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ABSTRACT 

This paper aims to apply deep learning algorithms to advance 
a new drug’s mechanism of action (MoA) prediction. Since 
one drug can have one or more MoAs, algorithms must be 
developed to perform multi-label classification problems. This 
paper puts forward a deep learning framework, MoA Net, 
which ensembles one residual network and five convolutional 
neural networks to predict MoA targets. To find optimal 
parameter sets, the authors implements Bayesian tuning 

techniques on each sub network of MoA Net. The study uses 
logarithmic loss function to evaluate the model’s 
performance. Results show successful MoA target prediction 
in the dataset provided by the  LISH and LINCS Connectivity 
Map. 
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1. INTRODUCTION 
Over the decades, with scientists understanding a disease’s 
underlying mechanism of action (MoA), discovering drugs’ 
effects relies heavily on scientific research experiments. 
However, with the traditional one drug, one MoA target 
archetype, progress in drug discovery and drug repurposing is 

costly, in both time and economic senses [1]. For example, the 
average time for the US Food & Drug Administration (FDA) 
to approve a new drug application ranges from 9 to 12 years, 
with more than $1 million in cost each year[2]. With deeper 
understanding in the development of a drug’s MoA, given 
clinical trails, the traditional one drug, one MoA target 
assumption has evolved to a multiple drug, multiple MoA 
targets model. This model sheds light on drug application 

development first, because it is known that one drug can 
target multiple proteins, rather than only one [2]; and second, 
different drugs may interact with different proteins in addition 
to their primary targets [3].  As such, researchers are 
motivated to discover innovative methods to reduce drug 
production costs. 

With the advent of machine learning techniques, MoA 
prediction has bloomed in recent years. There are many 

review articles summarizing how machine learning 
approaches can be helpful in predicting MoAs. [4-8] The 
state-of-art methods can be categorized as two types: 
supervised and semi-supervised. Additionally, supervised 
methods can be classified further as methods that are based on 
distance, feature, and matrix factorization[4]. 

Supervised machine learning methods can be applied when 
both drug and MoA labels are available. In these methods, 

when a certain drug and MoA target interact with each other, 
they are both labeled as ones, while the non-interactive ones 
are labeled as zeros. Distance-based, or similarity-based, 
methods are built upon the assumption that similar drugs have 

a high possibility to target similar MoAs [5]. Based on 
different measures of defining similarities among drugs and 
MoAs, different kernel functions are used. The nearest profile 
method (NN) is one of the most exploratory methods, using 
Euclidean distance [9]. To further extend, other methods 
based on chemical, ligand, expression, side effect, and 
annotation of the drug to MoA similarities have been 
developed [10]. In one study [11], an algorithm based on the 

similarities of neighbors was developed. The algorithm takes 
the weighted average among neighbors to make predictions. 
Later, the integrated neighbor-based [12] method, which 
ensembles different neighbor-based models to generate a 
higher score, thus improve prediction performance, was put 
forward. In these kinds of ensembling methods, Jaccard 
similarity, Cosine similarity, and Pearson correlation 
similarity are commonly used to calculate the similarity score.  

Feature-based supervised machine learning methods form a 
large group of algorithms predicting drug to target MoA. 
These methods utilize the most state-of-art machine learning 
models that have been successfully implemented in other 
fields. Random forest, Support Vector Machine (SVM) and 
other binary-classification methods are commonly used [13-
15]. The logic is for each drug-MoA pair, the model first 
creates the feature vectors, and then performs the binary 
classification task [4]. A widely-used feature composition 

method is representing each drug as a set of 1080 descriptors 
(both structural and physicochemical), such as amino acid and 
dipeptide composition descriptors [17]. Then, this 1080-
dimensional feature vector for each drug-MoA pair is fed into 
models such as random forest, etc. To better overcome the 
overfitting problems in a large-scale dataset, as well as 
increase accuracy in prediction, later works including DTINet 
[18], NeoDTI [19], and restricted Boltzmann machine [20], all 

proved robustness and improved accuracy in identifying 
binary drug to MoA prediction.  

Matrix factorization methods have been proven to manage the 
missing values in a drug-MoA matrix. They decompose the 
drug-MoA matrix into one feature vectors of the drugs and 
one of the corresponding MoAs, such that a rank reduction is 
performed [4], [25]. Pioneering works include Kernelized 
Bayesian Matrix Factorization [21]. This method utilizes a 

fully conjugate probabilistic model and a deterministic 
variational approximation method to project drugs and MoAs 
into one unified subspace. Another method, namely the 
probabilistic matrix factorization method [22], has also been 
put forward. Based on a collaborative filtering algorithm, this 
method first defines a conditional probability for each 
observed drug to MoA interaction, a zero-mean spherical 
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Gaussian prior on the two matrices, then computes the log-
likelihood of the two matrices to get the underlying drug to 
target MoA score. Recent works include the Neighborhood 
Regularized-based Logistic Matrix Factorization method [23]. 
This method models the probability of a drug interacting with 

a MoA target, based on logistic matrix factorization. A Dual-
Network integrated Logistic Matrix Factorization method [24] 
extends the Neighborhood Regularized-based Logistic Matrix 
Factorization method by calculating probabilities for unknown 
drug-MoA pairs, then computes the interaction score by 
maximizing an objective function using the Hadamard 
product.  

In order to address an imbalanced data problem, semi-

supervised machine learning methods are put forward. These 
methods achieve promising prediction performance in 
inferring unlabeled data by the labeled data, where unlabeled 
data means no MoA or an unknown MoA, and labeled data 
means a known MoA. In this case, the unlabeled data provides 
information into the prediction process [25]. Due to the use of 
large amount of unlabeled data, semi-supervised methods 
achieve good performance. A Laplacian regularized least 

square, based on the BLM model, has been put forward with 
no use of negative samples [26]. Later, methods that combine 
drug-MoA interaction and chemical and genomic space 
information to form a new kernel were also studied.  

Although the models mentioned above generate promising 
results, they have limits. Distance-based methods stand out 
due to their similarity function simplicity. However, when 
constructing similar neighbors, most algorithms are only 

constructed based on first-order similarity, and similarity 
transitivity is not considered [16]. Feature-based models 
outperform distance-based methods in increasing model 
robustness and prediction accuracy; however, models such as 
SVM and tree-based models tend to have greater bias for the 
majority class, resulting in an imbalanced data issue, 
especially when the amount of labeled MoAs are relatively 
small, compared to drug features. In contrast, by integrating 
labeled and unlabeled data, semi-supervised learning methods 

generate more reliable results, given such an imbalanced case; 
however, these are costly in both time and computation 
perspectives to implement on large-scale datasets. The main 
drawback of such methods is that they are put forward based 
on binary classification machine learning methods. Given the 
fact that multiple drugs may trigger one or more MoAs, a 
more efficient family of machine learning methods will be 
studied. One popular track is to borrow deep learning 

networks, such as convolutional neural networks, in the 
computer vision area.  

This paper puts forward a framework that utilizes fully 
convolutional and residual neural networks, originally from 
the computer vision field, and performs model ensembling to 
achieve better prediction results.   

2. METHODOLOGY 
This paper proposes a deep learning scheme, MoA Net, to 
predict the MoAs of specific drugs. MoA Net contains a 
principle component analysis (PCA) part to extract features 
from the given feature set, then uses multiple ensembled 
convolutional neural networks and residual neural networks to 
perform the final multi-label MoA classification prediction. 

To find optimal parameter sets, MoA Net uses Bayesian 
tuning techniques for each convolutional and residual neural 
network. The structure of MoA Net is shown below in Figure 
1: 

 

Fig 1: Structure of MoA Net  

Half of MoA Net’s structure is composed of multiple sub 
convolutional neural networks that range from two to five 
layers. The essential block of one convolutional neural 

network is composed of one batch normalization layer, 
followed by one dropout layer to avoid overfitting, one weight 
normalization layer, and ending with a dense convolutional 
layer to generate output to the next block. The structure of one 
block of convolutional neural network is showed in Figure 2:  

 

Fig 2: Structure of one block of convolutional neural 

network 

Figure 4 shows an example of a three-layer network. It 
contains one input layer, three hidden layers, and one output 
layer. The input layer takes in selected features from PCA, 
then a first stage batch normalization[27] is applied to scale 
different features. In the following three hidden layers, one 
dropout layer [28] is used to avoid overfitting, and then 
weight normalization [29] is used to accelerate the 
convergence of stochastic gradient descent optimization.  

The other structure of MoA Net is its deep residue neural 
network. This is inspired by He K et al.’s work [30]; the 
residual structure is shown in Figure 4. The initial input layer, 
with features selected by PCA, is first batch-normalized, and 
then one dropout layer and one dense convolutional layer are 
applied. One batch-normalization layer, one dropout layer, 
and one dense convolutional layer is referred as one single 
block. This block is then used as the residue, which is taken as 

a performance average, before the final batch normalization, 
dense layer, and the output layer.   

In order to find the optimal parameter set for each sub-
network in MoA Net, the Bayesian tuning technique [31] is 
applied for each of the convolutional neural networks and 
residual networks. Bayesian tuning incorporates prior belief 
about the objective function f(x), and then updates the prior 
with sample points drawn from f(x) to get a posterior that 
better approximates it. It is proven to be efficient to tune 

parameters in algorithms that are expensive for the evaluation 
and computation cost [31]. To address the framework of this 
paper, a flowchart is provided in Figure 3 below. 
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Fig 3: Flowchart of the proposed framework 

The first step is to perform data preprocessing, including 
cleaning, scaling, and labelling the initial features. The second 
step is feature engineering, where PCA selects features out of 

the original feature map, and then construct features that will 
be used as input to the MoA Net. Data normalization and 
rescaling are also performed to make sure they are in the right 
format for prediction. The third step is to perform the multi-
label target learning of MoA prediction using MoA Net. MoA 
Net ensembles multiple convolutional neural networks with 
different layers, as well as a residual network. This framework 
generalization is achieved through the flexibility of 

ensembling convolutional neural network and residual 
network combinations. The Bayesian tuning technique is 
applied to each convolutional neural network and residual 
network to achieve optimal performance of each sub-network. 
The final step is to evaluate the performance of this frame by 
using ten-fold cross validation. 

3. DATA DESCRIPTION AND 

FEATURE ENGINEERING 
The datasets used in this paper are those released from the 
challenge from the Laboratory for Innovation Science at 

Harvard (LISH), and the NIH Common Funds Library of 
Integrated Network-Based Cellular Signatures (LINCS) to 
advance drug development through improvements to MoA 
prediction algorithms [32].  

The dataset contains 872 features of both genetic expression 
and cell viability data, with 206 MoA targets to predict. 
Among these 872 features, 772 genes are measured and 
provided as genetic expression data, labelled as g-1 to g-771. 

One hundred cell lines are extracted to form cell viability, 

labelled as c-1 to c-71, which is defined as the ratio of the 
number of visible cells over total number of cells, after 
incubating certain drugs and the mixture of cells. For each 

incubation experiment, a 24, 48 and 72-hour incubating 
window is used, respectively. The dataset provides 206 MoA 
targets for each drug, labelled as 0 for No-MoA and 1 for 
MoA. Since one drug can have one or more than one MoA, 
this is a multi-label classification problem.  

In summary, the total number of 872 features are collected 
from genetic expression and cell viability data extracted from 
100 cell lines treated with a certain drug under three 

incubating windows (24, 48 and 72 hour). The total number of 
target MoAs is 206.  

The first step of feature engineering is to do a correlation 
analysis by dropping features that have high correlation. In 
order to prevent information loss at the initial stage, the 
correlation threshold is set to be 0.9. One genetic expression is 
dropped and 28 cell viability features are dropped after this 
analysis. PCA is conducted on both genetic expression and 

cell viability features after performing MinMaxScaling to the 
numerical features. A total number of 1069 features are fed as 
input into MoA Net, among which there are 399 out of 772 
genetic expression features and a total number of 100 out of 
100 cell viability features. 

4. MODEL IMPLEMENTATION AND 

TUNNING  
MoA Net is a deep learning ensembled model that consists of 
one residual network and five convolutional neural networks 
with different layers. Here, the average ensemble is used to 

reduce model variance, and thus, achieves better performance. 
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A Bayesian tuning technique is applied to find the optimal 
parameter set of each sub-network.  

For the residual network, each of its convolutional blocks 
consists of a batch normalization operation of the input, 
followed by a dropout operation with a different dropout rate, 

then a fully convolutional layer producing output to the next 
block. The activation function used for each block is the 
ReLU [33] function, and the loss function used to optimize 
back propagation of the weights is the binary cross entropy 
[34].   

For the five convolutional neural networks, one to four hidden 
layers are implemented, respectively. Similar to the residual 
network, there is one batch normalization operation to scale 

the input, and then a dropout operation with different dropout 
rate to reduce model overfitting, followed by a fully 
connected convolutional layer for each block.  

Figure 4 shows the structure of the residual network and a 
three-layer convolutional neural network of MoA Net. 

The range used for the dropout rate is from 0.1 to 0.5 
continuously, and the number of neurons is from 32 to 1024 
discretely. Table 1 shows the optimal parameter set for each 

sub model of MoA Net, selected after the Bayesian tuning 
technique. 

 

Fig 4. A: Structure of a three-layer convolutional neural 

network of MoA Net 

 

 

 

 

 

 

 

 

 

Table 1. Optimal parameter set for MoA Net 

 

 

 

 

Name Drop out 

Rate 

Neurons Learning 

Rate 

Five-layer              0.0015 

Convolutional               

Network               

               

              

    

Four-layer              0.0020 

Convolutional               

Network               

              

    

Three-layer 0.49140 1159 0.0015 

Convolutional 0.18818 960  

Network 0.12452 1811  

    

Two-layer 0.26886 1292 0.0015 

Convolutional 

Network 

0.45982 983  

    

Residual  0.28876 512 

256 

 

Network 0.30147 512 

512 

 

  256 

256 
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Fig 4. B: Structure of a three-layer convolutional network 

of MoA Net 

5. EVALUATION  
This model uses the logarithmic loss function to evaluate the 
prediction performance on each drug to MoA pair [32]. 
Logarithmic loss is the log of the likelihood function, and it 
can be defined as follows: 

      
 

 
 
 

 

 

   

                

 

   

                       

where N is the number of observations; M is the number of 
labelled and scored MoA targets; 

        is the predicted probability of a positive response for a 

given observation; and      is the labelled ground truth, 

where 1 stands for a positive response, and 0 stands for 
negative. 

A ten-fold stratified cross validation is used to evaluate the 
performance for each sub model in MoA Net. From the 
results, one can see each sub model is able to converge to a 
low logarithmic loss, and is able to predict a drug and MoA 
pair successfully. In particular, the residual network starts 
initially from the lowest loss among the five sub-models, 
which shows the capability to predict the target well, but it 
then slows down until it converges after 20 epochs, while the 
four convolutional neural networks start at a higher loss, yet 

converge quicker, after 7 to 15 epochs. The final ensembled 
model achieves better performance both in its capability to 
predict the drug and MoA target, and to converge at a faster 
speed. The detailed logarithmic loss for each sub-model is 
listed in Table 2. A comparison from different public 
networks released from the challenge is shown in Table 3. 
Among the available public networks, performance of 
traditional machine learning algorithms such as Ridge 

regression model, gradient boosting models, and bagging 
models hits an average of a 0.01957 logarithmic loss. Due to 
the nature of deep learning algorithms to solve multi-label 
classification problems, models such as ResNet and TableNet 
achieve an average logarithmic loss of 0.01840, which is a 

5.98% decrease compared with traditional machine learning 
algorithms. The Box and Whisker plot is showed in Figure 5. 

Table 2. MoA Net Performance 

Name Logarithmic 

loss 

Convergence after  

Five-layer  

Convolutional  

Network 

         7 

Four-layer  

Convolutional  

Network 

0.016194 10 

Three-layer  

Convolutional  

Network 

0.016196 11 

Two-layer  

Convolutional  

Network 

0.016289 15 

Residual 

Network 

0.016375 20 

   

MoA Net 0.0162672 3 

 

Table 3. Model Performance Comparison 

Name Logarithmic loss 

Ridge                        0.02000 

Light GBM 0.01950 

XGBoost 0.01920 

ResNet 0.01850 

TableNet 0.01830 

MoA Net 0.01626 
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Fig 5. Box and Whisker plot of machine learning models 

and deep learning models  

6. CONCLUSION 
This paper proposes a deep learning framework, MoA Net, to 
advance the prediction of MoA targets from the potential 

genetic expression and cell viability data of specific drugs. 
Since the drug to MoA relation is not a one to one relation, 
rather one drug may have one or more MoA targets, this is a 
multi-label classification problem. Most machine learning 
algorithms use transformation to convert this type of problem 
into a multiple binary classification problem, yet performance 
is not ideal regarding computation time and accuracy. 
Therefore, this paper uses a deep learning framework that 
ensembles one residual network and four convolutional neural 

networks to improve on the prediction of drug to MoA 
relation. The five sub models from MoA Net ensure the 
capability to solve this multi-label classification prediction 
without converting to a binary classification problem, while 
the ensembling reduces model variance, so it is able to 
generalize in the test dataset. To test MoA Net performance, 
the challenge dataset released from the Connectivity Map of 
LISH and LINCS was used, and a logarithmic loss was used 

to evaluate the prediction ability of MoA Net. Results 
compared from shallow machine learning algorithms showed 
MoA Net’s success, and hence, this network provides insights 
in advancing the drug to MoA prediction process. 
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