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ABSTRACT 

The different cores of state-of-the artmulticore processors are 
performance asymmetric: they are different in terms of their 
clock speeds and other capabilities. Such heterogeneous 

multicore processors pose challenges to existing Dynamic 
Load Balancers in achievingoptimum performance.A load 
balancer taking the load balancing related decisions assuming 
all cores to be homogeneous, introduces unnecessary 
overheads of time, does not exploit the capabilities of higher 
performance cores, and consequently fails to achieve the 
possible performance improvement.We, therefore, propose a 
Capability Aware Dynamic Load Balancer which performs 

efficient load balancing for asymmetric multicore  processors 
by addressing the aforesaid issues. Considering the  difference 
in clock speeds as the heterogeneity among different cores, the 
proposed load balancer improves the Turn Around Time of 
processes significantly as compared to Asymmetry unaware 
linux load balancer. The results of experimentation exhibit the 
performance gain in the range of  4-9%, for three different 
multicore systems having 32, 64 and 128 cores respectively. 
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1. INTRODUCTION 
Multiprocessor and Multicore systems are typically designed 
based on Non Uniform Memory Access (NUMA) 

architecture. A NUMA Multiprocessor/Multicore system 
(NUMA system) is organized in the form of Nodes. A node 
consisting of a set of processors (the terms processor and core 
are used interchangeably in this paper), part of the main 
memory and I/O placed on a common bus, is connected to 
other nodes via some high speed, high bandwidth 
interconnection network. Memory in a particular node is at a 
distance (which refers to latency, bandwidth or hops) from the 
processors of other nodes, resulting in the non-uniform access 

time of local and remote memories [1] [20]. A typical NUMA 
system is shown in Figure 1.  

Figure 1: NUMA System with 4 Nodes, 16 Processors and 
2 Memory Access Levels[N1, N2 … are Nodes; P1, P2 … 

are Processors; M1, M2 … are Memories] 

It is said to have 2 Memory Access Levels (MALs) due to 
twodifferent memory latencies: (i) When a processor accesses 
memory in its own node (ii) When the processor accesses any 

memory outside its node [5]. 

1.1 Dynamic Load Balancing 
Linux, a widely used operating system for NUMA systems, 
implements separate runqueues for each processor and to 
avoid any load imbalance among them, incorporates a 
Dynamic Load Balancing (DLB)technique in the scheduler.Its 
load balancer makes use of a data structure ‘sched domain’ 

which groups processors together in a hierarchy that mimics 
the physical hardware.  A scheduling domain or sched domain 
is a set of processors which share properties and scheduling 
policies. Figure 2 depicts sched domain hierarchy for the 
system shown in Figure 1. The lowest level sched domains are 
called CPU/Coredomains. Each CPU domain consists of all 
processors of a particular node and points to a higher domain 
(parent domain) called node domain which consists of this 

particular node and all those nodes which are at some 
particular distance from this node. Thus for NUMA system 
with two memory access levels, there will be two levels in the 
sched domain hierarchy and the node domain will comprise of 
all the nodes of the system, as shown in Figure 2 [5].The 
sched domain hierarchy defines the scope of load balancing 
for each processor. In a scheduling domain, the sets of 
processors among which the load balancing is performed are 

called scheduling groups. For a processor performing load 
balancing at lowest level domain, scheduling groups will be 
all the processors in its node; and at higher levels, scheduling 
groups will be all the nodes at that level. 

 

Figure 2: Sched Domain Hierarchy for NUMA System 

with Two Memory AccessLevels 

Load balancer, which runs on each processorseparately, is 
invoked in three different situations and performs the load 

balancing as explained below [15] [17]:    
(i) Periodically at specific time intervals: During the periodic 
load balancing cycle, the load balancer traverses the entire 
sched domain hierarchy, starting at the current processor’s 
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sched domain, and initiates a balancing operation if it is due 
for balancing. At each level, it first finds the busiest processor 
of busiest scheduling group and  then migrates the tasks 
(processes or threads) from that processor to the current 
processor if the load of the busiest processor is more than the  

load of the current processor, as per the load threshold (25%; 
or 12% in some cases) (ii) When a task is newly created or 
woke-up through system calls  fork(), exec(), clone(), 
wakeup() : In this condition,  the task is moved to the least 
loaded processor of the least loaded scheduling group (node) 
in its current domain (iii) When a processor becomes  idle:  In 
this condition, idle load balancing is performed by the idle 
processor starting from the parent domain and moving upward 

in the sched domain hierarchy; it selects the most loaded 
scheduling group (node) in the current domain and migrates 
tasks from the most loaded processor to this processor. 
It is obvious from the foregoing description that large 
overheadsof time are involved in performing the dynamic load 
balancing. Though these overheads are inevitable and not 
avoidable always, an efficient load balancer should attempt to 
minimize them by finding the conditions under which 

unnecessary attempts of load balancing and process  
migrations may be avoided. However, an asymmetry unaware 
load balancer, instead of minimizing the overheads, may 
aggravate the problem of load balancing overheadsas it may 
not exploit the capabilities of faster cores (speed cores) in 
performing load balancing activities (as detailed in Section 2), 
and therefore, will not achieve optimum performance in terms 
of cores’ utilization and Turn Around Time (TAT) of the 

processes.  
The objective of our work, therefore, is the design of a 
Capability Aware Load Balancer which performs the load 
balancing  in accordance with the capabilities of different 
cores (in our case, faster/slower clock speeds) to achieve the 
better performance by avoiding frequent load balancing 
attempts and taking proper load balancing decisions. 

2. PITFALLS IN ASYMMETRY UNAWARE 

LOAD BALANCING ALGORITHM AND 

SCOPE OF ITS IMPROVEMENT 
In this sectionthe reasons of more overheads incurred in an 
asymmetry unaware load balancer are analysed first, and then 
the scope of its improvement is explored. During  periodic or 
idle load balancing,  time overheads are incurred in finding 
the load of  various processors/nodes, comparing it with the 
load of the processor performing the load balancing,  and 

migration of the processes, if  needed.A load balancer 
unaware of the presence of asymmetric cores in a multicore 

processor will cause too frequent load balancing attempts 
done by faster cores due to the  fact that these cores will 
speedily complete the execution of the tasks allocated to them 
and will create load  imbalance  across the various cores 
frequently.  In addition, this load balancer will also not take 

certain load balancing decisions in accordance with the  
capabilities of the cores, for example, allocation of similar  
cores to different threads of the same process, allocation of 
faster  cores to CPU  bound tasks etc.  As a consequence of all 
these inappropriate decisions, there will be more overheads 
resulting into non-optimum or even degraded performance.   
In order to further understand the aforesaid  issues,  we 
performed the load balancing  (through simulation) on various 

NUMA multicore systems having asymmetric cores (half of 
the cores, faster cores and half of the cores, slower or normal 
cores) using the asymmetry unaware linux load balancer. A 
careful analysis of the process traces and simulation results 
revealed that due to non-exploitation of the faster cores 
available, the asymmetry unaware load balancer  incurs more 
load balancing overheads, majorly the idle load balancing 
overheads and, therefore, is not able to achieve the optimum 

performance. The  findings are analysed and explained 
through an example in which the load balancer executing on a 
normal core C7 attempts  load balancing against a speed core 
C0. Figure 3 depicts the scenario of load balancing. For 
simplicity it is assumed that load of each process is same, in 
this example. 
As shown in the Figure, during a load balancing cycle, the 
load balancer finds a speed core C0 to be overloaded as 

compared to it:  C7 at time t=t0 hasa load of 2 processes 
whereas C0 has a load of 10 processes. The load balancer 
therefore pulls 4 processes- p6, p7, p8 and p9, to equalize the 
load between the two cores.  After certain amount of time, say 
at time t=t1, C7 still has these processes partially executed, in 
its runqueue , alongwith two other processes, however, CO 
being the speed core finishes the execution of all the processes 
in its runqueue in the time period t0-t1. Since the runqueue of 
C0 becomes empty, it initiates an idle load balancing and 

incidentally pulls the processes p7, p8 and p9 fromC7: the 
same processes which were pulled by C7 from C0 during the 
current load balancing cycle.  Same situation occurs at t=t2 
when the runqueue of C0 again becomes empty and it pulls 
one process- p4,  from C7. In this manner the speed core C0  
perform idle load balancing many times before the occurrence 
of next regular load balancing cycle. Moreover, it pulls the 
CPU bound processes p7 and p9 from the faster core CO even 

when IO bound processes p0 and p99 were present. 

 

           C0 (speed core at time t0)               C0 (at time t1)                             C0 (at time t2) 

p2 p7 p8 p1 p9 p6 p5 p0 p99 p22     .  .  .  . . 

 

                       C7 (Normal core at time t0)                   C7 (at time t1)                                           C7 (at time  t2) 

p3   p4  .   p3 p4 p8 p9 p7 p6  p3 p4 . . p6 . 

Figure 3:  Load Balancing Scenario during  a  load balancing  cycle, for Asymmetry Unaware Load Balancer  (C0, C7 
are Runqueues of  Cores C0, C7 ;  pi  is process with pid=i )  

From the aforesaid observations about the functioning of the 
load balancer, it can be noted that: (i) More no. of idle load 
balancing attempts are done by the speed core during a single 
load balancing cycle, resulting into increased overheads(ii) 

Memory access time may increase because the pages of some 
of the processes pulled, may be lying on the Nodesfrom which 
they are migrated (iii) Cache-miss overheads may increase, 
because the cache of the migrated processes, located on their 
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previous cores,  will become invalid(iv) TAT of CPU bound 
processes is likely to be more because they are not allowed to 
fully execute on the faster core C0. 
The same situation as described above will arise when a speed 
core will perform load balancing against a normal core. To 

avoid the overheads arising due to unawareness of the load 
balancer about the difference in  clockspeeds of the cores, the 
load balancer executing on normal core should have pulled 
lessno. of processes (processes with less load) from the speed 
core and that too the IO bound processes, and vice-versa.  If 
this was done, unnecessary overheads of frequent idle load 
balancing and cache miss & memory latency  would not have 
come in picture. 

Based on these findings and threads obtained for 
improvement, an efficient load balancer for asymmetric 
multicore processors has been proposed in this paper. 
 

3. RELATED WORK 
Asymmetric multicore processors pose unique challenges to 
existing load balancers which traditionally assume all the 
cores to be homogeneous, and therefore do not work well for 
asymmetric architectures. Many researchers have identified 
the relevant issues and addressed them in their work. 
Significant contributions of some of the researchers are 
presented below: 
Li et al.  proposed an Asymmetric Multiprocessor Scheduler 

(AMPS) which was composed of asymmetry-aware load 
balancing, faster-core-first scheduling, and NUMA-aware 
migration, for performance-asymmetric multi-core 
architectures. Their asymmetry-aware load balancing took 
advantage of distinct computing powers of the heterogeneous 
system; Faster-core-first scheduling policy of their scheduler 
enabled threads to run on more powerful cores whenever they 
are under-utilized [13].An algorithm called speed balancing 
was proposed by Hofmeyr et al. for asymmetric multicore 

processors. Instead of the use of weights as done by the linux 
load balancer, they substituted the computation for load 
balancing to be based on speed, where speed is defined as the 
CPU elapsed time divided by the actual wall clock time. 
Instead of balancing runqueue length, their load balancer 
balanced the time a thread had executed on faster and slower 
cores. The authors argued that the migration to a faster core 
will be able to effectively compensate for the migration 

overheads across caches[8].   
Kim et al. in [11] emphasize the need tomatch each 
application with the best core type in asymmetric multi-core 
systems. Based on their study they state that uneven core 
capability is inherently unfair to threads and causes 
performance variance, as applications running on fast cores 
receive higher capability than applications on slow cores. 
Scheduling policies were, therefore, proposed by them which 

guarantee a minimum performance bound while improving 
the overall throughput and reducing performance variation. 
Although the work of the authors was towards scheduling 
policies for asymmetric multicore processors, it is obvious 
that the load balancing should also be performed taking the 
advantages of faster cores. 
 In [15], authors propose an optimized load balancing policy 
for multi-threaded applications executing on recently designed 

Tiled multicore processors, in which processing cores are 
fitted onto a single chip and are interconnected via mesh-
based networks. A load balancer designed for traditional 
multicore systems and unaware of this new architecture, might 
introduce the penalty of cache misses because of the more 
threads sharing the same tile (processing core), and the 
contention for memory controllers due to cache misses. Thus, 
authors implemented an optimized load balancing policy for 

tiled many-core processors- KNL and the TILE-Gx72.  This 
work is although not directly related to asymmetric multicore 
processors, but certainly states the need and advantage of an 
architecture aware load balancer. 
Many other researchers have done similar work. The 

commonality in their work is the use of an appropriat core for 
a particular purpose, depending on its capability so as to 
optimize the system performance.  The work presented in our 
paper will also be a contribution towards the same objective. 
 

4. PROPOSED CAPABILITY AWARE  

LOAD BALANCING ALGORITHM 
The proposed Capability Aware Load Balancer basically 
performs all the load balancing activities keeping in view the 
speed of thedifferent cores and taking  the advantage of 

available faster coresof the multicore processors. The load 
balancer will be invoked in the same conditions under which 
linux load balancer is invoked, however, it will  function 
differently in certain aspects as per the following load 
balancing policies: 

4.1 Load Balancing Policies Incorporated  

in theCapability Aware Load Balancer 
4.1.1 Process Migration Policy: 
The proposed load balancer performs the periodic load 
balancing as usual, however while performing the load 
balancing between two dissimilar cores, it pulls more 

processes (having double the load as compared to current 
core, assuming the speed core to be two times faster). Further, 
it prefers to pull  the CPU bound processes, if it is  executing 
on a speed core;  and vice-versa. This policy will avoid the 
unnecessary idle load balancing attempts as were incurred in 
an asymmetry unaware algorithm. Figure 4 illustrates the 
same, for the example taken in Section 2. 
It can be observed that noidle load balancing attempts take 

place during the  load balancing cycle, and IO bound 
processes are preferred for migration by the normal core, 
allowing the CPU bound processes to execute on the faster 
core. 
 

4.1.2 Task Selection Policy: 

(i) While selecting the tasks for migration on speed coresfrom 

the normal cores, priority is given to CPUbound tasks to take 
advantage of the speed (ii) In a multithreaded application 
environment, all  threads of a particular process are kept on 
similar cores (speed cores, if possible) so that the process 
completion is not held-up due to  slower threads. 
 

4.1.3 No Load Balancing/No Operation 

Policy:When task to speedcore ratio is <= 1, i.e., when no. 

of tasks in the system are less than or equal to no. of 
speedcores,   the load balancer  pulls all  the tasks from the 
slower core, if  it is executing on speed core;and pushes all the 
tasks to speed core, if it is  executing on the slower core. 
Moreover, it  does not execute on idle slower cores till the 
task/speedcore ratiodoes not become more than 1. 
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               C0 (speed core at time t0)                                                 C0 (at time t1) 

p2 p99 p0 p1  . p9 p6 p5 p8 p7 p22  p2 p7 p1 p9  p22  p99 p8 p5 

 

                          C7 (Normal core at time t0)                                                               C7 (at time t1) 

p3 p4   .  .   .   .   .    ,  p3 p4 p0  .   .   . p6 

 

Figure 4: Load Balancing Scenario during a load balancing cycle, for Capability Aware Load Balancer 

(C0, C7 are Runqueues of  Cores C0, C7 ;  pi  is process with pid=i ) 
 
 

4.1.4 Selection of Core for Load Balancing: 
If  faster cores are free, they are employed  for performing the 
load balancing. 
 
The formal description of the proposed load balancing 
algorithmis as following: 

Algorithm 1 : Capability Aware Load Balancing 

__________________________________________________ 
 

For all Nodes of the system N=1 to n and all cores C=1 to c of 
each Node, carry out the following steps: 

1. {  
2.    if  ((systemwide task to speed core ratio is <=1)    

    and (current core is a normal core)) then         
3.         no load balancing to be done by the current core;      

             // this normal core eventually become idle core    
                and hence it is not  required to  perform  load  
                balancing till task to speed core ratio is <=1      

4.    for MAL=1 to max_memory_access_levels do 
5. { 
6.  if (MAL==1) then 
7.  { 
8.     core_performing_LB = CC;         

                   //CC is the idle core or the first core 
9.     find the load of all cores of curr_node, except  the    

core_performing_LB; 
10.     find the busiest core;     // core having highest load 

     // while finding the busiest core, load of a speed     
        core is considered as half of its actual load 

11.   }   
12.   else    //if MAL is > 1 

13.   { 
14.      core_performing_LB = CC;                                  

//CC is the idle core or the first core 
15.      find the busiest scheduling group out of all the  

    scheduling groups  (all nodes) at memory access   
    level MAL; 

 // while calculating the load of any node, load of a 
    speed core is considered half of  its current  load                        

  16.          find the  busiest core of the busiest node 

 (scheduling group with  highest load); 
  17.         }                      //end of if statement at step no. 6 
  18.      if (core_performing_LB is speed core  .and.  

busiest core is NOT the speed core) then 
  19.      {   
  20.         LB_core_load = load of core_performing_LB/2; 

 
  21.        target_core_load = load of busiest core; 

  22.        if  (systemwide task to speed core ratio is <=1) then 

    23.        {      
    24.           migrate all processes from busiest core to  

       core_performing_LB; 
25.        go to step 49;            //go to next MAL 
26.          }    
27. } 

28. else 
29.    if (core_performing_LB  is slower core .and. busiest 

core is speed core) then 
30.    {                  
31.      target_core_load = load of busiest core/2; 
32.      LB_core_load = load of core_performing_LB; 
33.      if (systemwide task to speed core ratio is <=1) then 
34.      {                            
35.         migrate all processes from core_performing_LB    

to busiest core;  
       // perform a PUSH migration to speed core 

36.         go to step 49;              //go to next MAL 
37.       } 
38.  } 
39.  endif;       //end of if statement at step no. 18 
40.  if (LB_core_load  <  target_core_load) then  
41.  { 

                    // compare the load of the core_performing_LB  
     with that of the busiest core 

    42.       obtain lock on target_core;   
                     // busiest core is the target core      
    43.       obtain lock on core_performing_LB;  
    44.       select appropriate no. of processes for  

             migration (in accordance with the speed of the  
             core_performing_LB), preferring CPU-bound  

                processes if core_performing_LB is speed core; 
    45.       migrate the selected processes  from busiest core to  
                core_performing_LB;  
                   // pull the processes/threads from the busiest core  

       till the load of the  two cores remain imbalanced 
                       (dequeue the selected process from the target 

     core and enqueue on the core_performing_LB)                                        
    46.         release lock on core_performing_LB;          

    47.         release lock on target_core;              
    48.      }                            //end of if statement at step no. 40                                         
    49.      MAL = MAL+1; 
    50.    }                             // end of for loop at step no. 4 
    51.  }                              // end of Algorithm   
__________________________________________________ 
 
The code given in this algorithm is for periodic as well as idle 
load balancing. When the load balancer will be invoked by 

any process arriving in the Ready queue from the Wait queue 
or through fork(), exec() or clone() system calls, a least loaded 
core will be allocated to that process. 
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5. SIMULATION AND RESULTS 
To evaluate the performance of the Capability Aware Load 

BalancingAlgorithm, experimentation was done using a 
simulator of NUMA Multiprocessor/Multicore systems under 
linux [19], modified by incorporating the proposed algorithm 
into it. The experimentation was done for different types of 
NUMA Multicore SystemsAMC1-AMC3having asymmetric 
cores, as following:(i)  AMC1: 32 core system (16 Nodes,  2 
cores per Node, 2MALs)(ii)  AMC2: 64 coresystem (32 
Nodes,  2 cores per Node, 3  MALs)(iii) AMC3: 128 core 

system (32  Nodes,  4 cores per Node, 6 MALs). For each 
system, different workloads (W1, W2) were generated. 
 

5.1 Results 
The results of simulation, in terms of Turn Around Time 

(TAT) and Performance Gain (improvement in TAT) are 
given in Tables 1 to 3 and are also depicted in the 
corresponding graphs given after the respective 
Tables(Workload Characteristics are specified as W1, W2 
in each Table and Graph). 

 

Table 1: Turn Around Time of Processes and Performance Gain for Capability Aware Load Balancing Algorithm 

vsAsymmetry Unaware Load Balancing Algorithm for NUMA System AMC1 

 
No. of 

processes 

W1-  Process type: CPU bound; 

Execu. time: 200 ms; Arrival: 
random 

W2- Process type: Mix of CPU & 

IO bound; Execu. time: varying 
(50-300 ms); Arrival: random 

TAT (ms): 
Asymmetry 
UnawareAlg
o. 

TAT (ms):  
Capability 
Aware 
Algo. 

Perf. 
Gain 
(%) 

TAT (ms): 
Asymmetry 
UnawareAl
go. 

TAT (ms): 
Capability 
Aware 
Algo. 

Perf. 
Gain 
(%) 

100 248 238 4.03 164 158 3.66 

200 419 403 3.82 244 232 4.92 

300 603 575 4.64 316 302 4.43 

400 786 750 4.58 388 369 4.90 

600 1172 1111 5.20 564 537 4.79 

 

 
Figure 5:  Turn Around Time of Processes for Capability Aware Load Balancing Algorithm vs Asymmetry Unaware Load 

Balancing Algorithm for NUMA System AMC1 
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Figure 6:  Performance Gain in Capability Aware Load Balancing over Asymmetry Unaware Load Balancing for NUMA 

System AMC1 

Table 2: Turn Around Time of Processes and Performance Gain for Capability Aware Load Balancing Algorithm vs 

Asymmetry Unaware Load Balancing Algorithm for NUMA System AMC2 

No. of 
processes 

W1- Process type: CPU bound; 
Execu. time: 300 ms; Arrival: same 
time 

W2- Process type:  CPU bound; 
Execu.  time: 400 ms ;  Arrival: 
almost same time 

TAT (ms): 
Asymmetry 

Unaware 
Algo. 

TAT (ms): 
Capability 

Aware 
Algo. 

Perf. 
Gain 

(%) 

TAT (ms): 
Asymmetry 

Unaware 
Algo. 

TAT (ms): 
Capability 

Aware 
Algo. 

Perf. 
Gain 

(%) 

64 301 289 3.99 384 368 4.17 

128 459 434 5.45 660 639 3.18 

256 862 827 4.06 1186 1106 6.75 

384 1132 1080 4.59 1560 1486 4.74 

512 1534 1439 6.19 2141 1993 6.91 

  

 
Figure 7:  Turn Around Time of Processes for Capability Aware Load Balancing Algorithm vs Asymmetry Unaware Load 

Balancing Algorithm for NUMA System AMC2 
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Figure 8:  Performance Gain in Capability Aware Load Balancing over Asymmetry Unaware Load Balancing for NUMA 

System AMC2 

Table 3: Turn Around Time of Processes and Performance Gain for Capability Aware Load Balancing Algorithm 

vsAsymmetry Unaware Load Balancing Algorithm for NUMA System AMC3 

  

No. of 
processes 

W1- Process type: CPU bound; 
Execu. time: 300 ms; Arrival: 
almost same time 

W2- Process type: Mix of CPU & IO 
bound; Execu.  time: varying (50-
400 ms);  Arrival: same time 

TAT (ms): 

Asymmetry 
Unaware 
Algo. 

TAT (ms): 

Capability 
Aware 
Algo. 

Perf. 

Gain 
(%) 

TAT (ms): 

Asymmetry 
Unaware 
Algo. 

TAT (ms): 

Capability 
Aware 
Algo. 

Perf. 

Gain      
(%) 

100 380 356 6.31 285 274 3.86 

200 485 448 7.63 331 316 4.53 

300 759 700 7.77 490 457 6.73 

400 890 831 6.63 599 561 6.34 

500 1204 1093 9.21 730 679 6.98 

 

 
Figure 9:  Turn Around Time of Processes for Capability Aware Load Balancing Algorithm vs Asymmetry Unaware Load 

Balancing Algorithm for NUMA System AMC3 
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Figure 10:  Performance Gain in Capability Aware Load Balancing over Asymmetry Unaware Load Balancing  for NUMA 

System AMC3  

5.2 Observations and Discussion on 

Results 
It is evident from the experimentation results  that Capability 
Aware Load Balancing Algorithm outperforms theAsymmetry 
Unawarelinux load balancing algorithm.For various NUMA 
systems havingasymmetric cores, it  exhibited improved 
average TAT in the range of 4-9 %. This performance gain 
achieved, attributes mainly to the reduced idle load balancing 
overheads.  

It is further observed that- (i) Forsystems with more  no. of  
cores,  performance gain is better as expected. The reason  is 
obvious: with  increase in  no. of asymmetric 
cores,unnecessary idle load balancingattempts  increase in 
asymmetry unaware load balancing,  but not  in Capability 
Aware load balancing(ii) There is  variation in performance 
gain for different sets of processesfor the same system. Thisis 
due to the  difference in arrival time, burst timeand type (CPU 

bound or IO bound) of the processes. 

6. CONCLUSION 
One of the factors which hinders the performance 
improvement of any load balancer is the overheadsarising out 
of improper load balancing decisions.In the research work 

presented in this paper, we investigated the reasons of 
increased overheads in any asymmetry unaware load balancer 
including that of linux and proposed a Capability Aware 
Dynamic Load Balancer to achieve the optimum performance. 
On the basis of simulation results, it can be concluded that the 
proposed load balancer has successfully addressed the issue of 
unnecessary load balancing overheads which is therein 
asymmetry unaware load balancers,  and hasenhanced the 

performance significantly. The work presented in this paper 
will supplement the efforts of the researchers attempting to 
design efficient load balancers for upcoming multicore 
systems, and can be extended for the  processors having the 
other heterogeneity also, apart from the different clock speeds 
for different cores. 
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