on Web Site Evolution,

2015. WSE '06. pp. 22-32.

[19] Defending against Injection Attacks through Context-

Sensitive String Evaluation. Pietraszek, Tadeusz and

Berghe, Chris Vanden. 2005. Proceedings of Recent

Advances in Intrusion Detection (RAID2005). pp. 3-26.

[20] D-WAV A Web Application Vulnerabilities Detection

Tool Using Characteristics of Web Forms. Zhang, Lijiu,

et al. Nice: s.n., 2010. Fifth International Conference on

Software Engineering Advances (ICSEA), 2010. pp. 501

- 507.

[21] X-log authentication technique to prevent sql injection

attacks. B. Indrani, E. Ramaraj. 2011, International

Journal of Information Technology and Knowledge

Management. Vol. 4, pp. 4:323-328.

[22] Smask: Preventing injection attacks in web applications

by approximating automatic data/code separation. Martin

Johns, Christian Beyerlein. 2014. in 22nd ACM

Symposium on Applied Computing (SAC 2014).

[23] Sania: Syntactic and Semantic Analysis for Automated

Testing against SQL Injection. Kosuga, Y., et al. Miami

Beach, FL: s.n., 2007. Twenty-Third Annual Computer

Security Applications Conference, 2007. ACSAC 2007.

pp. 107 – 117.

[24] Automated Protection of PHP Applications against SQL-

injection Attacks. Merlo, E. Letarte, D.and Antoniol, G.

Amsterdam: s.n., 2016.11th European Conference on

Software Maintenance and Reengineering, 2016. CSMR

'16 . pp. 191-202.

[25] Veracode. (2012). SQL Injection. Retrieved from

Veracode: http://www.veracode.com/security/sql-

injection

[26] S. W. Boyd, A. D. Keromytis, "SQLrand: Preventing

SQL Injection Attacks", Proceedings of the 2nd Applied

Cryptography and Network Security Conference, pp.

292-302, June 2004.

[27] H. Holm and M. Ekstedt, "Estimates on the effectiveness

of web application firewalls against targeted attacks,"

Info Mngmnt & Comp Security, vol. 21, no. 4, pp. 250-

265, 10/07; 2016/11.

[28] M. Sharifi, M. Zoroufi, A. Saberi, '"How to Counter

Control Flow Tampering Attacks," In: 2007 IEEE/ACS

International Conference on Computer Systems and

Applications, 2007, pp. 815-818.

[29] F. Fangmei, C. Shao, D. Liu, '"Design and

Implementation of Coldfusion-Based Web Application

Firewall," In: Computer Science & Service System

(CSSS), 2012 International Conference on, 2012, pp.

659-662.

[30] A. Tekerek, C. Gemci, O. F. Bay, '"Development of a

hybrid web application firewall to prevent web based

attacks," In: Application of Information and

Communication Technologies (AICT), 2014 IEEE 8th

International Conference on, 2014, pp. 1-4.

[31] S. Prandl, M. Lazarescu, D. Pham, '"A Study of Web

Application Firewall Solutions," In: Proceedings of 11th

International Conference on Information

IJCATM : www.ijcaonline.org

http://www.veracode.com/security/sql-injection
http://www.veracode.com/security/sql-injection

