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ABSTRACT 

Wavelets have been developed to analyze the frequency 
components of a signal according to a scale. They provide 

more information than the Fourier transform for signals which 
have discontinuities or sharp spikes. The modern techniques 
of digital signal processing such as MultiMate filtering, sub 
band coding and wavelet transform have been studied and 
applied effectively in science and technology fields nowadays. 
The discrete wavelet transform (DWT) is usually carried out 
by filter bank iteration; however, “for a fixed number of zero 
moments, this does not yield a discrete-time basis that is 

optimal with respect to time localization”. This project 
focuses on the “implementation and properties of an 
orthogonal DWT, with two zero moments and with improved 
time localization (wavelet bases generation)”, determining the 
relation between this transform and M –band wavelet theory, 
and its application in image coding is implemented. Shorter 
the scaling function spectrum, larger the number of wavelet 
co-efficient and hence more scale information (by designing 

filter of shorter length).The wavelet basis function is not on 
filter bank iteration; but on, different filters for each scale. 
Moment vectors are calculated based on input (either 1 – D or 
2 – D Signal) signal and it is projected on wavelet basis to 
extract details of signal by using multi resolution analysis. 
The decomposition level is adapted to the length of signal as 
in case of fixed level in traditional discrete wavelet transform. 
For coarse scales, the support of the discrete-time basis 
function reduced (by a factor approaching one third for coarse 

scales).The implementation and properties of an orthogonal 
DWT, with two zero moments and with improved time 
localization are discussed in this project work. The wavelet 
representation of images using slantlet basis function is 
presented. The slantlet filter bank (wavelet bases generation) 
design technique where different filters for each level (scale or 
stage) is described will be implemented in this project work. 
The application of an image denoising using orthogonal 

discrete wavelet (slantlet) transform is presented in this 
project work. The various threshold methods which are used 
for image denoising is also discussed in this work. The signal 
estimation technique from the observed signal (that is 
corrupted by noise) that exploits the capabilities of wavelet 
(slantlet bases) transform for signal denoising is implemented 
in this project. The soft threshold technique which is useful in 
image enhancement coding (where noisy co-efficient are 

killed by fixing the threshold level) is also investigated. 
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1. INTRODUCTION 
Digital signal processing plays an important role in 
telecommunication network. MultiMate filtering, sub band 

coding and wavelet are now studied and applied effectively. 
Wavelet transform based on multiresolution analysis has exact 
local analysis capability. The closed connection between 
wavelet and sub band coding allows using filter bank for 
wavelet transform and that is one of the advantages of 
wavelet. Wavelet transform is applied effectively in a lot of 
fields such as signal noise filtering, speech processing and 
especially in image and video compression.  

 It is well known from Fourier theory that a signal can be 
expressed as the sum of a, possibly infinite, series of sine’s 
and cosines. This sum is also referred to as a Fourier 
expansion. The big disadvantage of a Fourier expansion 
however is that it has only frequency resolution and no time 
resolution. This means that although we might be able to 
determine all the frequencies present in a signal, we do not 
know when they are present. To overcome this problem in the 

past decades several solutions have been developed which are 
more or less able to represent a signal in the time and 
frequency domain at the same time. 

The idea behind these time-frequency joint representations is 
to cut the signal of interest into several parts and then analyze 
the parts separately. It is clear that analyzing a signal this way 
will give more information about the when and where of 
different frequency components, but it leads to a fundamental 
problem as well: how to cut the signal? Suppose that we want 

to know exactly all the frequency components present at a 
certain moment in time. We cut out only this very short time 
window using a Dirac pulse, transform it to the frequency 
domain and ... something is very wrong. 

The problem here is that cutting the signal corresponds to a 
convolution between the signal and the cutting window. Since 
convolution in the time domain is identical to multiplication 
in the frequency domain and since the Fourier transform of a 

Dirac pulse contains all possible frequencies the frequency 
components of the signal will be smeared out all over the 
Frequency axis. (Please note that we are talking about a two-
dimensional time-frequency transform and not a one-
dimensional transform.) In fact this situation is the opposite of 
the standard Fourier transform since we now have time 
resolution but no frequency resolution whatsoever 

The WT or wavelet analysis is probably the most recent 

solution to overcome the shortcoming of the Fourier 
Transform. In wavelet analysis the use of a fully scalable 
modulated window solves the signal-cutting problem. The 
window is shifted along the signal and for every position the 
spectrum is calculated. Then this process is repeated many 
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times with a slightly shorter (or longer) window for every new 
cycle. In the end result will be a collection of time- frequency 
representation of the signal, all with different resolution. 
Because of this collection of representation we can speak of a 
multiresolution analysis. In the case of wavelets we normally 

do not speak about time-frequency representation but about 
time-scale representation, scale being in a way the opposite of 
frequency, because the term frequency is reserved for the 
Fourier transform. 

Wavelet transform (WT) represents an image as a sum of 
wavelet functions (wavelets) with different locations and 
scales. Any decomposition of an image into wavelets involves 
a pair of waveforms: one to represent the high frequencies 

corresponding to the detailed parts of an image (wavelet 
function) and one for the low frequencies or smooth parts of 
an image (scaling function). Fig. 1.0 shows two waveforms of 
a family discovered in the late 1980s by Daubechies: the right 
one can be used to represent detailed parts of the image and 
the left one to represent smooth parts of the image. The two 
waveforms are translated and scaled on the time axis to 
produce a set of wavelet functions at different locations and 

on different scales. Each wavelet contains the same number of 
cycles, such that, as the frequency reduces, the wavelet gets 
longer. High frequencies are transformed with short functions 
(low scale). Low frequencies are transformed with long 
functions (high scale). During computation, the analyzing 
wavelet is shifted over the full domain of the analyzed 
function. The result of WT is a set of wavelet coefficients, 
which measure the contribution of the wavelets at these 

locations and scales. 

1.1 Orthogonal Discrete Wavelet 

Transform 
The orthogonal discrete wavelet transform is called as Slantlet 
Transform [2]. The DWT described here is based on a filter 
bank structure where different filters are used for each scale. 
Nevertheless, a very simple efficient algorithm based on 
recursion is available. For the DWT filter bank described 
here, the support of the discrete-time basis functions is 
reduced (by a factor approaching one third for coarse scales) 
while retaining the basic characteristics of the two band 

iterated filterbank tree. This basis retains the octave-band 
characteristic and leads cleanly to a DWT for finite length 
signals (boundary issues do not arise, provided the data length 
is a power of 2). The filters are piecewise linear but are 
discontinuous—for coarse scales, they converge to piecewise 
linear, discontinuous functions. The basis, being piecewise 
linear, is reminiscent of the discrete wavelet transform 
approximation order 2 with improved time localization to 

which it is compared. However, the basis functions of the 
slant transform, like the Hadamard transform for example, are 
nonzero over all of the domain, whereas the basis functions 
described in this paper become progressively more narrow, 
giving a multiresolution decomposition. Hence, we have the 
name slantlet for the transform described here. The slantlet 
basis appears especially well suited for treating piecewise 
linear signals. 

1.2 Problem Statement 
The discrete wavelet transform (DWT) is usually carried out 
by filterbank iteration; however, for a fixed number of zero 
moments, this does not yield a discrete-time basis that is 
optimal with respect to time localization. In the application of 
wavelet bases to image compression, the time localization and 
number of zero moments of the basis are both important. 
Good time-localization properties lead to good representation 

of edges. Approximation order is important for sparse 
representation (compression) of smooth regions. This project 
focuses on the implementation and properties of an orthogonal 
discrete wavelet transform, with two zero moments and with 
improved time localization. 

The wavelet bases described here should provide a good 
tradeoff between time localization (shorter filter length) and 
smoothness characteristics (number of zero moments). These 
two are competing criteria in designing wavelet bases. 

The basis described from a filter bank viewpoint, gives 
explicit solutions for the filter coefficients, and describes an 
efficient algorithm for the transform. The implemented 
orthogonal discrete wavelet transform will be applied on 

image and reconstructed image will be verified. An image 
enhancement (image denoising) will be done based on this 
transform using soft threshold method for various standard 
deviation ranges from 5 to 30 and mean zero. 

1.3 Objective of Proposed Work 
The objective of the project work is to implement or 
demonstrate efficient algorithm for an orthogonal DWT, with 
two zero moments and with improved time localization 
(wavelet bases generation) will be implemented. It by 
considering 2-D signal (i.e. on image) and experimental 
results will be verified. And also Image denoising using 
slantlet transform will be implemented. A threshold value is 
computed by observing mean, variance & standard deviation 

of the noisy image. A soft threshold method is applied to the 
slantlet co-efficients (after applying ODWT to the original 
image). Then threshold value is compared with wavelet co-
efficient. 

2.  PROPOSED METHODOLOGY OF 

WORK 
Fig 1: Analysis stage of proposed slantlet transform based 

system 
 

 

 

 

Fig 2: Synthesis stage of proposed slantlet transform based 

system  

The Block Diagrams describe the proposed methodology of 
proposed work. it consists of Two stages, the first stage of 
work called the analysis stage, in the stage of analysis for the 
given input noisy image can be  decomposed by SLT 
Transform and then this decomposed image is denoised by 
soft Threshold Technique, A threshold value is computed by 
observing mean, variance & standard deviation of the noisy 
image. In the stage of Synthesis the image can be 

reconstructed by applying Inverse orthogonal DWT (which 
uses slantlet bases). The performance of SLT Algorithm can 
be evaluated by computing MSE, PSNR for various SNR 
values, by considering original image and reconstructed 
image. Thus obtained performance is compare with existing 
algorithms performance such as discrete cosine transform, 
DFT, DWT and without & with  soft threshold technique. The 
image denoising algorithms based on an orthogonal discrete 
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wavelet and discrete cosine transform uses soft thresholding 
method discussed above on Lena picture. 

2.1 Literature Review of Earlier Work 
C. Valens in his published literature [4] on wavelets has stated 
an overview of Fourier theory and the disadvantages 
associated with Fourier transforms. It is well known from 
Fourier theory that a signal can be expressed as the sum of a 

possibly infinite series of sines and cosines. This sum is also 
referred to as Fourier expansion. Fourier expansion however 
is that it has only frequency resolution and no time resolution. 
The idea behind these time-frequency joint representations is 
to cut the signal of interest into several parts and then analyze 
the parts separately. It is clear that analyzing a signal this way 
will give more information about when and where the 
different frequency components exists, but it leads to a 

fundamental problem as well. Suppose, in order to know 
whether exactly all the frequency components are present at a 
certain moment in time or not, it is necessary to cut out only 
this very short time window using a Dirac pulse and transform 
it to the frequency domain. The problem here is that the 
cutting the signal corresponds to a convolution between the 
signal and the cutting window. Since convolution in the time 
domain is identical to multiplication in the frequency domain 
and the fourier transform of a Dirac pulse contains all possible 

frequencies, the frequency components of the signal will be 
smeared out all over the frequency axis. The big disadvantage 
of a fourier expansion is that it has only frequency resolution 
and no time resolution. This means that it is possible to 
determine all the frequencies present in a signal, but in time 
instant they are present cannot be determined [1].  

To overcome this problem in the past decades several 
solutions have been developed which are more or less able to 

represent a signal in the time and frequency domain at the 
same time. Fourier expansion situation is opposite to the 
standard Fourier transform, since it is having time resolution, 
but no frequency resolution. The underlying principle of the 
phenomena just described is due to Heisenberg's uncertainty 
principle. In signal processing terms, it can be stated that it is 
impossible to know the exact frequency and the exact time of 
occurrence of this frequency in a signal. In other words, a 

signal can simply not be represented as a point in the time-
frequency space [1]. 

Andrew B. Watson discusses about basic definition of discrete 
cosine transform. The discrete cosine transforms (DCT) is a 
technique for converting a signal into elementary frequency 
components. It is widely used in image or data compression 
[2].  

Saied Belkasim describes the advantages and disadvantages of 

discrete cosine transform. The discrete cosine transform 
(DCT) gained popularity in signal compression for its energy 
compaction and optimal information representation properties. 
Sample folding into sums and differences has been used to 
improve computation of DCT, but has never been used to 
generate independent forward and inverse even or odd 
transforms. Although, resizing of signals has been 
successfully attempted using the DCT, it was not geared 

towards a general multi-resolution analysis procedure that 
allows local as well as global features to be captured in a 
wavelet-like structure [3].  

The disadvantages of discrete cosine transform (DCT) are also 
stated by T. B. Littler and D. J. Morrow. For instance, DCT 
reconstruction reproduced the sinusoid signal, but not the 
transient component. This was attributed to the poor time 
localization of the DCT basis function. Also, additional noise 

was introduced in the DCT reconstruction. Wavelets are 
mathematical functions with advantages over fourier 
transforms and discrete cosine transform for the analysis of 
signals with transient features. Wavelet analysis is based on 
the decomposition of a signal according to scale, rather than 

frequency, using basis functions (samples) with adaptable 
scaling properties. This method of analysis is generally 
referred to as multiresolution analysis [4]. 

The wavelet analysis is probably the most recent solution to 
overcome the shortcoming of the discrete cosine transform. 
The advantages of wavelet compared to discrete cosine 
transform are stated by Chul Hwan Kim and Raj Aggarwal in 
their work [5].  

S. Santoso and E. J. Powers have stated as to how 
compression is carried out using discrete wavelet transform 
and its disadvantage compared to slantlet transform. The 
compression is carried out in the wavelet domain by retaining 
wavelet transform coefficients associated with disturbance 
events and discarding all other disturbance-free coefficients. 
The most-smoothed version of the original recorded signal is 
also kept for reconstruction purposes. In order to recover the 

original disturbance signal, wavelet reconstruction techniques 
are utilized. Since the compression process discards about 
90% of the total wavelet transform coefficients, some 
information will be lost. However, most of these coefficients 
are associated with noise. Therefore, the quality of the 
reconstructed disturbance signal is very high and most 
disturbance events are preserved nicely, since the wavelet 
transform coefficients associated with the disturbance are 

saved. To some extent, the reconstructed signal is actually a 
better signal, since it contains less electrical noise compared 
to the original signal, but maximum energy retainment is not 
achieved [9]. 

2.2 Scope of Present Work 
The scope of present work is to overcome the disadvantages 

of discrete cosine transform and discrete wavelet transform by 
using slantlet transform for the denoising of image. Good time 
localization properties of slantlet transform are expected to 
result in good reconstruction of the signal. The scopes of the 
present work which includes Apply slant let transform method 
to the 2-D signals To the transformed coefficients of the 
signals, fix the threshold value. The coefficients which are 
below the threshold value are to be made zero, resulting in 

compression of the signal by reducing the number of 
coefficients. Compare and analyze the output of slantlet 
transform approach with that of discrete cosine transform and 
discrete wavelet transform approaches, in terms of post-
reconstruction parameters such as amount of energy retained 
and the mean square error. 

3. EXPERIMENTAL RESULTS 
Following are the results of reconstructed image by applying 

orthogonal DWT (which uses slantlet bases) to the original 
Image with and without using soft threshold technique and 
running the denoising algorithms for the methods discussed 
above on Lena picture. The denoising is done after adding the 
Gaussian noise with standard deviation of 5, 10, 15, 20, 25, 
and 30 and mean 0 on original Lena picture. We estimated the 
threshold value which gives better denoised image by 
computing mean and variance. Then soft threshold technique 

is applied to wavelet co-efficient to remove the noisy co-
efficient and inverse orthogonal DWT (ISLT) is applied to 
obtain the denoised image which contains less noise when 
compared to original noisy image. The PSNR is calculated for 
each denoised image with respect to original image and noisy 
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image and also MSE is calculated for each and every denoised 
image (see Fig. 5.17).  The results are tabulated (see Table 
5.0). The deonised image figures and MSE are compared for 
the global and adaptive thresholding techniques. The denoised 
image results are shown for different noise variance (5, 10, 

15, 20, 25 and 30) along with noisy image. Here soft threshold 
method is used to remove the noisy co-efficient. 

3.1 Image Reconstruction without using 

Thresholding Technique 

 

Fig 3: Original Lena Image 

 

Fig 4: Decomposed Lena Image by SLT 

 

Fig 5: Reconstructed Lena Image by SLT before applying 

thresholding 

 

Fig 6: Decomposed image after applying soft thresholding 

 

Fig 7: Reconstructed Image after applying thresholding 

technique 

3.2 Image Denoising Using Soft Threshold 

Method 

 

Fig 8: Noisy Lena Image of Variance 25 (σ=5) 
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Fig 9: Denoised Lena Image of Variance 25 (SLTB, σ=5) 

 

Fig 10: Noisy Lena Image of Variance 100 (σ=10) 

 
Fig 11: Denoised Lena Image of Variance 100 (SLTB, 

σ=10) 

 

 

 

Fig 12: Noisy Lena Image of Variance 225 (σ=15) 

 

Fig 13: Denoised Lena Image of Variance 225 (SLTB, 

σ=15)  

 
Fig 14: Noisy Lena Image of Variance 400 (σ=20) 
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Fig 15: Denoised Lena Image of Variance 400 (SLTB, 

σ=20) 

 
Fig 16: Noisy Lena Image of Variance 625 (σ=25) 

 

Fig 17: Denoised Lena Image of Noise Variance 625 

(SLTB, σ=25) 

 

 

 

 
Fig 18: Noisy Lena Image of Variance 900 (σ=30) 

 
Fig 19: Denoised Lena Image of Noise Variance 900 

(SLTB, σ=30) 

 
Fig 20: MSE for Denoised Image Using Soft Threshold 

Method 
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Table 1.   Denoised Lena image Performance 

 

Image 

Name 

 

Threshold 

Value 

 

Noise 

Variance 

 

PSNR 

 in db. 

 

Lena 

3.9766  25 36.3769 

11.5533 100 32.2260 

19.9299 225 29.9663 

29.9066 400 28.4407 

39.8838 625 27.3134 

49.9998 900 26.4180 

4. CONCLUSIONS 
This Paper works presents an orthogonal filter bank for the 
discrete wavelet transforms with two zero moments, where 
the filters are of shorter support than those of the iterated filter 
bank tree. Although not based on an iterated filter bank tree, 
the filter bank described in this project retains the main 
desirable characteristics of the usual DWT filterbank, namely, 

orthogonally, an octave-band characteristic, a scale-dilation 
factor of 2, and an efficient implementation. Table 1. 
Summarizes a comparison results of denoising of image using 
SLT transform. A transform for finite length signals based on 
this filter bank is particularly clean due to the filter lengths 
being exact powers of two. The basis appears particularly well 
suited for piecewise linear signals, as does the Haar basis for 
piecewise constant signals. 

The newly designed an orthogonal filtebank (Slantlet Bases) 
provides better tradeoff between time – localization and 
smoothness characteristics. These wavelet bases supports 
shorter length when compared to existing discrete wavelet 
transform (shorter filter length improves the time – 
localization of the wavelet basis leads to good representation 
of edges without degrading the smoothness part). The same 
band pass filters are used for each scale in existing discrete 

wavelet transform (signal spectrum coverage is fixed). But the 
filter bank described here, uses different band-pass filters of 
having shorter length for each stage or level or scale. The 
decimation factor also varies in accordance with scale. The 
advantage of using many band-pass filters are that the width 
of every band can be chosen freely, in such a way that the 
spectrum of the signal to analyze is covered in the places 
where it might be interesting. The disadvantage is that we will 
have to design every filter separately and this can be a time 

consuming process and in turn increases the coding 

complexity. 
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