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ABSTRACT

Switched prediction algorithms are widely used for lossless im-
age compression including Bayer image compression. All switched
predictions algorithms have the same structure consisting of two
separate functions working in tandem: A local pixel pattern func-
tion, or context classifier, and a set of pixel-value prediction func-
tions. For each local context a different prediction function is se-
lected. In this article we describe a new switched prediction algo-
rithm specifically for lossless Bayer image compression. The new
algorithm uses generic context classifier which may be used with
any set of prediction functions. We show that using the generic
context classifier we obtain a substantial improvement in loss-
less Bayer image compression. The new context classifier is both
simple and fast to implement with a low memory requirement.
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1. INTRODUCTION

Switched prediction algorithms are an important class of algo-
rithms used for lossless image compression. The algorithms are
simple to implement, fast to run with a low memory requirement
and are widely used in applications where complexity, speed and
memory use are severely limited. Among the different switched
prediction algorithms is the state-of-the-art JPEG-LS standard [1]
which was developed by the Joint Photographic Experts Group
(JPEG) for lossless compression of continuous-tone still images.
Switched prediction algorithms may also be used for lossless com-
pression of Bayer images. However, in this case, the compression
performance is low [2| 3] unless the Bayer image is suitably pre-
processed.

All switched predictions algorithms, including JPEG-LS, have the
same structure consisting of two separate functions which work in
tandem:

—A local pixel pattern function, or context classifier; and

—A set of pixel-value prediction functions.
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The switched prediction algorithm works as follows: The input
image is scanned from top-to-bottom and in each row, from left-
to-right. At each pixel, the context classifier identifies the local
pixel pattern. This then determines which function is to be used for
predicting the pixel value. Then, instead of transmitting the pixel
value, the error, or difference between the predicted pixel-value and
the true pixel value is transmitted.

Although switched prediction algorithms all have the same struc-
ture they use a wide variety of different context classifiers and pre-
diction functions [1} |3} 14, |5, 16} [7]. In this article we describe a new
switched prediction algorithm designed specifically for lossless
Bayer image compression. The new algorithm uses a new generic
context classifier which may then be used with any set of predic-
tion functions. The new classifier is both simple to implement and
fast to run with a small memory requirement. Experimentally, we
illustrate the new generic classifier on three different sets of predic-
tion functions. We found the highest overall lossless compression
was obtained using a set of prediction functions proposed by Jiang
[6L 7]

The article is organized as follows. In Sect.[2]we describe the struc-
ture of a Bayer image and briefly review the different approaches
used to compress it without losses. In Sect. [3|we present a detailed
description of the switched lossless prediction algorithms. In Sect.
we describe the new context classifier and in Sect. [5] we present
the experimental results obtained with the new classifier. Finally
the article ends with the conclusion in Sect.

2. LOSSLESS BAYER IMAGE COMPRESSION

Most digital cameras use a single image sensor to capture the scene
image. In these cameras, a color filter array (CFA) is placed before
the image sensor which then records only one color at each pixel
location. The most common CFA design is the Bayer pattern which
consists of two green components (G and G1), one red component
(R) and one blue component (B). To obtain the full color (RGB)
image, a demosaic operation is performed which interpolates the
missing color components [8 9, [10].

For long-term storage and efficient transmission of a Bayer image,
data compression is critical. Over the past decade, both lossy and
lossless compression schemes have been used. Lossy compression
schemes compress the Bayer image by discarding visually redun-
dant information. This means that with a lossy compression algo-
rithm only an approximation of the original image can be recon-
structed. For critical applications e.g. archival storage, high-end
photography or medical diagnosis [[11} [12} [13| [14} [15], the origi-



nal image must, however, be faithfully reconstructed. Thus in these,
and similar, applications only lossless compression schemes, which
preserve all the information of the original image, can be used.

In order to losslessly compress the Bayer image a simple procedure
would be to form the full RGB image [8| |9, [10] and then apply a
conventional lossless compression algorithm. However such a pro-
cedure is computationally intensive. Thus in recent years the ap-
proach adopted has been to compress the raw Bayer image without
first demosaicing [16} 17, [18L[19].

In lossless image compression, the techniques used for removing
redundant information may be broadly divided into three:

—Spatial. In this technique we exploit the spatial correlation be-
tween the image pixels. An example of such a technique is pre-
diction error coding. In this method the image is raster scanned.
At each pixel we estimate its value using previously scanned pix-
els and the prediction error is recorded.

—Spectral. In this technique we exploit the correlation between
the different color channels. An example of such a technique is
to predict the color difference at each pixel, e. g., G — R, G — B
or B — R and to record the prediction error.

—Statistical. In this technique we exploit the distribution of se-
lected data entities in the image. An example of such a tech-
nique is entropy coding. In this method a shorter codeword is
assigned to data entries which are more likely to occur and to
assign a longer codeword to data entries which are less likely to
occur. Two realizations of entropy coding are Huffman coding
and arithmetic coding.

For a high compression rate, we usually require more than one tech-
nique. Thus Chung and Chen’s state-of-the-art algorithm [18] em-
ploys all three techniques: The input image is separated into four
parts: Go, G1, R and B. The G data is raster scanned and spatial
prediction errors are calculated for each pixel. The G, prediction
errors are then losslessly compressed using Huffman coding. Next
a prediction of each GGy pixel value is made using the G data. If

@1 denotes the predicted GGy value, then we losslessly compress

the prediction errors 0G; = G — Gh using Huffman coding. Fi-
nally we use the Gy and GG; data to predict the G value at each R

and B pixel. If G denotes the predicted G value, then we losslessly

compress the color differences 6R = R — Gand 6B = B- G
using Huffman coding through spectral correlation.

Although this algorithm has state-of-the-art compression perfor-
mance its implementation is very complicated because each color
plane Gy, G, R and B is processed differently. Furthermore, its
computational load is very high. A major reason for this is be-
cause each color plane uses a separate Huffman code. Finally the
algorithm of Chung and Chen requires a requires a large memory
buffer. For all of these reasons, lossless Bayer image compression
applications in which the computational complexity and memory
is limited, often use a switched prediction algorithm which we now
describe in the next section.

3. SWITCHED PREDICTION ALGORITHMS

Switched predictive algorithms are widely used for lossless image
compression [3} 4} |5, 20]. They are simple to implement, fast to
run and have minimal memory requirements. In these algorithms
a gray-scale image I is compressed as follows: The rows in [
are scanned from top-to-bottom. Then in each row, the pixels are
scanned from left-to-right. At each pixel (m, n) we classify the lo-
cal pixel pattern, or context, C'(m,n) into one of K classes using
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the pixel values which have already been scanned. Then given the
local class index C'(m, n) we predict the pixel value I(m,n):

I(m,n) = f(a,b,...,glk) if C(m,n) =k, 6))

where a, b, . . ., g, denote the nearest neigboring pixel values which
have already been scanned; f(a,b,...,glk),k € {1,2,..., K},
denotes an appropriate and fixed set of K prediction functions
and I(m,n) denotes the predicted gray-value of the pixel (m, 7).
We then replace I(m,n) by the prediction residual §1(m,n) =

I(m,n) — I(m,n). If the predictions are accurate, the result is a
residual image which is efficiently encoded using a variable-length
Huffman, or arithmetic, entropy coder [211122].

In this article we consider three predictive lossless image compres-
sion algorithms.

—JPEG-LS Algorithm The JPEG-LS algorithm is a state-of-the-
art standard developed by the Joint Photographic Experts Group
(JPEG) for lossless compression of continuous tone still images
[1]. In the JPEG-LS algorithm, we use the following K = 3
prediction functions:

f(a,b,...,g|1) =min(a,b) ,

fab,....g2) = max(a,b) . @

f(a7b7~-7g|3) :(a+b_c) ’
wherea = I(m,n—1),b=I(m—1,n)andc=I(m—1,n—
1) are three neighboring previously scanned pixel values. The
corresponding local context C'(m, n) is calculated using Eq. :

1if ¢ > max(a,b) ,
2 if ¢ < min(a,b) , 3)
3 otherwise .

C(m,n) =

—Jiang Algorithm The Jiang algorithm [6} [7] is a slightly more
complicated generalization of the JPEG-LS algorithm and uses
K = 5 prediction functions:

f(a,b,...,g|1) =min(a,b) ,

f(a,b,...,g|2) =(d+ min(a,b))/2,
f(a,b,...,g|3) =max(a,b) , “4)
f(a,b,..., gl4) =(d+ max(a,b))/2,
fla,b,...,g5) =(a+b—c),

where d = I(m —1,n+1). The local context may be calculated
using the pseudo-code listed in Algorithm 1.

—CALIC The CALIC algorithm [4]} 5] is substantially more com-
plicated than both the JPEG-LS and the Jiang algorithms. It uses
K = 7 prediction functions. Pseudo-code for calculating the lo-
cal context C'(m, n) is given in Algorithm 2. The corresponding
prediction functions are:

f(@,b,...,gl1) =a,

fla,b,...,g|2) =(6a+2b+d—c)/8,
fla,b,...,g|3) =(10a + 6b + 3d — 3¢)/16 ,
fla,b,...,gl4)=b, (5)
fla,b,...,g|5) =(2a+6b+d—c)/8,
Fla,b,...,gl6) =(6a + 10b+ 3d — 3¢)/16 ,
Fayb,...,glT) =(2a+2b+d—c)/4,

where e = I(m,n—2), f =I(m—2,n)andg = I(m—2,n+
1).



Algorithm 1: Calculation of Jiang Context C'(m, n)

Input: Previously transmitted pixel values a = I(m — 1.n),
b=I(mn—1),c=I(m—-1,n-1),
d=Im-1,n+1)

Output: Context C'(m, n)

if ¢ > max(a, b) then

if (¢ — max(a,b)) > 10& d < b & (a —b) > 5 then
| C(m,n)=2
else
| C(m,n)=1
else if ¢ < min(a, b) then
if
10 < (d—b) < 50 & |b—a| < 10 & (min(a,b)—c) > 5)
then
| C(m,n)=4
else
| C(m,n)=3
else
| C(m,n)=5

Algorithm 2: Calculation of CALIC Context C'(m,n)

Input: Previously transmitted pixel values a = I(m,n — 1),
b=I(m—-1,n),c=I(m—-1,n-1),
d=Im-1,n+1),e=1I(m,n—2),
f=Im—-2n)andg =I(m—2,n+1).

Output: Context C'(m, n)

dv=a—c|+p— f|+|d—g|

dh=la—e|+|b—c|+|b—d|

if (dv — dh) > 80 then

| C(m,n)=1
else if (dv — dh) < (—80) then
| C(m,n) =14
else
C(m,n) =717
if (dv — dh) > 32 then
| C(m,n)=2
else if (dv — dh) > 8 then
| C(m,n)=3
else if (dv — dh) < (—32) then
| C(m,n)=5
else if (dv — dh) < (—8) then
| C(m,n)=6

3.1 De-interlacing

The basic idea underlying the lossless prediction algorithms is
that in a continuous-tone gray-scale image, the pixel values vary
smoothly as we move from one pixel to the neighboring pixel. In
this case, the predictions are generally accurate and thus the pre-
diction residuals may be efficiently encoded. Unfortunately, this is
not true for the Bayer image: neighboring pixels represent different
colors and so as we move from one pixel to the next we observe a
substantial change in the pixel value. This in turn adversely affects
the compression rate.

Let us denote the input Bayer image as I which we regard as con-
sisting of four component images (each of size M x N) which we
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denote as Gy, R, B and G as shown in Fig.[l] If (¢, j) denotes a

B | G B | G

Fig. 1. Bayer color filter array. This consists of two green components (G
and G1), one red component (R) and one blue component (B).

pixel in the Bayer image I and (m,n) denotes the corresponding
pixel in one of the component images, then

Go(m,n) ifm=|(G+1)/2],n=(i+1)/2],
16,5) = R(m,n) ifm=|[(+1)/2],n=15/2],
’ B(m,n) ifm=1i/2] ,n=|(G(+1)/2],
Gyi(m,n) ifm=i/2] ,n=14/2].
(6)
where |z denotes the value of x rounded down to the nearest in-
teger.

To efficiently compress the Bayer image I we may de-interlace I
by physically separating I into its component parts G, R, B and
(1 and then apply the JPEG-LS, Jiang or CALIC compression al-
gorithms to each component separately. An equivalent, but much
simpler, approach [3] is to define a new set of interleaved nearest
neighbor pixels: {anew, bnew, - - -y Gnew }» Where

anew =I(i,j—2),
bnew =I(i —2,7) ,
cnew =I(i—2,7-2),
dnew =I(i —2,j+2), @)
Cnew :I(z,] —4),
frew =I(i—4,7),
Inew =I(i — 4 J+2).

In this case, the pixel I(%,j) and the interleaved nearest neigh-
bors {@new; bnews -« - s Gnew  all belong to the same component
image (see Fig.[2). We then define interleaved JPEG-LS, Jiang and
CALIC algorithms by replacing {a, b, ..., g} in Egs. and in
Algorithms 1 and 2 by {@new, bnews - - - s Gnew }- To compress I we
then simply apply the interleaved JPEG-LS, Jiang or CALIC algo-
rithms directly to I [3]].

It is important to note, however, that notwithstanding the separation
of I into its component parts, we still only use one Huffman code to
encode the residuals 01 (m, n). This is, of course, possible because
the components G, R, B and (G all have the same dynamic range
and the same statistical characteristics.

3.2 Decorrelation of the Color Planes

In order to further improve the performance of the JPEG-LS, Jiang
and CALIC algorithms we may, after de-interleaving, decorrelate
the Gy, G1, R and B planes. Let U, V,WW and X denote the
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Table 1. Lossless Image Compression Rates (bits/pixel)

Fig. 2. The Bayer image I and a pixel (%, j) and the previously scanned
neighbors {a,b,c,...,g} and {anew,bnew;Cnew;- - Gnew > Where
a=1I(i,j—1),b=I(i—1,j),c=1I(i—1,j—1),d=I(i—1,j+1),
e = 1(7‘7] - 2)7 f = I(l - 21j), g = I(l - 27j + 1) and Anew =
I(i,5—2) =€ bnew = I(i —2,j) = [, cnew = I(i — 2,5 — 2),
dnew = I(Z - 27j + 2)7 Enew = I(Zv.] - 4)’ fnew = I(Z - 4,j)>
Inew = 1(1747]“”2)

corresponding de-correlated planes. Mohammed and Wahid [23]
have shown how this process may be simply and efficiently im-
plemented. Unfortunately, although color plane decorrelation does
increase the compression ratio there is also a substantial increase
in algorithm complexity and processing time. The reason for this is
that after decorrelation, the decorrelated planes U, V, W, X have
different dynamic ranges and different statistical characteristics.

Img No JPEG-LS Jiang CALIC
Original ~ De-interleave ~ 1C3 Original ~ De-interleave ~ 1C3 Original ~ De-interleave ~ 1C3
01 6.812 6.245 6.103 | 6.816 6.251 6.030 | 6.724 6.155 6.027
02 7.004 5.006 4.871 | 7.005 5.012 4798 | 7.178 4.903 4.755
03 6.867 4.661 4433 | 6.866 4.665 4.315 | 6.810 4.579 4.349
04 7.547 5.263 5.086 | 7.547 5.266 4.941 | 7.483 5.138 4.996
05 6.847 6.604 6.255 | 6.851 6.615 6.115 | 6.788 6.515 6.167
06 6.812 5.847 5.708 | 6.816 5.854 5.642 | 6.724 5.764 5.608
07 7.004 4.846 4.659 | 7.000 4.845 4.528 | 7.178 4.874 4.549
08 6.866 6.235 6.135 | 6.866 6.405 6.096 | 6.810 6.189 6.027
09 7.547 4.880 4.747 | 7.547 4.884 4.630 | 7.483 4.792 4.646
10 6.847 4.935 4.802 | 6.851 4.937 4.684 | 6.788 4.882 4.694
11 6.592 5.535 5.394 | 6.592 5.543 5.323 | 6.485 5.470 5.298
12 6.593 4.835 4.688 | 6.593 4.837 4.606 | 6.510 4.764 4.601
13 7.098 6.967 6.793 | 7.102 6.973 6.672 | 6.990 6.846 6.723
14 6.951 6.072 5.869 | 6.951 6.082 5.747 | 6.893 5.977 5.767
15 7.112 4.988 4873 | 7.114 4.989 4.720 | 6.997 4.851 4.759
16 6.064 5.225 5.089 | 6.065 5.231 5.013 | 5.868 5.171 4.990
17 5.469 5.225 5.034 | 5.468 5.227 4.872 | 5.401 5.121 4.931
18 6.713 6.138 5.967 | 6.713 6.144 5.833 | 6.651 6.017 5.880
19 6.223 5.489 5.347 | 6.218 5.496 5.244 | 6.213 5.362 5.255
20 5.926 4.371 4.222 | 5926 4.374 4.145 | 5.899 4.301 4.169
21 6.305 5.637 5.518 | 6.306 5.642 5.410 | 6.266 5.551 5.433
22 6.938 5.587 5.467 | 6.938 5.593 5.357 | 6.824 5.480 5.381
23 7.779 4.565 4449 | 7.779 4.560 4.290 | 7.705 4.403 4.324
24 6.247 5.850 5.631 | 6.247 5.853 5.522 | 6.140 5.819 5.573
ave 6.637 5.459 5.298 | 6.638 5.463 5.189 | 6.552 5.372 5.204
This means we must use four different Huffman codes: one for each
of the decorrelated planes. This, in turn, leads to a substantial in-
crease in both algorithm complexity and processing time.
d
new new new
c b d 5
4. INTER-COLOR CONTEXT CORRELATION IC'
‘o CLASSIFIER
new| @ (i.j) . . . . :
In this we article we describe a new approach to improving the

performance of the JPEG-LS, Jiang and CALIC algorithms. The
idea is to replace the individual context classifiers by a new high
performance and generic Inter-Color Context (IC?) Classifier.
The idea behind the IC? classifier is that pixels which are phys-
ically close to one another, should have similar local contexts ir-
respective of the pixel color. Employing this idea we replace the
JPEG-LS, Jiang and CALIC context classifiers (Eq. [3] and Algo-
rithms 1 and 2) with the new generic context classifier (IC?),
Chrew(i,7), and thus obtain a higher lossless Bayer image com-
pression.

Mathematically we formulate the IC?® classifier as follows.
Let (i,7) denote a pixel in I and suppose (i®®,j®) p €
{1,2,..., P}, denote P nearby and previously scanned pixels.
Since the (i(?), j()) are previously scanned pixels, we may calcu-
late K different pixel residues §I(i®), () |k), k € {1,2,..., K},
for each (i(P), j()):

SI(i®, P k) = f(al®),, b,

k) = TP 5,

ke{l,2,...,K}. ®



21

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.14, July 2021

Fig. 3. Set of 24 Bayer Kodak test images. The images are generated by applying the Bayer CFA to the corresponding Kodak test images. Note the charac-
teristic large changes in intensity in the Bayer images as we move from one pixel to its neighbor.

We now aggregate the absolute residuals |61 @@, i ®E)|,p €
{1,2,..., P}, using an aggregation operator 6:

AI(k) = B(6I(D GV R), ST, j PR,
81, 5P 1))

Then we define an optimum local context for the pixel (¢,7) as

C: .. (i,7) = k*, where

new

(C)]

K
k" = arg 1;1171111 AI(k) . (10)

There are many possible aggregation operators 9. Experimentally,
we found the best results were obtained using a 6 = max operator.

The corresponding optimum local context for the pixel (¢, 5) is thus
Ch o (t,7) = k*, where

K . B (16I(i® i ®) |k
—argrlglzlrll<lg13;<(l I(G™, @] )\))- (1)

Algorithm 3 summarizes the processing steps in the new 1C? clas-
sifier.

We now summarize the main steps in losslessly compressing a
Bayer image using the 7C® context classifier and a set of inter-
leaved prediction functions.

(1) Scan the pixels in the Bayer image top-to-bottom, left-to-right.

(2) Suppose (i,j) is the current pixel and (i®,j®) p €
{1,2,..., P}, denote the P = 3 nearest previously scanned
pixels. For each pixel (i, ")) p € {1,2,..., P}, calculate
the pixel residual errors SI(i®), ;P |k) , k € {1,2,... K},
using Eq. (8).

Algorithm 3: Calculation of 1C3 Context C,,cy, (i, 7)

Input: Bayer image I.

Output: IC? Context Classifier C,,c., (4, §)

Let (i, j) be a pixel in I and let (i®), §®)) p{1,2,..., P}, be

the P previously scanned pixels nearest to (3, ).

Use Eq. (8) to calculate K pixel residuals for each pixel

(@@, j®)),pe{1,2,..., P}

SIGEP), j P k) = f(alw, b, ..., k) — I(E@, j®),
ke{1,2,...,K}.

Use Eq. @) to calculate the optimum context

Chrew(t,7) = k* for the pixel (¢, ).

(3) Aggregate the [6I(i®), j®)|k)| using the § = mazx operator
according to Eq. (9).

(4) UseEq. to calculate the optimum context k* for (i, 7).

(5) Calculate the predicted gray-level for the pixel (i,7) us-
ing the context k* and the interleaved prediction function
f(aneun bnew: s |k*)

(6) Losslessly encode the prediction error 6I(i,j|k*) using a
variable-length Huffman, or arithmetic entropy coder, where

61(17.7“6*) :f(anew>bnew7---|k*)_I(ivj) ) (12)

5. RESULTS

We measured the performance of the new IC? classifier on the
standard set of 24 Kodak RGB images. First the set of Kodak im-
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Table 2. Lossless Image Compression Rates as Percentage of Original JPEG-LS Compression

Img No JPEG-LS Jiang CALIC

Original  De-interleave = IC® | Original De-interleave = IC® | Original De-interleave  1C3
01 100.0 91.7 89.6 | 100.1 91.8 88.5 | 98.7 90.4 88.5
02 100.0 715 69.5 | 100.0 71.6 68.5 | 102.5 70.0 67.9
03 100.0 67.9 64.6 | 100.0 67.9 62.8 | 99.2 66.7 63.3
04 100.0 69.7 67.4 | 100.0 69.8 65.5 | 99.2 68.1 66.2
05 100.0 96.5 91.4 | 100.1 96.6 89.3 | 99.1 95.1 90.1
06 100.0 84.3 82.2 | 100.0 84.4 81.3 | 98.0 83.0 80.8
07 100.0 72.2 69.4 | 100.0 722 67.5 | 96.8 72.6 67.8
08 100.0 95.6 94.1 | 100.1 95.8 935 | 98.8 94.9 92.5
09 100.0 81.5 79.3 | 100.0 81.6 773 | 97.8 80.0 77.6
10 100.0 81.5 79.3 | 100.0 8L.5 774 | 963 80.6 71.5
11 100.0 84.0 81.8 | 100.0 84.1 80.8 | 984 83.0 804
12 100.0 733 71.1 | 100.0 73.4 69.9 | 98.7 723 69.8
13 100.0 98.2 95.7 | 100.0 98.2 94.0 | 98.5 96.4 94.7
14 100.0 87.4 84.4 | 100.0 87.5 82.7 | 99.2 86.0 83.0
15 100.0 70.1 68.5 | 100.0 70.2 664 | 984 68.2 66.9
16 100.0 86.2 83.9 | 100.0 86.3 82.7 | 96.8 85.3 823
17 100.0 95.5 92.0 | 100.0 95.6 89.1 | 98.8 93.6 90.2
18 100.0 91.4 88.9 | 100.0 91.5 86.9 | 99.1 89.6 87.6
19 100.0 88.2 859 | 99.9 88.3 84.3 | 99.8 86.2 84.4
20 100.0 73.8 71.3 | 100.0 73.8 69.9 | 99.5 72.6 70.4
21 100.0 89.4 87.5 | 100.0 89. 85.8 | 99.4 88.0 86.2
22 100.0 80.5 78.8 | 100.0 80.6 772 | 98.4 79.0 77.6
23 100.0 58.7 57.2 | 100.0 58.6 55.1 | 99.1 56.6 55.6
24 100.0 93.6 90.1 | 100.0 93.7 884 | 98.3 93.1 89.2
ave 100.0 82.6 80.2 | 100.1 82.7 78.5 | 98.7 81.3 78.8

ages are converted to Bayer images by applying the Bayer CFA
(Fig.|1) to each Kodak image. The corresponding Bayer Kodak im-
ages are shown in Fig. 3]

The Bayer Kodak images were then losslessly compressed using
the JPEG-LS, Jiang and CALIC algorithms under three different
conditions.

(1) Original. The images were losslessly compressed without de-
interleaving using the JPEG-LS, Jiang and CALIC algorithms
(i.e. standard non-interleaved JPEG-LS, Jiang and CALIC pre-
diction functions and the corresponding non-interleaved con-
text classifiers).

(2) De-Interleave. The images were losslessly compressed after
de-interleaving and using the JPEG-LS, Jiang and CALIC al-
gorithms (i.e. interleaved JPEG-LS, Jiang and CALIC predic-
tion functions and the corresponding interleaved context clas-
sifiers).

(3) IC3. The images were losslessly compressed after de-
interleaving and using the new IC® context classifier (i.e. in-
terleaved JPEG-LS, Jiang and CALIC predictions functions
and the new generic IC?® context classifier).

The bit-rates are given in Table 1 and the corresponding percentage
improvements in Table 2. For each image, the algorithm with the
lowest bit-rate is underlined. Note that in each experiment only one
variable-length Huffman code was used.

We observe that for each Bayer Kodak test image and each set
of prediction functions the new IC? classifier gave the smallest
bit-rate. For most of the test images (17 out of 24) the lowest bit-
rates was obtained using the interleaved Jiang prediction functions
and the new IC? classifier. In the remaining test images, the low-
est bit-rate was obtained using the interleaved CALIC prediction
functions and the new IC? classifier. Moreover, in these test im-

ages, the difference between the Jiang/TC® and the CALIC/IC3
algorithms was minimal. Next we compared the average bit-rates
obtained with the different algorithms. Comparing the Jiang/IC3
algorithm with the standard non-interleaved JPEG-LS algorithm
and the de-interleaved JPEG-LS algorithms we obtain reductions
of ~ 1.5 bit/pixel (~ 21.5%) and ~ 0.27 bit/pixel (~ 4.1%).

6. CONCLUSION

We have described a new generic Inter-Color Context Classifier
(IC3) which may be used in any switched prediction algorithm for
lossless Bayer image compression. For each set of prediction func-
tions (JPEG-LS, Jiang and CALIC), employing the IC?® classifier
gave a substantial reduction in bit-rate for each of the 24 Bayer
Kodak test images. This is brought out in Fig.[4]

For each Bayer Kodak test image we ranked the bit-rates in Table 1,
where the lowest bit-rate was assigned a rank of 1 and the highest
bit-rate was assigned a rank of 9. Fig. 4] shows the average rank
obtained for each compression algorithm. We see clearly how the
IC? classifier lowers the average bit-rate. In particular, Jiang/IC*
combination had the lowest average rank followed by CALIC/IC3
and then JPEG-LS/IC?3.

The new context classifier only requires a simple de-interleaving
pre-processing stage. Most importantly, the new context classifier
does not require the use of multiple Huffman, or arithmetic entropy,
codes. The new classifier is thus simple to implement, fast to run
and has a low memory use.



Ave Rank
[6)]

JPEG-LS Jiang CALIC
Orig De-int IC3 Orig De-int IC3 Orig De-int IC3

Fig. 4. Average rank for each compression algorithm. For each Bayer Ko-
dak test image we ranked the bit-rates listed in Table 1, where the lowest
bit-rate was assigned a rank of 1 and the highest bit-rate was assigned a rank

of 9.
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