
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 13, July 2021

20

Capability Aware Dynamic Load Balancer for

Asymmetric NUMA Multicore Processors

D.A. Mehta
Shri G S Institute of Technology and Science

Indore, MP

Priyesh Kanungo, PhD
School of Computer Science, Devi Ahilya

Vishvavidyalaya, Indore, MP

ABSTRACT

The different cores of state-of-the artmulticore processors are
performance asymmetric: they are different in terms of their
clock speeds and other capabilities. Such heterogeneous

multicore processors pose challenges to existing Dynamic
Load Balancers in achievingoptimum performance.A load
balancer taking the load balancing related decisions assuming
all cores to be homogeneous, introduces unnecessary
overheads of time, does not exploit the capabilities of higher
performance cores, and consequently fails to achieve the
possible performance improvement.We, therefore, propose a
Capability Aware Dynamic Load Balancer which performs

efficient load balancing for asymmetric multicore processors
by addressing the aforesaid issues. Considering the difference
in clock speeds as the heterogeneity among different cores, the
proposed load balancer improves the Turn Around Time of
processes significantly as compared to Asymmetry unaware
linux load balancer. The results of experimentation exhibit the
performance gain in the range of 4-9%, for three different
multicore systems having 32, 64 and 128 cores respectively.

Keywords

Dynamic Load Balancing, DLB, Load Balancer, NUMA,
Speed Core

1. INTRODUCTION
Multiprocessor and Multicore systems are typically designed
based on Non Uniform Memory Access (NUMA)

architecture. A NUMA Multiprocessor/Multicore system
(NUMA system) is organized in the form of Nodes. A node
consisting of a set of processors (the terms processor and core
are used interchangeably in this paper), part of the main
memory and I/O placed on a common bus, is connected to
other nodes via some high speed, high bandwidth
interconnection network. Memory in a particular node is at a
distance (which refers to latency, bandwidth or hops) from the
processors of other nodes, resulting in the non-uniform access

time of local and remote memories [1] [20]. A typical NUMA
system is shown in Figure 1.

Figure 1: NUMA System with 4 Nodes, 16 Processors and
2 Memory Access Levels[N1, N2 … are Nodes; P1, P2 …

are Processors; M1, M2 … are Memories]

It is said to have 2 Memory Access Levels (MALs) due to
twodifferent memory latencies: (i) When a processor accesses
memory in its own node (ii) When the processor accesses any

memory outside its node [5].

1.1 Dynamic Load Balancing
Linux, a widely used operating system for NUMA systems,
implements separate runqueues for each processor and to
avoid any load imbalance among them, incorporates a
Dynamic Load Balancing (DLB)technique in the scheduler.Its
load balancer makes use of a data structure ‘sched domain’

which groups processors together in a hierarchy that mimics
the physical hardware. A scheduling domain or sched domain
is a set of processors which share properties and scheduling
policies. Figure 2 depicts sched domain hierarchy for the
system shown in Figure 1. The lowest level sched domains are
called CPU/Coredomains. Each CPU domain consists of all
processors of a particular node and points to a higher domain
(parent domain) called node domain which consists of this

particular node and all those nodes which are at some
particular distance from this node. Thus for NUMA system
with two memory access levels, there will be two levels in the
sched domain hierarchy and the node domain will comprise of
all the nodes of the system, as shown in Figure 2 [5].The
sched domain hierarchy defines the scope of load balancing
for each processor. In a scheduling domain, the sets of
processors among which the load balancing is performed are

called scheduling groups. For a processor performing load
balancing at lowest level domain, scheduling groups will be
all the processors in its node; and at higher levels, scheduling
groups will be all the nodes at that level.

Figure 2: Sched Domain Hierarchy for NUMA System

with Two Memory AccessLevels

Load balancer, which runs on each processorseparately, is
invoked in three different situations and performs the load

balancing as explained below [15] [17]:
(i) Periodically at specific time intervals: During the periodic
load balancing cycle, the load balancer traverses the entire
sched domain hierarchy, starting at the current processor’s

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 13, July 2021

21

sched domain, and initiates a balancing operation if it is due
for balancing. At each level, it first finds the busiest processor
of busiest scheduling group and then migrates the tasks
(processes or threads) from that processor to the current
processor if the load of the busiest processor is more than the

load of the current processor, as per the load threshold (25%;
or 12% in some cases) (ii) When a task is newly created or
woke-up through system calls fork(), exec(), clone(),
wakeup() : In this condition, the task is moved to the least
loaded processor of the least loaded scheduling group (node)
in its current domain (iii) When a processor becomes idle: In
this condition, idle load balancing is performed by the idle
processor starting from the parent domain and moving upward

in the sched domain hierarchy; it selects the most loaded
scheduling group (node) in the current domain and migrates
tasks from the most loaded processor to this processor.
It is obvious from the foregoing description that large
overheadsof time are involved in performing the dynamic load
balancing. Though these overheads are inevitable and not
avoidable always, an efficient load balancer should attempt to
minimize them by finding the conditions under which

unnecessary attempts of load balancing and process
migrations may be avoided. However, an asymmetry unaware
load balancer, instead of minimizing the overheads, may
aggravate the problem of load balancing overheadsas it may
not exploit the capabilities of faster cores (speed cores) in
performing load balancing activities (as detailed in Section 2),
and therefore, will not achieve optimum performance in terms
of cores’ utilization and Turn Around Time (TAT) of the

processes.
The objective of our work, therefore, is the design of a
Capability Aware Load Balancer which performs the load
balancing in accordance with the capabilities of different
cores (in our case, faster/slower clock speeds) to achieve the
better performance by avoiding frequent load balancing
attempts and taking proper load balancing decisions.

2. PITFALLS IN ASYMMETRY UNAWARE

LOAD BALANCING ALGORITHM AND

SCOPE OF ITS IMPROVEMENT
In this sectionthe reasons of more overheads incurred in an
asymmetry unaware load balancer are analysed first, and then
the scope of its improvement is explored. During periodic or
idle load balancing, time overheads are incurred in finding
the load of various processors/nodes, comparing it with the
load of the processor performing the load balancing, and

migration of the processes, if needed.A load balancer
unaware of the presence of asymmetric cores in a multicore

processor will cause too frequent load balancing attempts
done by faster cores due to the fact that these cores will
speedily complete the execution of the tasks allocated to them
and will create load imbalance across the various cores
frequently. In addition, this load balancer will also not take

certain load balancing decisions in accordance with the
capabilities of the cores, for example, allocation of similar
cores to different threads of the same process, allocation of
faster cores to CPU bound tasks etc. As a consequence of all
these inappropriate decisions, there will be more overheads
resulting into non-optimum or even degraded performance.
In order to further understand the aforesaid issues, we
performed the load balancing (through simulation) on various

NUMA multicore systems having asymmetric cores (half of
the cores, faster cores and half of the cores, slower or normal
cores) using the asymmetry unaware linux load balancer. A
careful analysis of the process traces and simulation results
revealed that due to non-exploitation of the faster cores
available, the asymmetry unaware load balancer incurs more
load balancing overheads, majorly the idle load balancing
overheads and, therefore, is not able to achieve the optimum

performance. The findings are analysed and explained
through an example in which the load balancer executing on a
normal core C7 attempts load balancing against a speed core
C0. Figure 3 depicts the scenario of load balancing. For
simplicity it is assumed that load of each process is same, in
this example.
As shown in the Figure, during a load balancing cycle, the
load balancer finds a speed core C0 to be overloaded as

compared to it: C7 at time t=t0 hasa load of 2 processes
whereas C0 has a load of 10 processes. The load balancer
therefore pulls 4 processes- p6, p7, p8 and p9, to equalize the
load between the two cores. After certain amount of time, say
at time t=t1, C7 still has these processes partially executed, in
its runqueue , alongwith two other processes, however, CO
being the speed core finishes the execution of all the processes
in its runqueue in the time period t0-t1. Since the runqueue of
C0 becomes empty, it initiates an idle load balancing and

incidentally pulls the processes p7, p8 and p9 fromC7: the
same processes which were pulled by C7 from C0 during the
current load balancing cycle. Same situation occurs at t=t2
when the runqueue of C0 again becomes empty and it pulls
one process- p4, from C7. In this manner the speed core C0
perform idle load balancing many times before the occurrence
of next regular load balancing cycle. Moreover, it pulls the
CPU bound processes p7 and p9 from the faster core CO even

when IO bound processes p0 and p99 were present.

 C0 (speed core at time t0) C0 (at time t1) C0 (at time t2)

p2 p7 p8 p1 p9 p6 p5 p0 p99 p22

 C7 (Normal core at time t0) C7 (at time t1) C7 (at time t2)

p3 p4 . p3 p4 p8 p9 p7 p6 p3 p4 . . p6 .

Figure 3: Load Balancing Scenario during a load balancing cycle, for Asymmetry Unaware Load Balancer (C0, C7
are Runqueues of Cores C0, C7 ; pi is process with pid=i)

From the aforesaid observations about the functioning of the
load balancer, it can be noted that: (i) More no. of idle load
balancing attempts are done by the speed core during a single
load balancing cycle, resulting into increased overheads(ii)

Memory access time may increase because the pages of some
of the processes pulled, may be lying on the Nodesfrom which
they are migrated (iii) Cache-miss overheads may increase,
because the cache of the migrated processes, located on their

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 13, July 2021

22

previous cores, will become invalid(iv) TAT of CPU bound
processes is likely to be more because they are not allowed to
fully execute on the faster core C0.
The same situation as described above will arise when a speed
core will perform load balancing against a normal core. To

avoid the overheads arising due to unawareness of the load
balancer about the difference in clockspeeds of the cores, the
load balancer executing on normal core should have pulled
lessno. of processes (processes with less load) from the speed
core and that too the IO bound processes, and vice-versa. If
this was done, unnecessary overheads of frequent idle load
balancing and cache miss & memory latency would not have
come in picture.

Based on these findings and threads obtained for
improvement, an efficient load balancer for asymmetric
multicore processors has been proposed in this paper.

3. RELATED WORK
Asymmetric multicore processors pose unique challenges to
existing load balancers which traditionally assume all the
cores to be homogeneous, and therefore do not work well for
asymmetric architectures. Many researchers have identified
the relevant issues and addressed them in their work.
Significant contributions of some of the researchers are
presented below:
Li et al. proposed an Asymmetric Multiprocessor Scheduler

(AMPS) which was composed of asymmetry-aware load
balancing, faster-core-first scheduling, and NUMA-aware
migration, for performance-asymmetric multi-core
architectures. Their asymmetry-aware load balancing took
advantage of distinct computing powers of the heterogeneous
system; Faster-core-first scheduling policy of their scheduler
enabled threads to run on more powerful cores whenever they
are under-utilized [13].An algorithm called speed balancing
was proposed by Hofmeyr et al. for asymmetric multicore

processors. Instead of the use of weights as done by the linux
load balancer, they substituted the computation for load
balancing to be based on speed, where speed is defined as the
CPU elapsed time divided by the actual wall clock time.
Instead of balancing runqueue length, their load balancer
balanced the time a thread had executed on faster and slower
cores. The authors argued that the migration to a faster core
will be able to effectively compensate for the migration

overheads across caches[8].
Kim et al. in [11] emphasize the need tomatch each
application with the best core type in asymmetric multi-core
systems. Based on their study they state that uneven core
capability is inherently unfair to threads and causes
performance variance, as applications running on fast cores
receive higher capability than applications on slow cores.
Scheduling policies were, therefore, proposed by them which

guarantee a minimum performance bound while improving
the overall throughput and reducing performance variation.
Although the work of the authors was towards scheduling
policies for asymmetric multicore processors, it is obvious
that the load balancing should also be performed taking the
advantages of faster cores.
 In [15], authors propose an optimized load balancing policy
for multi-threaded applications executing on recently designed

Tiled multicore processors, in which processing cores are
fitted onto a single chip and are interconnected via mesh-
based networks. A load balancer designed for traditional
multicore systems and unaware of this new architecture, might
introduce the penalty of cache misses because of the more
threads sharing the same tile (processing core), and the
contention for memory controllers due to cache misses. Thus,
authors implemented an optimized load balancing policy for

tiled many-core processors- KNL and the TILE-Gx72. This
work is although not directly related to asymmetric multicore
processors, but certainly states the need and advantage of an
architecture aware load balancer.
Many other researchers have done similar work. The

commonality in their work is the use of an appropriat core for
a particular purpose, depending on its capability so as to
optimize the system performance. The work presented in our
paper will also be a contribution towards the same objective.

4. PROPOSED CAPABILITY AWARE

LOAD BALANCING ALGORITHM
The proposed Capability Aware Load Balancer basically
performs all the load balancing activities keeping in view the
speed of thedifferent cores and taking the advantage of

available faster coresof the multicore processors. The load
balancer will be invoked in the same conditions under which
linux load balancer is invoked, however, it will function
differently in certain aspects as per the following load
balancing policies:

4.1 Load Balancing Policies Incorporated

in theCapability Aware Load Balancer
4.1.1 Process Migration Policy:
The proposed load balancer performs the periodic load
balancing as usual, however while performing the load
balancing between two dissimilar cores, it pulls more

processes (having double the load as compared to current
core, assuming the speed core to be two times faster). Further,
it prefers to pull the CPU bound processes, if it is executing
on a speed core; and vice-versa. This policy will avoid the
unnecessary idle load balancing attempts as were incurred in
an asymmetry unaware algorithm. Figure 4 illustrates the
same, for the example taken in Section 2.
It can be observed that noidle load balancing attempts take

place during the load balancing cycle, and IO bound
processes are preferred for migration by the normal core,
allowing the CPU bound processes to execute on the faster
core.

4.1.2 Task Selection Policy:

(i) While selecting the tasks for migration on speed coresfrom

the normal cores, priority is given to CPUbound tasks to take
advantage of the speed (ii) In a multithreaded application
environment, all threads of a particular process are kept on
similar cores (speed cores, if possible) so that the process
completion is not held-up due to slower threads.

4.1.3 No Load Balancing/No Operation

Policy:When task to speedcore ratio is <= 1, i.e., when no.

of tasks in the system are less than or equal to no. of
speedcores, the load balancer pulls all the tasks from the
slower core, if it is executing on speed core;and pushes all the
tasks to speed core, if it is executing on the slower core.
Moreover, it does not execute on idle slower cores till the
task/speedcore ratiodoes not become more than 1.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 13, July 2021

23

 C0 (speed core at time t0) C0 (at time t1)

p2 p99 p0 p1 . p9 p6 p5 p8 p7 p22 p2 p7 p1 p9 p22 p99 p8 p5

 C7 (Normal core at time t0) C7 (at time t1)

p3 p4 , p3 p4 p0 . . . p6

Figure 4: Load Balancing Scenario during a load balancing cycle, for Capability Aware Load Balancer

(C0, C7 are Runqueues of Cores C0, C7 ; pi is process with pid=i)

4.1.4 Selection of Core for Load Balancing:
If faster cores are free, they are employed for performing the
load balancing.

The formal description of the proposed load balancing
algorithmis as following:

Algorithm 1 : Capability Aware Load Balancing

__

For all Nodes of the system N=1 to n and all cores C=1 to c of
each Node, carry out the following steps:

1. {
2. if ((systemwide task to speed core ratio is <=1)

 and (current core is a normal core)) then
3. no load balancing to be done by the current core;

 // this normal core eventually become idle core
 and hence it is not required to perform load
 balancing till task to speed core ratio is <=1

4. for MAL=1 to max_memory_access_levels do
5. {
6. if (MAL==1) then
7. {
8. core_performing_LB = CC;

 //CC is the idle core or the first core
9. find the load of all cores of curr_node, except the

core_performing_LB;
10. find the busiest core; // core having highest load

 // while finding the busiest core, load of a speed
 core is considered as half of its actual load

11. }
12. else //if MAL is > 1

13. {
14. core_performing_LB = CC;

//CC is the idle core or the first core
15. find the busiest scheduling group out of all the

 scheduling groups (all nodes) at memory access
 level MAL;

 // while calculating the load of any node, load of a
 speed core is considered half of its current load

 16. find the busiest core of the busiest node

 (scheduling group with highest load);
 17. } //end of if statement at step no. 6
 18. if (core_performing_LB is speed core .and.

busiest core is NOT the speed core) then
 19. {
 20. LB_core_load = load of core_performing_LB/2;

 21. target_core_load = load of busiest core;

 22. if (systemwide task to speed core ratio is <=1) then

 23. {
 24. migrate all processes from busiest core to

 core_performing_LB;
25. go to step 49; //go to next MAL
26. }
27. }

28. else
29. if (core_performing_LB is slower core .and. busiest

core is speed core) then
30. {
31. target_core_load = load of busiest core/2;
32. LB_core_load = load of core_performing_LB;
33. if (systemwide task to speed core ratio is <=1) then
34. {
35. migrate all processes from core_performing_LB

to busiest core;
 // perform a PUSH migration to speed core

36. go to step 49; //go to next MAL
37. }
38. }
39. endif; //end of if statement at step no. 18
40. if (LB_core_load < target_core_load) then
41. {

 // compare the load of the core_performing_LB
 with that of the busiest core

 42. obtain lock on target_core;
 // busiest core is the target core
 43. obtain lock on core_performing_LB;
 44. select appropriate no. of processes for

 migration (in accordance with the speed of the
 core_performing_LB), preferring CPU-bound

 processes if core_performing_LB is speed core;
 45. migrate the selected processes from busiest core to
 core_performing_LB;
 // pull the processes/threads from the busiest core

 till the load of the two cores remain imbalanced
 (dequeue the selected process from the target

 core and enqueue on the core_performing_LB)
 46. release lock on core_performing_LB;

 47. release lock on target_core;
 48. } //end of if statement at step no. 40
 49. MAL = MAL+1;
 50. } // end of for loop at step no. 4
 51. } // end of Algorithm
__

The code given in this algorithm is for periodic as well as idle
load balancing. When the load balancer will be invoked by

any process arriving in the Ready queue from the Wait queue
or through fork(), exec() or clone() system calls, a least loaded
core will be allocated to that process.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 13, July 2021

24

5. SIMULATION AND RESULTS
To evaluate the performance of the Capability Aware Load

BalancingAlgorithm, experimentation was done using a
simulator of NUMA Multiprocessor/Multicore systems under
linux [19], modified by incorporating the proposed algorithm
into it. The experimentation was done for different types of
NUMA Multicore SystemsAMC1-AMC3having asymmetric
cores, as following:(i) AMC1: 32 core system (16 Nodes, 2
cores per Node, 2MALs)(ii) AMC2: 64 coresystem (32
Nodes, 2 cores per Node, 3 MALs)(iii) AMC3: 128 core

system (32 Nodes, 4 cores per Node, 6 MALs). For each
system, different workloads (W1, W2) were generated.

5.1 Results
The results of simulation, in terms of Turn Around Time

(TAT) and Performance Gain (improvement in TAT) are
given in Tables 1 to 3 and are also depicted in the
corresponding graphs given after the respective
Tables(Workload Characteristics are specified as W1, W2
in each Table and Graph).

Table 1: Turn Around Time of Processes and Performance Gain for Capability Aware Load Balancing Algorithm

vsAsymmetry Unaware Load Balancing Algorithm for NUMA System AMC1

No. of

processes

W1- Process type: CPU bound;

Execu. time: 200 ms; Arrival:
random

W2- Process type: Mix of CPU &

IO bound; Execu. time: varying
(50-300 ms); Arrival: random

TAT (ms):
Asymmetry
UnawareAlg
o.

TAT (ms):
Capability
Aware
Algo.

Perf.
Gain
(%)

TAT (ms):
Asymmetry
UnawareAl
go.

TAT (ms):
Capability
Aware
Algo.

Perf.
Gain
(%)

100 248 238 4.03 164 158 3.66

200 419 403 3.82 244 232 4.92

300 603 575 4.64 316 302 4.43

400 786 750 4.58 388 369 4.90

600 1172 1111 5.20 564 537 4.79

Figure 5: Turn Around Time of Processes for Capability Aware Load Balancing Algorithm vs Asymmetry Unaware Load

Balancing Algorithm for NUMA System AMC1

248

419

603

786

1172

238

403

575

750

1111

164

244

316
388

564

158

232

302

369

537

0

150

300

450

600

750

900

1050

1200

0 100 200 300 400 600

A
v
er

a
g
e

T
u

rn
 A

ro
u

n
d

 T
im

e
(m

s)

No. of Processes

Asymmetry Unaware Algorithm (W1) Capability Aware Algorithm (W1)

Asymmetry Unaware Algorithm (W2) Capability Aware Algorithm (W2)

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 13, July 2021

25

Figure 6: Performance Gain in Capability Aware Load Balancing over Asymmetry Unaware Load Balancing for NUMA

System AMC1

Table 2: Turn Around Time of Processes and Performance Gain for Capability Aware Load Balancing Algorithm vs

Asymmetry Unaware Load Balancing Algorithm for NUMA System AMC2

No. of
processes

W1- Process type: CPU bound;
Execu. time: 300 ms; Arrival: same
time

W2- Process type: CPU bound;
Execu. time: 400 ms ; Arrival:
almost same time

TAT (ms):
Asymmetry

Unaware
Algo.

TAT (ms):
Capability

Aware
Algo.

Perf.
Gain

(%)

TAT (ms):
Asymmetry

Unaware
Algo.

TAT (ms):
Capability

Aware
Algo.

Perf.
Gain

(%)

64 301 289 3.99 384 368 4.17

128 459 434 5.45 660 639 3.18

256 862 827 4.06 1186 1106 6.75

384 1132 1080 4.59 1560 1486 4.74

512 1534 1439 6.19 2141 1993 6.91

Figure 7: Turn Around Time of Processes for Capability Aware Load Balancing Algorithm vs Asymmetry Unaware Load

Balancing Algorithm for NUMA System AMC2

4.03

3.82

4.64

4.58

5.2

3.66

4.92

4.43

4.9

4.79

0

1

2

3

4

5

6

0 100 200 300 400 600

P
er

fo
rm

a
n

ce
 G

a
in

 (
%

)

No. of Processes

Perf. Gain (W1) Perf. Gain (W2)

301

459

862

1132

1534

289

434

827

1080

1439

384

660

1186

1560

2141

368

639

1106

1486

1993

0

150

300

450

600

750

900

1050

1200

1350

1500

1650

1800

1950

2100

2250

0 64 128 256 384 512

A
v
er

a
g
e

T
u

rn
 A

ro
u

n
d

 T
im

e
(m

s)

No. of Processes

Asymmetry Unaware Algorithm (W1) Capability Aware Algorithm (W1)

Asymmetry Unaware Algorithm (W2) Capability Aware Algorithm (W2)

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 13, July 2021

26

Figure 8: Performance Gain in Capability Aware Load Balancing over Asymmetry Unaware Load Balancing for NUMA

System AMC2

Table 3: Turn Around Time of Processes and Performance Gain for Capability Aware Load Balancing Algorithm

vsAsymmetry Unaware Load Balancing Algorithm for NUMA System AMC3

No. of
processes

W1- Process type: CPU bound;
Execu. time: 300 ms; Arrival:
almost same time

W2- Process type: Mix of CPU & IO
bound; Execu. time: varying (50-
400 ms); Arrival: same time

TAT (ms):

Asymmetry
Unaware
Algo.

TAT (ms):

Capability
Aware
Algo.

Perf.

Gain
(%)

TAT (ms):

Asymmetry
Unaware
Algo.

TAT (ms):

Capability
Aware
Algo.

Perf.

Gain
(%)

100 380 356 6.31 285 274 3.86

200 485 448 7.63 331 316 4.53

300 759 700 7.77 490 457 6.73

400 890 831 6.63 599 561 6.34

500 1204 1093 9.21 730 679 6.98

Figure 9: Turn Around Time of Processes for Capability Aware Load Balancing Algorithm vs Asymmetry Unaware Load

Balancing Algorithm for NUMA System AMC3

3.99

5.45

4.06
4.59

6.19
4.17

3.18

6.75
4.74

6.91

0

2

4

6

8

0 64 128 256 384 512

P
er

fo
rm

a
n

ce
 G

a
in

 (
%

)

No. of Processes

Perf. Gain (W1) Perf. Gain (W2)

380

485

759

890

1204

356
448

700

831

1093

285
331

490

599

730

274
316

457

561

679

0

150

300

450

600

750

900

1050

1200

1350

0 100 200 300 400 500

A
v
er

a
g
e

T
u

rn
 A

ro
u

n
d

 T
im

e
(m

s)

No. of Processes

Asymmetry Unaware Algorithm (W1) Capability Aware Algorithm (W1)
Asymmetry Unaware Algorithm (W2) Capability Aware Algorithm (W2)

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 13, July 2021

27

Figure 10: Performance Gain in Capability Aware Load Balancing over Asymmetry Unaware Load Balancing for NUMA

System AMC3

5.2 Observations and Discussion on

Results
It is evident from the experimentation results that Capability
Aware Load Balancing Algorithm outperforms theAsymmetry
Unawarelinux load balancing algorithm.For various NUMA
systems havingasymmetric cores, it exhibited improved
average TAT in the range of 4-9 %. This performance gain
achieved, attributes mainly to the reduced idle load balancing
overheads.

It is further observed that- (i) Forsystems with more no. of
cores, performance gain is better as expected. The reason is
obvious: with increase in no. of asymmetric
cores,unnecessary idle load balancingattempts increase in
asymmetry unaware load balancing, but not in Capability
Aware load balancing(ii) There is variation in performance
gain for different sets of processesfor the same system. Thisis
due to the difference in arrival time, burst timeand type (CPU

bound or IO bound) of the processes.

6. CONCLUSION
One of the factors which hinders the performance
improvement of any load balancer is the overheadsarising out
of improper load balancing decisions.In the research work

presented in this paper, we investigated the reasons of
increased overheads in any asymmetry unaware load balancer
including that of linux and proposed a Capability Aware
Dynamic Load Balancer to achieve the optimum performance.
On the basis of simulation results, it can be concluded that the
proposed load balancer has successfully addressed the issue of
unnecessary load balancing overheads which is therein
asymmetry unaware load balancers, and hasenhanced the

performance significantly. The work presented in this paper
will supplement the efforts of the researchers attempting to
design efficient load balancers for upcoming multicore
systems, and can be extended for the processors having the
other heterogeneity also, apart from the different clock speeds
for different cores.

7. REFERENCES
[1] Martin J. Bligh, M. Dobson, D. Hart, and G. Hu Lzenga,

“Linux on NUMA Systems,” Linux Symposium, Vol. 1,
2004, pp. 89-102.

[2] Quan Chen, and Minyi Guo, “Dynamic Load Balancing
for Asymmetric Multi-core Architecture,” Book Chapter
in book: Task Scheduling for Multi-core and Parallel
Architectures, November 2017, pp 113-151.

[3] Mei-Ling Chiang, Shu-Wei Tu, Wei-Lun Su, and Chen-
Wei Lin, “Enhancing Inter-Node Process Migration for
Load Balancing on Linux-Based NUMA Multicore
Systems,” IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), July 2018.

[4] Keng-Mao Cho, Chun-Wei Tsai, Yi-Shiuan Chiu, and
Chu-Sing Yang, “A High Performance Load Balance

Strategy for Real-Time Multicore Systems,” Research
Article, Scientific World Journal Volume 2014, 14th April
2014.

[5] M. Correa, R. Chanin, A. Sales, R. Scheer, and A. Zorzo,
“Multilevel Load Balancing in NUMA Computers,”
Technical Report No. 49, PPGCC-FACIN-PUCRS,
Brazil, July 2005.

[6] Alexandra Fedorova, “Operating System Scheduling for

Chip Multithreaded Processors,” Ph.D. Thesis, Harvard
University Cambridge, Massachusetts, September, 2006.

[7] Erich Focht, Mathew Dobson, Patricia Gaughen, and
Michael Hohnbaum, “Linux Support for NUMA
Hardware,” Linux Symposium, July 2003.

[8] S. Hofmeyr, C. Iancu, and F. Blagojevi, “Load Balancing
on Speed,” Proc. of 15th ACM SIGPLAN Symposiumon
Principles and practice of parallel programming (PPoPP

'10), New York, USA, 2010, pp. 147-158.

[9] Weiwei Jia, “How does load balancing work inside of
operating systems, Linux as an example,” Available:
https://www.systutorials.com/load-balancing-work-
internal-operating-systems/, June 10, 2020.

[10] M. Tim Jones, “Inside the Linux Scheduler,” Available:
www.ibm.com, June 2006.

[11] Changdae Kim, and Jaehyuk Huh, “Exploring the Design

Space of Fair Scheduling Supports for Asymmetric
Multicore Systems,” IEEE Transactions on Computers ,
January 2018, pp(99):1-1.

[12] B. Lepers, V. Qu´ema, and A. Fedorova, “Thread and
memory placement on NUMA systems: asymmetry
matters”, in Proceedings ofUsenix Annual Technical
Conference, USENIX ATC ’15, 2015.

[13] Tong Li, D. Baumberger, D. A. Koufaty, and S. Hahn,
‘‘Efficient Operating System Scheduling for

Performance-Asymmetric Multi-Core Architectures,’’
Proc. of ACM/IEEE Conf. on Supercomputing, Nov.
2007, pp. 1–11.

6.31

7.63 7.77
6.63

9.21

3.86
4.53

6.73
6.34 6.98

0

2

4

6

8

10

0 100 200 300 400 500

P
er

f.
o
rm

a
n

ce
 G

a
in

 (
%

)

No. of Processes

Perf. Gain (W1) Perf. Gain (W2)

https://www.researchgate.net/scientific-contributions/Quan-Chen-2162933290
https://www.researchgate.net/scientific-contributions/Minyi-Guo-9589496
https://www.researchgate.net/publication/321501378_Task_Scheduling_for_Multi-core_and_Parallel_Architectures_Challenges_Solutions_and_Perspectives
https://www.researchgate.net/publication/321501378_Task_Scheduling_for_Multi-core_and_Parallel_Architectures_Challenges_Solutions_and_Perspectives
https://www.researchgate.net/scientific-contributions/Mei-Ling-Chiang-2045739612?_sg%5B0%5D=Yff6daliEALRV2De-70NvLbUK5bKmsPU1hoJUfl9ZaxdzroXFb2z0bphw5IHC5MI97r9r_w.EOKmi4M9ggAH_P0GYrhuPRREcfcvoe8UaHeoZhUr_kHBAPe2OmZOdDFQFnFeiV86uAa2cwQONe1rh5-Sv0i6Cw&_sg%5B1%5D=QGTRuvEKYtyuhslef6-ltgv3u8xvIBx3H_khk3kCD8D1aPlinMVcgIFfdmjUcggxXZMD6lQ.lAorYQpHH9Dbef2UPTEUWU-LpVilAqZMtMLpCpLN0d5cC72F98F4zMi994IQKvTVbs5blk9Odak-mOi5SRyKRA
https://www.researchgate.net/scientific-contributions/Shu-Wei-Tu-2113760069?_sg%5B0%5D=Yff6daliEALRV2De-70NvLbUK5bKmsPU1hoJUfl9ZaxdzroXFb2z0bphw5IHC5MI97r9r_w.EOKmi4M9ggAH_P0GYrhuPRREcfcvoe8UaHeoZhUr_kHBAPe2OmZOdDFQFnFeiV86uAa2cwQONe1rh5-Sv0i6Cw&_sg%5B1%5D=QGTRuvEKYtyuhslef6-ltgv3u8xvIBx3H_khk3kCD8D1aPlinMVcgIFfdmjUcggxXZMD6lQ.lAorYQpHH9Dbef2UPTEUWU-LpVilAqZMtMLpCpLN0d5cC72F98F4zMi994IQKvTVbs5blk9Odak-mOi5SRyKRA
https://www.researchgate.net/scientific-contributions/Wei-Lun-Su-2144446274?_sg%5B0%5D=Yff6daliEALRV2De-70NvLbUK5bKmsPU1hoJUfl9ZaxdzroXFb2z0bphw5IHC5MI97r9r_w.EOKmi4M9ggAH_P0GYrhuPRREcfcvoe8UaHeoZhUr_kHBAPe2OmZOdDFQFnFeiV86uAa2cwQONe1rh5-Sv0i6Cw&_sg%5B1%5D=QGTRuvEKYtyuhslef6-ltgv3u8xvIBx3H_khk3kCD8D1aPlinMVcgIFfdmjUcggxXZMD6lQ.lAorYQpHH9Dbef2UPTEUWU-LpVilAqZMtMLpCpLN0d5cC72F98F4zMi994IQKvTVbs5blk9Odak-mOi5SRyKRA
https://www.researchgate.net/scientific-contributions/Chen-Wei-Lin-2144451960?_sg%5B0%5D=Yff6daliEALRV2De-70NvLbUK5bKmsPU1hoJUfl9ZaxdzroXFb2z0bphw5IHC5MI97r9r_w.EOKmi4M9ggAH_P0GYrhuPRREcfcvoe8UaHeoZhUr_kHBAPe2OmZOdDFQFnFeiV86uAa2cwQONe1rh5-Sv0i6Cw&_sg%5B1%5D=QGTRuvEKYtyuhslef6-ltgv3u8xvIBx3H_khk3kCD8D1aPlinMVcgIFfdmjUcggxXZMD6lQ.lAorYQpHH9Dbef2UPTEUWU-LpVilAqZMtMLpCpLN0d5cC72F98F4zMi994IQKvTVbs5blk9Odak-mOi5SRyKRA
https://www.researchgate.net/scientific-contributions/Chen-Wei-Lin-2144451960?_sg%5B0%5D=Yff6daliEALRV2De-70NvLbUK5bKmsPU1hoJUfl9ZaxdzroXFb2z0bphw5IHC5MI97r9r_w.EOKmi4M9ggAH_P0GYrhuPRREcfcvoe8UaHeoZhUr_kHBAPe2OmZOdDFQFnFeiV86uAa2cwQONe1rh5-Sv0i6Cw&_sg%5B1%5D=QGTRuvEKYtyuhslef6-ltgv3u8xvIBx3H_khk3kCD8D1aPlinMVcgIFfdmjUcggxXZMD6lQ.lAorYQpHH9Dbef2UPTEUWU-LpVilAqZMtMLpCpLN0d5cC72F98F4zMi994IQKvTVbs5blk9Odak-mOi5SRyKRA
https://www.systutorials.com/author/harryxiyou/
https://www.systutorials.com/load-balancing-work-internal-operating-systems/
http://www.ibm.com/
https://www.researchgate.net/scientific-contributions/Changdae-Kim-69768872?_sg%5B0%5D=7kUI9LpNcqrK9-FCtY2rVMIkhPuBWM1WZyU92LjzG55FLksFO7fEdTX02lguBKu2fPOABt4.tnxyGhGEmwDkqLsSrOrgFk6m0QH3CJUD3wu17Bm1nHuiyyVrpALA0S311EiocdYoV58reCsq2_icLHYckqP2CA&_sg%5B1%5D=yFPsKZGtlAplMXXj8_5GFx-l9tFNV2SrR5ldG-QImMZ-naD8clETOT1XzUjsVRoX679M22E.VmamsE1kNfkkUtwWza52Rui1fyNa7rrHgC8zIaHezwtVEEduAyRIvNprVjZOQduAIIeboaTK_Tckh5So8phfIA
https://www.researchgate.net/scientific-contributions/Jaehyuk-Huh-70920033?_sg%5B0%5D=7kUI9LpNcqrK9-FCtY2rVMIkhPuBWM1WZyU92LjzG55FLksFO7fEdTX02lguBKu2fPOABt4.tnxyGhGEmwDkqLsSrOrgFk6m0QH3CJUD3wu17Bm1nHuiyyVrpALA0S311EiocdYoV58reCsq2_icLHYckqP2CA&_sg%5B1%5D=yFPsKZGtlAplMXXj8_5GFx-l9tFNV2SrR5ldG-QImMZ-naD8clETOT1XzUjsVRoX679M22E.VmamsE1kNfkkUtwWza52Rui1fyNa7rrHgC8zIaHezwtVEEduAyRIvNprVjZOQduAIIeboaTK_Tckh5So8phfIA

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 13, July 2021

28

[14] Geunsik Lim, Changwoo Min, and Younglk Eom,
“Load-Balancing for Improving User Responsiveness on
Multicore Embedded Systems,” Linux Symposium, 2012.

[15] Ye Liu, Shinpei Kato, and Masato Edahiro,
“Optimization of the Load Balancing Policy for Tiled

Many- Core Processors,” IEEE Access Journal, Dec.
2018.

[16] Robert Love, “Linux Kernel Development,” Novell
Press, 2nd edition, Jan. 2005.

[17] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien
Gaud, Vivien Qu´ema, and Alexandra Fedorova, “The
Linux Scheduler: a Decade of Wasted Cores,” EuroSys
’16, London, UK, April 18 - 21, 2016.

[18] N. Padhy, A. Panda, and S.P. Patro, “A Cyclic
Scheduling for Load Balancing on Linux in Multi-core
Architecture,” in Proc. Third International Conference
onSmart Computing and Informatics, 2019, pp. 369-
378.

[19] Shreelekha Pandey, “Simulator for Linux Scheduler and
Load Balancer for NUMA Multiprocessor
Architectures,” M.E. Dissertation, S.G.S.I.T.S., 2009.

[20] Shreelekha Pandey, D.A. Mehta, “Simulator of NUMA
Multiprocessor Environment & Linux Load Balancing
Scheduler,” IJCEE, Dec. 2013.

[21] L. L. Pilla et al., ‘‘A Hierarchical Approach for Load
Balancing on Parallel Multi-Core Systems,’’ in Proc.

41st Int. Conf. Parallel Process (ICPP), Sep. 2012, pp.
118–127.

[22] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N.
Bhuyan, “Tumbler: An Effective Load Balancing
Technique for MultiCPU Multicore Systems,” ACM

Transactions on Architecture and Code Optimization,
Vol 160, Springer, Singapore, January 2015.

[23] Suresh Siddha, “sched: new sched domain for
representing multicore,” Available:http://lwn.net/
Articles/ 169277 /

[24] Mukesh Singhal, and Niranjan G. Shivaratri, “Advanced
Concepts in Operating Systems,” Mcgraw Hill
International, 1994.

[25] Ian K. T. Tan, Ian Chai, and Poo Kuan Hoong, “An
Adaptive Task-Core Ratio Load Balancing Strategy for
Multi-core Processors,” International Journal of
Computer and Electrical Engineering, Vol. 3, No. 5,
October 2011.

[26] Priyesh Kanungo, “Contributions in Dynamic Load
Balancing Techniques for Distributed Computing
Environment,” Ph.D. Thesis, IET-DAVV, Computer

Engg., 2007.

[27] Linux Kernel Documentation [Online].
Available:https://www.kernel.org/doc/html/latest/

IJCATM : www.ijcaonline.org

