
International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.10, June 2021

A Survey on Detection and Prevention of SQL and
NoSQL Injection Attack on Server-side Applications

Mehjabeen Shachi1,Nurnaby Siddiqui Shourav2,Abu Syeed Sajid Ahmed3,
Afsana Afrin Brishty4,Nazmus Sakib5

Department of Computer Science and Engineering
Ahsanullah University of Science and Technology, Dhaka-1208, Bangladesh

ABSTRACT
Attacks concerning data can be considered as an intense security
threat. A couple of major cyberattacks on eminent database-driven
web applications are SQL and NoSQL injection. Confidential data
might be revealed to the hacker if the database is injected with mali-
cious codes. Due to inadequate user input validation SQL injection
brings a serious threat to the database by leaking proprietary in-
formation. Relational and non relational databases are very much
vulnerable to these threats. NoSQL database shows higher perfor-
mance than SQL database regarding efficient storage criteria and
data retrieval time. It is flexible for handling big data and is con-
sidered to be more secure. Despite these facts and its growing pop-
ularity NoSQL databases are also vulnerable to injection attacks.
Because of using a different query language, NoSQL injection is
irrelevant to traditional SQL injection. Still, SQL and NoSQL in-
jections are quite similar in this sense that both of the attacks rely on
suspicious input execution on the server. So, it is a critical issue for
non-relational databases as well. In this paper, numerous injection
attacks are discussed along with detection and the countermeasures
against SQL and NoSQL injection.

Keywords
SQL, NoSQL, injection attack, hacker, detection, prevention

1. INTRODUCTION
Data is so valuable in today’s world that it is being called the “new
oil” that is powering the modern world. Hackers have become more
active since the demand for data has increased like never before.
Vulnerabilities that endanger the personal data of users are reg-
ularly discovered. Though the technology for protecting valuable
and sensitive data is improving constantly, the stealing of important
data still exists and is catastrophic. Among all the cyber attacks, the
injection attack got the highest rank in the top ten OWASP web ap-
plications security risks in 2017. This is a common attack on SQL
(Structured Query Language), NoSQL (Not only SQL) databases,
OS (Operating System), and LDAP (Lightweight Directory Ac-
cess Protocol). Although these attacks differ in structure, the basics
around them are relatively similar.
In 1970, Edgar F. Codd invented the relational database that ar-
ranges data into different rows and columns by associating a spe-
cific key for each row. Almost all relational database systems use

SQL and are remarkably complex. They are traditionally more rigid
and have a limited ability to handle complex data such as unstruc-
tured data. But SQL systems are still used extensively and are quite
useful for maintaining accurate transactional records, legacy data
sources, and numerous other use cases within both small and big
organizations.
In 1998, Carlo Strozzi first used the acronym NoSQL while nam-
ing his lightweight, open-source ”relational” database that did not
use SQL. With NoSQL, an application with high performance and
scalability can be developed quickly. NoSQL systems handle both
structured and unstructured data, but they can also process un-
structured Big data quickly. This is why it has become popular
with large-scale cloud and web applications like Google, Facebook,
Adobe, eBay, Cisco, etc.
Both SQL and NoSQL databases experience injection attacks till
today. In 2012, hackers stole more than 450,000 login credentials
from Yahoo by exploiting an SQL injection in their servers [1].
With the rise in popularity of NoSQL databases, security threats
have also increased. There are some detection and prevention meth-
ods against these threats. The approaches usually follow a common
pattern which has been shown in Fig-1.

Fig. 1. General pattern of detection and prevention of SQL/NoSQL
injection

First, a request is sent from the attackers’ end to the server. Then
the server sends queries to a database which is needed to serve the

1

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.10, June 2021

response to that request. The detection and prevention model would
stand before queries hit the database.
This study is carried out by analyzing 15 quality papers related to
detection and prevention of SQL and NoSQL injection attacks. The
discussion on SQL and NoSQL injection is organized in Section II
and Section III respectively. In these two sections the types of injec-
tion attacks are described followed by some approaches to fix them
using ML (Machine Learning) and non-ML approach. Finally, Sec-
tion IV concludes the paper.

2. SQL INJECTION
2.1 Types of SQL injection
2.1.1 Tautologies.
This is a common injection attack in which hackers manipulate the
query in such a way that it always evaluates true after execution.
They can log in as admin or even entirely fictional users. After
injecting code into a conditional statement, hackers can get access
to any information. For example:

SELECT * from item WHERE item id = 123;

After injecting “1=1”,

SELECT * from item WHERE item id = 123 or
1=1;

Here, the hacker can easily access all information about the item
with this specific item id.

2.1.2 Piggyback Queries.
In this injection attack one query is implanted into another query.
The tailing part contains malicious queries. It is executed as part of
the main query. For example:

SELECT * FROM item WHERE item id = 123 or
1=1;
DROP TABLE item;

Here, the ‘;’ character denotes the end of one query and the
beginning of another.

2.1.3 Alternate Encodings.
In this method hackers combine the function “CHAR” with
number coding to return the original character. For instance they
use char(47) instead of character ‘/’ to avoid filtering of this
undesired character.

2.1.4 Illegal or Logically incorrect query.
Hackers write logically incorrect queries that force the system
to generate errors with debugging information. This allows the
attacker to extract injectable parameters. The query in the example
below generates an error message that reveals information about
the database [2].

SELECT accounts FROM users
WHERE login=’’ AND pass=’’ AND
pin= convert (int,(select top 1 name from
sysobjects WHERE xtype=’u’))

Error Message:

”Microsoft OLE DB Provider for SQL Server (0x80040E07) Error
converting nvarchar value ’Cred-itCards’ to a column of data type
int”

2.1.5 Union query.
Hackers use UNION operators with a typical query to inject
malicious query. In the example below, the tailing query is
malicious and it can acquire confidential information dodging the
authentication process [3].

SELECT * from accounts WHERE id=’212’
UNION select * from credit card WHERE
user=’admin’--’ and pass=’pass’

2.1.6 Stored Procedure.
The hacker attempts to perform stored procedures present in the
database with malicious inputs. Usually, procedures that extend
the functionality of the database are stored in the database manage-
ment system and interaction with them are permitted. These stored
procedures are a set of codes that perform some tasks without
having to write them every time. They contain some dangerous
codes that attackers can exploit to attack the system. For example:

CREATE PROCEDURE DBName .is Authenticated
@user Name varchar2, @pass varchar2, @pin
int AS EXEC("SELECT accounts FROM users
WHERE login=’" +@user Name + If’ and
pass=’" +@password+ and pass=" +@pass);

The authorized or unauthorized use of stored procedure returns
true or false. If the attackers give input as SHUTDOWN; - -”
for username or password, the Stored Procedure generates the
following query statement that shuts down the system [4].

SELECT Username FROM userTable WHERE
Username = user1 AND pass=’ ’; SHUTDOWN;

2.1.7 Other Types of Attack.
Besides these stated attacks there are other advanced methods such
as Inference, Blind or Time-based, Fast Flux, and Compounded
methods.

2.2 Detection and Prevention of SQL injection
2.2.1 ML approach.
The basis of this approach is to model SQLIA (SQL Injection At-
tack) detection as a data mining-based binary classification prob-
lem by constructing the SQLIA detection framework which ex-
ploits Support Vector Machine [5]. This framework proposed by
Mi-Yeon Kim and Dong Hoon Lee has four phases.
In the data collecting phase, two sets of query trees for the normal
class and malicious classes are created.
In the data preprocessing phase, n-dimensional feature vectors are
converted from the query trees. From the query trees, syntactic and
semantic features are extracted by the feature extractor module.
Then it generates multi-dimensional sequences.
In the training phase, some SVM binary classification models are
created. Then, through the evaluation of generated models, an opti-
mal binary classification model is selected. With several measure-

2

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.10, June 2021

ments, the evaluator model estimates the performance of the binary
classification models and thus the best SVM model is chosen.

Fig. 2. SQLIA detection framework. [5]

In the detecting phase, testing data is enriched with new inputs. A
class label is predicted for the data.
In the data preprocessing phase, an n-dimensional feature vector
which is the testing data, is converted from the query tree. By us-
ing the optimized SVM binary classification mode, the classifier
module classifies the new feature vector as malicious or normal.

2.2.2 non-ML approach.
Some non-ML approaches to detect and prevent SQL injection at-
tack are described below,

2.2.2.1 Static Analysis .
Static analysis is a principle that finds the weaknesses and mali-
cious parts in the system source code prior to reaching the execu-
tion stage [6]. This is a technique that is very frequently used by
developers for detecting and preventing SQLIA or other vulnera-
bilities before building and executing the code.

2.2.2.2 Dynamic Analysis.
During runtime a model is generated to detect SQLIA. This de-
tection mechanism executes a query before sending it to database
server [7]. As a result SQLIA is detected and prevented before the
query reaches the database. One disadvantage of this technique is
the overhead involved in generating the model at runtime [8].

2.2.2.3 Combined Approach.
Combined Approach uses advantages of static analysis as well as
dynamic analysis to detect and prevent SQLIA [9]. The hotspot is
identified in the static phase and then a model is created indicating
all the valid queries that can be made at that hotspot [4]. During
runtime, the queries are compared with their model. The queries
would not be sent to the database for execution if they don’t match
with their model.

2.2.2.4 Recommended Countermeasures.
There are some preventive measures that should be taken into con-
sideration while building a web application,

—Disable unused features: Disabling every unnecessary feature or
function is a way to prevent SQLIA as they might be potentially
dangerous.

—Custom error message: malicious code or input might cause the
server to generate error messages. These error messages con-
tain information about the database that can be used for hacking.
To prevent it from leaking too much Information a custom error
message is usually set up.

—Escape functions: The escape functions quickly secures the
server against most attacks.

—Prohibit certain keywords: Certain keywords like UNION,
DROP and other malicious characters must be filtered because
there is a high chance that they are from an injection attack. User
input validation is a crucial part of SQLIA prevention.

—Limit the size of the data: Size of user input should be limited.
Some injections require a certain number of characters. So lim-
iting size of input data can prevent some SQLIA.

—Use the Prepare Statements: A prepared statement efficiently ex-
ecutes the similar SQL statements. This is the most effective so-
lution for protection against SQL injections. It will consume a
little time but will effectively secure the server.

—Query Parameterization: Separate the SQL statement from any
kind of parameters that would be included in a call back to the
database.

Many other prevention methods such as AMNESIA, SQL Check,
SQL Guard, and CANDID have proven successful in SQL injec-
tion prevention, but SQL-DOM, SQLrand, AMNESIA, Tainting,
SQLCheck, SQLGuard, CANDID are unsuccessful in preventing a
Stored Procedure Attack [10].

3. NOSQL INJECTION
3.1 Types of NoSQL injection
The techniques that are used to inject SQL and NoSQL databases
are quite relevant. Here, four types of NoSQL injections are demon-
strated below.

3.1.1 PHP Tautologies injection.
Like SQL injection attacks, NoSQL also allows bypassing authen-
tication by injecting code in conditional statements and produce
expressions that are always true [11]. For example:

Database Type Query Injection
MongoDB db.logins.find({

username: { $ne: 1

}, password:{ $ne: 1 }
})

{ $ne: 1 }

CouchDB }POST /users/ find

HTTP/1.1 Accept:

application/json

Content-Type: applica-

tion/json Host:

localhost:5984 { selec-

tor": { username: {
$ne: null } } }

{ "$ne": null

These queries exposes the entries where username and password
are not null. Hackers can utilize the syntax of “$ne” (notequal) op-
erator to login to the system without a proper username and pass-
word [12].

3.1.2 Union Queries.
Hacker uses a vulnerable parameter to change the data that was
supposed to be returned from a given query. An OR condition
has been used to bind an empty expression to the input. Since an
empty expression is always valid, it renders the password check
ineffective. For example:

3

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.10, June 2021

Developer’s input,

string query = username: ‘" + post username
+ ‘", password: ‘" + post password + ‘" }"

Constructed query,

{ username: ‘tolkien’, password: ‘hobbit’ }

Malicious input,

username=tolkien’,$or: [{}, {
‘a’:’a&password=’}], $comment:’successful
MongoDB injection’

Constructed query,

{ username: ‘tolkien’, $or: [{}, { ‘a’
: ‘a’ , password: ‘’ }], $comment:
‘successful MongoDB injection’ }

Here the empty query {} is always true [11].

3.1.3 Javascript injections.
NoSQL databases permit the execution of Javascript code and run
complicated queries and transactions on the database engine. If the
user input is not filtered or validated, there might be a risk of injec-
tion of random javascript code.

3.1.4 Piggy-backed Queries.
Here a hacker uses escape sequences and special characters like
carriage return [CR], line feed [LF], closing braces, semicolons to
end a query and then insert additional malicious queries to be exe-
cuted. It can mess up the database immensely. For example,
Query:

db.doc.find({ username: ‘G. R. R.
Martin’});
db.dropDatabase();
db.insert({username: ‘dummy ’,password:
‘dummy ’})

Original query:

db.doc.find({ username: ‘G. R. R. Martin’})

Injection:

; db.dropDatabase();
db.insert({username: ‘dummy ’, password:
‘dummy’})

Here, after a semicolon, additional malicious query is injected by
the hacker [12].

3.1.5 Origin violation.
HTTP REST API brings in a new class of vulnerabilities that allow
the attacker to attack the NoSQL database even from another do-
main. In cross origin attacks an authorized user and its web browser
are exploited to execute some unwanted action for the hacker. In
the form of a Cross-Site Request Forgery (CSRF), this attack takes
place when the trust that a site has in a user’s browser is exploited
to execute an illegal operation on a NoSQL database. By injecting
an HTML form into a vulnerable website or deceiving a user into
hacker’s personal website, the hacker may execute a POST action

on the database.
There are also Tor Browser Attack, Cross-site Injection Attack,
EXE File Upload Attack [13].

3.2 MongoDB and NoSQL injection
Among all the 340 database systems, MongoDB is nominated as
the most popular NoSQL database according to DB-Engines track-
ing [14]. MongoDB is an open-source NoSQL database that is
written in C++. It is a document-based database. The document is
named BSON(Binary JSON) which is similar to the JSON format.
MongoDB stores these BSON formatted documents inside a collec-
tion. It uses the Map-reduce data processing paradigm to condense
large amounts of data into useful aggregated results. Map-reduce is
like a group by operation of SQL. Unlike relational databases, there
is no statically typed schema in MongoDB which is why we call it
schema-less. So each document in a collection can possess differ-
ent attributes. Though MongoDB does not support traditional SQL
queries the way MySQL does, it has document querying by which
we can run SQL to find data less than or greater than a specific
value or use regular expressions for pattern matching. MongoDB
can be scaled within and across multiple distributed data centers
with good performance, which makes it more preferable to other
relational databases like MySQL.
MongoDB has some drawbacks in its design [15]. Some of the se-
curity issues of MongoDB are described below:

3.2.1 Hash Injections.
Though Hash injection attacks are not that severe as SQL injection
attacks. But still, it can do authentication bypass, DOS attacks, and
data leakage attacks.

3.2.2 Fast Password Hashing.
MongoDB uses a very fast MD5 password hashing algorithm but
this fastness is not good for password hash calculation.

3.2.3 Authentication.
There is no authentication when MongoDB is used in shared mode.
A pre-shared string works to authenticate in replica mode.

3.2.4 No Encryption.
Currently there is no data encryption in MongoDB.

3.2.5 Clear text data.
Since there is no encryption mechanism, MongoDB data files are
stored as clear text. If any unauthorized user gets access to the
database, they can gain access to the valuable information very eas-
ily.

3.2.6 Salt Reuse.
MongoDB uses the same salt which is “mongo” for all the users
while calculating the hash of the password. This causes a problem
of hash collisions and it can ease the hackers.

3.3 Detection and Prevention of NoSQL injection
3.3.1 ML approach.
An ML model was developed to detect NoSQL injection using
feature-based supervised learning in this approach [12]. They cre-
ated their own dataset of benign and malicious MongoDB queries
by using all the available resources like OWASP, MongoDB man-
ual, etc. Because there was no available labeled dataset for NoSQL
injection. In their dataset, they worked on PHP array injection,
NoSQL OR injection, JavaScript-based injection, and piggybacked
queries. These types are already discussed in section 2.1.

4

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.10, June 2021

Fig. 3. Conceptual model of ML based detection model[12]

They used WEKA’s ClassififierSubsetEval with J48(decision tree),
IBK(k nearest neighbor) classifiers, and greedy stepwise search
with backward elimination to chalk out the 10 highest ranked fea-
tures for their model considering information gain and correlation
[16][17][18]. Those selected features are mentioned in Table 1.

Table 1. Features of NoSQL injection dataset by
information gain and correlation [19].

Rank Features
1 Contains Comparison
2 New Query
3 Contains Empty String
4 Contains Not Equal
5 Contains Payload
6 Presence of Return
7 Always True Expression
8 Evaluation Query Operation
9 Contains Logical Operator
10 Element Query Operation

Using the 10 features mentioned in Table 1 they worked on Bi-
nary classification where the two classes are Benign and Injection.
They used learning classifiers like decision tree-based ID3 algo-
rithm, artificial neural network, with backpropagation, random for-
est AdaBoost, k nearest neighbor (IBk), support vector machines
(SVM) and XGBoost etc [19][20][21][22][23][24]. They used 10-
fold cross-validation to evaluate the performance of the classi-
fiers [25]. After that, they used a NoSQL injection generation tool
named NoSQLMap to create a test dataset [26]. NoSQLMap is not
used to generate their original dataset. Using this test dataset filled
with NoSQL injection they tested their model. NoSQLMap pro-
vides 4 vulnerable web applications which were tested by both
Sqreen, the only available NoSQL injection detection tool and

their proposed method [27]. Their method outperforms Sqreen by
36.25% which means the detection rate of their method was 36.25%
higher on average than Sqreen.

3.3.2 non-ML approach.
Some non-ML approaches to detect and prevent NoSQL injection
attack are described below,

3.3.2.1 Automata.
In this approach an Automata-based detection model is created for
NoSQL injection [28]. Mainly time-based and blind-based boolean
injection attacks are focused here.
In time-based injection, the hacker tries to append a javascript
function along with a valid NoSQL token. By doing so, the
attacker puts the database on hold. The below query would put the
MongoDB database on hold for 5 seconds if it gets an entry as
”John”.

John’,$where: ‘function(){ sleep(5000);
return this.name ==\John’" }

In Blind based boolean injection attackers make use of MongoDB
functionalities to access a list of collections, number of collections
etc.

return (db.getCollectionNames().length ==
1);
return(tojsononeline
(db.collectionname.find()[0]).length == 1);
return(db.getCollectionNames() [0][0] ==
‘a’);

To detect and prevent NoSQL injection, first, they identify the
points in the source code from where database calls are made. Nor-
mally in MongoDB find(), insert(), remove() and update() are those

5

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.10, June 2021

points. Then they build some NFA models for valid or safe queries
that can be generated from those identified hotspots using the JSA
(Java String Analyzer) library [29].

Fig. 4. Sample model for MongoDB query “AGE”: “”, where “” is any
number[24]

Fig. 5. Sample model for an attack intended user input[24]

After that, they create some dynamic queries when the user gives
an input. If those queries match the pre-prepared NFA models, the
query is recognized as valid or safe for their system. Only valid
queries are allowed to hit the database. In fig 5 we can see that an
invalid input has been passed. Now if we compare fig 4 and fig 5,
we will notice that the models are not matching. So the query of
fig 4 would not be allowed to hit the database. So this is how their
automata-based NoSQL injection detection and prevention solution
works.

3.3.2.2 User input validation.
Developers take several precautions while building the system to
detect and prevent SQLIA. For example, in MongoDB input boxes
are limited by adding the following code[23],

onkeypress = return"event.keyCode>=
48&&event.keyCode<=57"

This only accepts numbers. Notations, space or some specific char-
acters are also checked and filtered to avoid malicious code injec-
tion.

3.3.2.3 Parameterization.
The user input variables must not be inserted straight into the
condition statement and should be filtered. In parameterization,
parameterized statements are used to pass input variables. Rather
than using embedding user input variables into the condition
statement it uses parameters. The code is shown below,

if(is numeric($usearchtwo)=="true"){} else
echo "Incorrect.";

This piece of code checks if the query contains any number and
passes the value if it does [23].

3.3.2.4 Malicious feature detection.
Malicious feature detection is to detect if the system or software

Fig. 6. Flowchart of JavaScript code for limiting input [23]

has some features which are dangerous for security. Based on some
malicious code and features. This detection can help developers
detect their safety level in their work. The higher the safe level
number is, the more secure the NoSQL database is.

4. CONCLUSION
Although there exist many technologies to tackle software secu-
rity threats, SQL and NoSQL injection attack is still a severe secu-
rity threat for web applications. This study has shown that NoSQL
databases also face similar kinds of vulnerability attacks like SQL
does and also shown different techniques to detect and prevent
them. Since hackers are becoming more innovative over time, de-
tecting and preventing SQL and NoSQL injection attacks more ef-
ficiently and accurately has become an urgent need. It is expected
that web applications will be free from injection attacks if the de-
veloper follows the approaches discussed in this study.

5. REFERENCES
[1] G. Keizer, “Yahoo fifixes password-pilfering bug, explains

who’s at risk,”2012
[2] W. G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A

Classification of SQL Injection Attacks and Countermea-
sures. College of Computing, Georgia Institute of Technol-
ogy, 2006.

[3] A. Alazab, Moutaz Alazab, Jemal Abawajy, Michael Hobbs.
Web Application Protection against SQL Injection Attack.
The 7th International Conference on Information Technology
and Applications, pp. 1-7, ICITA 2011

[4] Ghafarian, A. A hybrid method for detection and preven-
tion of SQL injection attacks. , 2017 Computing Conference.
(2017)

[5] Kim, M.-Y. and Lee, D.H. Data-mining based SQL injection
attack detection using internal query trees. , Expert Systems
with Applications, 41. (2014) , 5416–5430

[6] Lashkaripour, Z. and Ghaemi Bafghi, A. A security analysis
tool for web application reinforcement against SQL injection
attacks (SQLIAs). , 2013 10th International ISC Conference
on Information Security and Cryptology (ISCISC). (2013)

6

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.10, June 2021

[7] Shrivastava, G. and Pathak, K. SQL Injection Attacks: Tech-
nique and Prevention Mechanism. , International Journal of
Computer Applications, 69. (2013) , 35–39

[8] Website. . [Online]. Available: D. Box and A.
Hejlsberg. LINQ: .NET Language-Integrated Query.
https://msdn.microsoft.com/en-us/library/bb308959.aspx.
[Accessed: 04-May-2021]

[9] Lee, I. et al. A novel method for SQL injection attack detec-
tion based on removing SQL query attribute values. , Mathe-
matical and Computer Modelling, 55. (2012) , 58–68

[10] Alsobhi, H. and Alshareef, R. SQL Injection Countermea-
sures Methods. , 2020 International Conference on Comput-
ing and Information Technology (ICCIT-1441). (2020)

[11] Ron, A. et al. Analysis and Mitigation of NoSQL Injections. ,
IEEE Security Privacy, 14. (2016) , 30–39

[12] Islam, M.R.U. et al. Automatic Detection of NoSQL Injection
Using Supervised Learning. , 2019 IEEE 43rd Annual Com-
puter Software and Applications Conference (COMPSAC).
(2019)

[13] Abdalla, H.B. et al. NoSQL Injection: Data Security on Web
Vulnerability. , International Journal of Security and Its Ap-
plications, 10. (2016) , 55–64

[14] Singh, S. Security Analysis of MongoDB. .
[15] Palvi Aggarwa and Rinkle Rani, Security Issues and User Au-

thentication in MongoDB,Emerging Research in Computing,
INformation, Communication and Applications (2014)

[16] Moore, A.W. and Lee, M.S. Efficient Algorithms for Mini-
mizing Cross Validation Error. , Machine Learning Proceed-
ings 1994. (1994) , 190–198

[17] Ross Quinlan, J. (1993) C4.5: Programs for Machine Learn-
ing, Morgan Kaufmann.

[18] Aha, D.W. et al. Instance-based learning algorithms. , Ma-
chine Learning, 6. (1991) , 37–66

[19] Jin, C. et al. An improved ID3 decision tree algorithm. , 2009
4th International Conference on Computer Science & Educa-
tion. (2009)

[20] Hopfield, J.J. Artificial neural networks. , IEEE Circuits and
Devices Magazine, 4. (1988) , 3–10

[21] Ho, T.K. Random decision forests. , Proceedings of 3rd Inter-
national Conference on Document Analysis and Recognition.

[22] Freund, Y. and Schapire, R.E. A desicion-theoretic general-
ization of on-line learning and an application to boosting. ,
Lecture Notes in Computer Science. (1995) , 23–37

[23] M., A. et al. NoSQL Racket: A Testing Tool for Detecting
NoSQL Injection Attacks in Web Applications. , International
Journal of Advanced Computer Science and Applications, 8.
(2017)

[24] Chen, T. and Guestrin, C. XGBoost. , Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. (2016)

[25] https://www.openml.org/a/estimation-procedures/7
[26] https://github.com/codingo/NoSQLMap
[27] Sqreen, “Web application and user protection,”

https://www.sqreen.io.
[28] Joseph, S. and Jevitha, K.P. An Automata Based Approach

for the Prevention of NoSQL Injections. , Communications in
Computer and Information Science. (2015) , 538–546

[29] Feldthaus, A., Miller, A.: Java String Analyzer.
http://www.brics.dk/JSA/

[30] Hou, B. et al. MongoDB NoSQL Injection Analysis and De-
tection. , 2016 IEEE 3rd International Conference on Cyber
Security and Cloud Computing (CSCloud). (2016)

7

	Introduction
	SQL Injection
	Types of SQL injection
	 Tautologies
	Piggyback Queries
	Alternate Encodings
	Illegal or Logically incorrect query
	Union query
	Stored Procedure
	Other Types of Attack

	Detection and Prevention of SQL injection
	ML approach
	non-ML approach

	NoSQL Injection
	Types of NoSQL injection
	PHP Tautologies injection
	Union Queries
	Javascript injections
	Piggy-backed Queries
	Origin violation

	MongoDB and NoSQL injection
	Hash Injections
	Fast Password Hashing
	Authentication
	No Encryption
	Clear text data
	Salt Reuse

	Detection and Prevention of NoSQL injection
	ML approach
	non-ML approach

	Conclusion
	References

