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ABSTRACT
This work demonstrates the effectiveness of the median filter com-
bined with morphological operators in the detection of anomalies
in video surveillance of scenes of natural environment. Natural en-
vironment is characterized by backgrounds that are not static but
whose dynamics are limited and do not include the appearance or
disappearance of background objects in the scene. Examples in-
clude background images with seawater or river surfaces, or land-
scapes with trees, in which the wind produces waves and other
movements of limited amplitude. The performance on four publicly
available benchmark videos is compared to that of other published
state-of-the-art works. The results obtained are promising.
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1. INTRODUCTION
Video anomaly detection is a challenging problem in the computer
vision area. Since it involves subjectivity, depends on localization
and context, and can vary in content and duration, the definition
of an anomaly could become a complex task. Beyond that, there
is also the difficulty in the acquisition of anomaly samples. Per-
form frame and pixel-level annotations could be a laborious and
expensive task, which leads to the creation of frequently unbal-
anced datasets and the disseminated use of unary classification ap-
proaches, although the existence of works on literature about binary
classification [20].
Anomaly detection algorithms are typically effective in specific
contexts. This study demonstrates the effectiveness of the combina-
tion of median filter and morphological operators for video surveil-
lance anomaly detection in the context of natural environments.
The environments considered are characterized by non-static back-
grounds in which the dynamics do not include the entry or exit of
objects in the background scene. Examples of these scenarios in-
clude backgrounds with water surfaces in seas and rivers, and nat-
ural landscapes with trees, in which the wind produces ripples and
other movements with limited amplitude.
An anomaly can be defined as a pattern whose characteristics devi-
ate from normal patterns [16] in a way that anomalous events oc-
curs with low frequency among normal ones. An anomalous event

is also considered a rare situation, so they have a low probabil-
ity to occur among the majority of normal events. In this sense,
an anomalous event can be detected based on its low probability
of occurrence in a given context. The context is fundamental to
the decision-making process, once an anomalous activity in a given
context can be considered normal in another context [16]. The low
probability of occurrence of anomalous events is the concept used
in the construction of the decision boundary for one class classi-
fiers.
Background modeling is an essential step in the general proce-
dure for anomaly detection. The literature presents different ap-
proaches for background estimation from an initial sequence of
training frames. Frequent approaches include Kalman filter ap-
proaches [17], Gaussian mixtures [5], kernel density estimation
[12], frame difference [11], median filtering [4], among others.
In addition to these methods, subspace learning-based approaches
have obtained promising results in background extraction prob-
lems [7]. Representants of these methods are approaches based on
Principal Component Analysis (PCA). Specifically, RPCA (Robust
PCA) models have become a benchmark approach in the literature
for the task of background extraction [10].
The performance scores of many published approaches in video
anomaly detection are usually high or satisfactory, even in appli-
cations with completely dynamic and confusing scenarios. The hy-
pothesis here is these methods present excessive complexity when
built and applied in lesser confusing scenarios. In this sense, more
simple strategies could perform well in the context of the natu-
ral environment, which is the focus in this work. Representants of
complex approaches are those which involve the definition and pro-
cessing of spatiotemporal video volumes defined by partially over-
lapped frame-blocks, a necessary technique for challenging back-
grounds [18]. In this way, the main contribution of this work is to
demonstrate the effectiveness of the combination of the median fil-
ter approach and morphological operators in the context of video
surveillance anomaly detection in natural environments. Addition-
ally, three manifold-based approaches are evaluated and compared
for the background modeling phase.
This work is organized as follows: Section 2 reviews some works
directly related to this research, and Section 3 describes the
methodology of the work. Section 4 presents and discusses the re-
sults and Section 5 concludes the article.
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2. RELATED WORK
This section is a brief review of some works directly related to this
one, in order to contextualize the present research in the litera-
ture. Recent surveys that expand the coverage of this section can
be found in [21] e [6].
The study of [10] performs a comparison of Robust PCA and me-
dian filter approaches for static backgrounds. The study takes into
account the robustness of compared models to noise and blur. Real
and synthetic datasets are considered in evaluation performance ex-
periments. The described approaches presuppose no alteration of
background along with the frames in the scene so that the matrix
representation of the static background consists of a set of identi-
cal columns, which allows the use of a median filtering approach
for background representation. The authors also emphasize that due
to the high dimensionality in video surveillance videos, the matrix
operations necessary for singular value decompositions in RPCA
models could involve high computational costs. From the results,
the median filter performs better than RPCA and is also computa-
tionally faster.
The authors in [18] present a non-supervised real-time surveil-
lance framework based on spatiotemporal volumes. Normal be-
havior statistical models are built for partially overlapped frames
subsequences named spatiotemporal volumes. Anomalous events
are described as configurations with low-occurrence frequency.
The considered experiments involve distinct datasets with different
anomaly patterns. The obtained experiments indicate the proposed
approach is comparable to state of art in accuracy terms.
On the other hand, in [9], the proposed non-supervised approach is
based on autoencoders trained over normal datasets. Five bench-
mark datasets were considered in the experiments (KDDCUP,
MNIST, CIFAR-10, CatVsDog e UCF-Crime). The normal and
anomalous sub-datasets are obtained by clustering techniques so
that normal patterns are used to learn representations with the au-
toencoder technique. The proposed approach outperforms exist-
ing unsupervised techniques, in terms of accuracy and robustness.
However, the authors argue that autoencoders may not enough to
deal with complex patterns.
In [20], the authors explore video anomaly detection as a bi-
nary classification problem. The goal is to investigate an anomaly
detection method that maximizes the distance among examples
of different classes and minimizes distance among examples of
the same class. The authors also explore the weakly supervised
learning paradigm from Multiple-Instance Learning (MIL) ap-
proach to allow segment-level classification instead of frame-level.
In this sense, only video-level labels are considered during the
training phase. The authors propose, evaluate and compare the
framework AR-NET (Anomaly Regression Net) for video anomaly
detection. Moreover, the authors propose and evaluate two new
cost functions applied to learn discriminants for anomaly detec-
tion, called Dynamic Multiple-Instance Learning Loss and Center
Loss, respectively. The feature extraction is performed by using
the pre-trained neural network model Inception-v1 I3D (Inflated
3D), which uses appearance (RGB) and motion information (op-
tical flow). The experiments considered the challenge benchmark
dataset ShangaiTech. The authors evaluated the proposed approach
with state-of-art literature. From the obtained results, the proposed
model overcomes in performance the compared approaches for the
experimented dataset. Moreover, from a subjective analysis, the au-
thors also observe that anomaly detection for some scenarios is still
a challenge for state-of-art models.

In [8], two approaches are applied to perform the detection of
abrupt behavior changes and anomalous events: change points de-
tection and topic modeling. The topic modeling approach is com-
pletely non-supervised and allows comprehensive analysis of video
sequences. The detection of change points is used to identify global
anomalies to detect sudden changes in global behaviors. This ap-
proach can be applied for unforeseen situations and a video could
be represented as a temporal series.
In [3], the authors evaluate the application of spatiotemporal de-
scriptors DTF (Dense Trajectory Based Features) e SOF (Silhou-
ettes and Optic Flow-based Features) for the video anomaly de-
tection problem. Normal sequence representations based on these
descriptors are used to build models with the one-class SVM algo-
rithm. The authors evaluate the performance on five datasets, and
the obtained results are competitive with state-of-art. The DTF ap-
proach overcomes the literature performance for crowded scenar-
ios, and the SOF approach obtained considerable performance for
some datasets.
In [16], the authors present three adaptative inference mechanisms
for the detection of anomalous patterns in video surveillance sce-
narios. The first mechanism is to detect an anomalous event with
a short-term duration. The second one is for previously defined
anomalies, and the last is intended to object detection involving
contexts. The modeling takes into account the construction of non-
overlapped volumes and ensembles over different scales. These
volumes are used to generate representations named codewords,
which are used for probabilistic modeling. The authors evaluate the
proposed approach for seven distinct datasets for video anomaly
detection. From the obtained results, the proposed approach is
promising and presents a detection rate of 91.35%.
The results of these two last studies [3, 16] were selected for perfor-
mance comparison in this work. This choice is because two of the
used datasets are also used in this study and are their performances
are comparable to other state-of-art works.

3. METHODOLOGY
This section describes the related steps for data preparation, model-
ing, and performance evaluation applied in the proposed approach
for anomaly detection in video surveillance scenarios. The general
procedure is composed of conjunction of steps, which are detailed
in the following subsections and is described in the algorithm 1.

3.1 Background Modeling
Let M be a m × p matrix whose columns are formed by vectors
obtained by flattening a sequence of p frames with m pixels each.
Usually m� p. The matrix is also centralized by rewriting it as:

M = [M1 −M, . . . ,Mp −M ] (1)

where M = 1
p

∑p
i Mi and Mi is the i-th column of M . The ma-

trixM is obtained from a sequence of frame images [I1, I2, ..., Ip],
where each instance is originally an image Ii with dimension
width× height pixels.
In all the background modeling methods evaluated in this work,
they look for the following decomposition [19]:

M = L+ S (2)

where L is a low rank matrix (low rank) in relation to p, and S is a
sparse matrix.
The L matrix will be a background model and the S matrix will
contain a representation of foreground in addition to various noises
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Algorithm 1 Macro-steps of modeling and evaluation in the
anomaly detection procedure.

1: Load a grayscale frame sequence F = [f1, f2, ..., fN ]
2: Resize all frames in F
3: Load the respective set of discrete labels Y = [y1, ..., yN ],

where y ∈ {0, 1};
4: Select the training sequence (Ftrain, Ytrain) and test sequence

(Ftrain, Ytest) from (F, Y ), so that Ftrain is composed only
of normal frames;

5: Extract background model using k initial frames in Ftrain;
6: Compute F

′
train and F

′
test, from the background subtraction

followed by binarization by an automatic threshold;
7: Search the appropriate erosion and dilation kernels used in the

morphological operators;
8: Apply morphological processing in sequences F

′
train and

F
′
test to better distinguish the foreground from noise;

9: Train the unary classification algorithm OCSVM with F
′
train

10: Evaluate the predictive built model with Ftest

and residues from the background modeling. In the video surveil-
lance applications analyzed here, the presence of foreground will
be treated as an anomaly to be detected, and the algorithm must
be able to distinguish the presence of foreground from the different
types of noise that may be present, in addition to of the residuals
of possible imperfections in the representation of the background.
Note that after building a model for L, S can be obtained by the
relationship S = M −L. In the case of a set of frames is available
at design time, which are known to consist only of background, the
strategy is to build L from this data and obtain S for test frames by
the relation S = M − L. Several techniques can be used to obtain
a background model L.

3.1.1 Median Filtering. The median filtering approach approxi-
mates the foreground detection problem with dynamic background
by a static background model. In this case, the background is dy-
namic but with limited movements present in natural landscapes.
By this approximation, the matrix decomposition for M can be
written as:

M = u1T + S (3)

where u1T corresponds to the background matrix u ∈ Rm and
1 ∈ Rn. Thus, given a M project matrix, the background model is
obtained by solving the following optimization problem:

minu∈Rm ||M − u1T ||1 (4)

where || · ||1 is a l1 norm. According to [10], this problem has a
closed form solution, which is given by the following expression:

Median{Mi,1,Mi,2, . . . ,Mi,n} (5)

where Mi,j is a given (i, j) position in the M matrix.

3.1.2 PCA/MCA - Principal/Minor Component Analysis. [13]
PCA is an unsupervised technique that aims to rotate the axes of
the representation space of a data matrix, maintaining the orthog-
onality. When the data is projected on the new axes, the explained
variance is maximized. PCA can be calculated from different struc-
tures such as covariance or correlation matrices. In this work, was
used SVD (Singular Value Decomposition) technique. SVD per-
forms the following decomposition of the data centered matrix:

Mm × p = Um × m ·Dm × p · V Tp × p (6)

where U ∈ Rm×m are V ∈ Rp×p are orthogonal matrices for
which their columns correspond to the eigenvectors of M ·MT e
MT ·M , respectively. The diagonal matrixD is formed by singular
elements, which are the square roots of the λi ofM ·MT (orMT ·
M ). These eigenvalues are usually ordered so that λi ≥ λi+1, for
i = 1, 2, . . . , p − 1. For data with p columns, the PCA technique
will project the original data into a subspace of dimension d, where
the axes correspond to the d largest singular values. In MCA, these
data are projected in the dimension subspace p − d, of the axes
corresponding to the p − d lowest single values. Intuitively, PCA
will preserve more details of the background, in addition, to also
preserve the noise present in data. MCA will filter the noise, but
with the cost of losing details present in the background.
Once the SVD decomposition is obtained, the data projection in a
component subspace composed of d � p eigenvectors (the first d
columns of Um×m in the case of PCA, and the last p−d columns in
the case of MCA) is finally obtained from the following expression:

M
′
= M̂ + Um×d · UTd×m · (M − M̂)m×p (7)

3.1.3 RPCA - Robust Principal Component Analysis. The RPCA
(Robust Principal Component Analysis) technique has been con-
sidered a benchmark approach in background extraction tasks. It
allows a matrix decomposition by the following expresssion:

M = L+ S (8)

where the background component is expressed by a low rank ma-
trix L, while the foreground objects will be present in a sparse out-
lier matrix S [10]. According to [2], the matrices L and S can be
obtained from the resolution of the convex optimization model ex-
pressed by the following equation:

min
L,S ∈ Rm×n

{||L||∗ + τ ||S||1 | L+ S = M} (9)

where || · ||∗ is a nuclear norm and || · ||1 is a l1 norm [10].

3.2 Background subtraction, Binarization and
Morphological Processing

Having the background model, and given a new gray-scale frame,
the background subtraction followed by the binarization of result-
ing image are performed in a single operation. Let Bg a back-
ground representation, v the current frame, and T a given constant
threshold. The background subtraction and binarization can be de-
scribed by the following expression:

Fg = [|v −Bg| < T ] (10)

which limits the difference between this current frame v and the
reconstructed background image [7]. The determination of T is au-
tomatic and by using the average pixel intensity in the background
image.
For instance, the Figure 1 describes the a pareto histogram for the
background image in BOAT RIVER dataset. The dashed vertical
line corresponds to the average pixel intensity value in this frame
of the 127.14, which corresponds to 49.67% of pixel intensity.
The erosion and dilation operations are fundamental in the mor-
phological processing step. The binarized image is then submitted
to the morphological operations erosion and dilation. This step in-
tends to smooth and improve the obtained region boundaries. The
morphological processing allows the extraction of image compo-
nents that can be useful in the shape description of a given region
[14].
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Fig. 1: Determination of the image binarization threshold.

Erosion is a diminishing or thinning operation, and it is used to
remove noise that may impact in the final classifier performance.
The erosion of A by B is given by the following expression [14]:

A	B = {z|(B)z ⊆ A} (11)

where A,B are sets in Z2, and A	B expresses the set of points z
such that B, when translated by z, is contained in A.
Dilation is a magnifying operation, and is used to emphasize the
presence of an object in a image. This is given by the following
expression:

A⊕B = {z|(B̂)z ∩A 6= ∅} (12)

which expresses the reflection of B around its origin, followed by
the translation of this reflection by z.
In Figure 2 illustrates the aplication of morphological operators
erosion and dilation in the binarized images for a frame in BOAT
RIVER video:
The kernels were optimized for each experimented video from a it-
erative search procedure that considered different filter dimensions
in order to maximize the balanced accuracy of the final classifier.
The search for better kernel parameters proved to be a computation-
ally expensive procedure at runtime (i = 1 . . . 10), given the high
dimensionality of the image attributes space. For this reason, the
PCA technique is used specifically in this step to data dimension-
ality reduction in the successive evaluations of generated models
from data processed with different kernel dimensions. The kernel
selection search can be summarized by the following optimization
rule:

kernel← arg max
k

bACCOCSVM | kernel = k) (13)

Were found filters with dimension 3 × 3, 4 × 4, 5 × 5 and
5× 5 for datasets BOAT RIVER, BOAT SEA, CANOE and BOAT
CHARLES RIVER, respectively.

3.3 One-class Classification
One-class Classification (OCC) is used in a context in which there
is a target class, called normal class, and you desire to distinguish
future patterns in relation to this class, as is the case of the detec-
tion of outliers, novelties, or anomalies. In model design time, there
are available data only from normal class. OCC has also proved to

be an adequate approach when you need to deal with unbalanced
classes [15]. The general idea is to build a data description (DD) in
the form of a decision boundary, combining the normal class data
and classifying any pattern which lies from this boundary as out of
class. This procedure can be accomplished via several techniques
such as K-Means, Gaussian Mixture Model, or Support Vector Ma-
chine (SVM). The One-class SVM (OCSVM) unary classification
approach was utilized in this study. OCSVM solves the following
optimization problem, in the primal formulation:

minw,ξ,ρ
1

2
||w||2 +

1

vN

N∑
i

ξi − ρ (14)

where R is the hypersphere radius around normal class data cen-
tered on the average point c, ξi > 0 are slack variables to allow
some training data points to be considered as outliers, and C is
a free parameter which allows adjusting the weight relative to the
extreme points in the optimization process.
In the model application phase, the ocsvm predictive model will
classify as anomalies the new points whose distances from center
c are beyond the hypersphere radius R. In the application of this
study, this center c is represented by background model Bg. Once
known previously that the training data do not have outliers, the
hyperparameter C should be made small:

〈w,Φ(xi)〉 ≥ b− ξi, ξi > 0 (15)

where ξi are slack variables, Φ(x) is a kernel mapping of the input
space to a feature space, N is the number of training samples,v is a
weight parameter and b is a bias, which corresponds to the center of
the sample. After solving this optimization problem for w, a new
pattern x is classified by testing the condition sgn(〈w,Φ(x)〉 − b)
as negative for anomaly.

4. RESULTS AND DISCUSSION
4.1 Background Similarities per Dataset
To verify the similarity level among the produced background mod-
els, the metric Single Scale Structural Similarity (SSIM), which
allows measuring the similarity between two images x e y de N
pixels [22]. This computation is given by the expression

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(16)

where µx, µy , σ2
x, σ2

y correspond to the means and variances of
x and y, respectively, and c1 e c2 are computed constant values
included to avoid instability when µ2

x + µ2
y tend to zero.

Table 1 shows the computed similarities among the four generated
backgrounds. Notice the different levels of similarities among the
images.

4.2 Performance Evaluation Results
The experimental results are displayed in Table 2 and describe
the achieved results from performance evaluation of the OCSVM
classifier from training and evaluation post-processing data that
considered different background models. It was consider the bal-
anced accuracy (BACC = TPR+TNR

2
), the precision of anoma-

lies (PREC = TP
TP+FP

), false-positive rate (FPR = FP
FP+TN

),
true-positive rate (recall = TP

TP+FN
) and the harmonic mean of
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Fig. 2: An example of binarization followed by morphological processing of an image.

Table 1. : Structural similarity (SSIM()) between the background models found by the various methods, for each dataset.

BOAT RIVER BOAT SEA CANOE BOAT CHARLES RIVER
MED x MCA 0.9412 0.9165 0.9696 0.9662
MED x PCA 0.3963 0.6939 0.9504 0.8064
MED x RPCA 0.3647 0.6508 0.6676 0.7807
MCA x PCA 0.4000 0.7070 0.9727 0.8080
MCA x RPCA 0.3711 0.6620 0.6696 0.7867
PCA x RPCA 0.2143 0.5731 0.6957 0.6733

precision and recall F1-Score F1 = precision·recall
precision+recall

as evalua-
tion metrics in each experimented video. It can be observed the
constructed OCSVM models achieve expressive results for the 4
considered datasets. It can be also verify that the predictive models
achieve approximate results among the different background ap-
proaches in each experimented dataset. Beyond that, the median
filter approach is computationally more efficient, and this one was
enough to achieve comparable results to the subspace learning-
based techniques.
In order to verify the number of positive and negative examples
predicted by the classifier, the confusion matrix for the median fil-
tering approach is described in Figure 3.
The achieved performance results were also compared with the
studies of [3] and [16], according to Table 4. The authors in [16]
evaluate an approach for unusual event detection, where it is con-
sidered that a test video contains an unusual event. The authors
measure the unusual event detection rate (true positives among pre-
dicted examples as unusual events). The authors in [3] consider the
recognition rate of anomalous activities.
It can be verify that the proposed approach achieves comparable re-
sults to the state-of-art literature. The compared state-of-art models
are possible with high complexity and therefore capable of more
complex anomaly detection tasks. Nonetheless, although the pro-
posed approach has less capacity, can be verified the expressive
achieved results, possibly due to the approach be adequate to the
considered detection task.
An analogy can be made to Occam’s knife [1] as to the results ob-
tained here. This presumption states that the simplest hypothesis is
the one that best fits a dataset.

5. CONCLUSION
This work presented an approach to detect anomalies in video
surveillance of natural environments. The performance of the gen-
eral procedure was evaluated when the background modeling tech-
nique was varied and compared with that of some works published.

Four different techniques were used to model the background:
PCA, MCA, RPCA and MEDIANA filtering. The tests used four
data sets of publicly available natural videos that are benchmarks
used in other published works.
There are two main conclusions of this research: that the perfor-
mance of the proposed general procedure is superior or equal to
that of the published state of the art and that, in the scenarios of
the tested data sets, the four methods evaluated for modeling of the
background showed similar performance. Since the median filter
is the lightest computationally, this is the recommendation of this
work.
This research also opens up some lines for future investigation. A
first is that the tests need to be expanded to videos whose anomaly
events are more challenging. A second step is to quantify the effects
of morphological processing, the type of OCC classifier used and
the image reduction factor on performance. These last two have an
impact on real-time processing.
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