
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 15, July 2021

11

An Improvised Method for Process Synchronization

using One Process Code and it’s Applications in

Operating System

Shivankur Thapliyal
M.C.A

Doon Institute of Engineering and Technology,
Rishikesh, Uttarakhand, India

Renu Bahuguna
M. Tech - CSE

Doon Institute of Engineering and Technology,
Rishikesh, Uttarakhand, India

ABSTRACT

In the anatomy of Process Management[1], which is the
fundamental functionality of operating system, for the
execution of any process some resources are to be required to
accomplished the task. Now the resources shared and
unshared in nature. For unshared resources there will be no

overhead, processes must wait for that resource, if it will
allocate to some other process and when some other process
released that resource, then it will be allocate to this one. But
when if the resources will come under the category of shared
resource , now here we faced some overhead , each processes
have similar right to accomplish that resource in similar
manner , here many processes conflicts , now a one main
challenges comes into existence , and we required to

synchronize that processes with respect to these resources.So
we have already some code for process synchronization [1]
which ensures the two main fundamental objectivity of
process synchronization [1] are preserves, that is Mutual
Exclusion and Progress, but all code, which would developed
previously that were write for two processes for process
synchronization, which called “The two process code method
for Process Synchronization” and it’s also applied on any two

processes at a time but not homogeneous manner. A two
separate code would write for any two processes at a time
which ensure Mutual Exclusion and Progress, but here we do
this by using only one code, which guarantee to synchronize
any processes and also preserves or ensures the two main
fundamental objectivity of Process Synchronization[1] which
is Mutual Exclusion and Progress.

General Terms

Operating System, Process Management, Process
Synchronization, Process Scheduling, Critical Section
Problem.

Keywords

Process Synchronization, Process Synchronization code,
Process Synchronization using one Process code, Process
Synchronization mechanism in Operating System,

Improvised code for Process Synchronization.

1. INTRODUCTION
For the synchronization of processes we partitioned these
processes into two types

a. Independent Processes
[2],[6]

.

b. Cooperative Processes
[2],[6]

.

a. Independent Processes
[2],[6]

: Processes

their execution doesn’t effects the execution of
another processes is called independent processes.

b. Cooperative Processes
[2],[6]

 :Processes their

execution must effects the execution of some
another processes is called cooperative processes.

In the Scenario of Independent Processes resources are nor
sharable in nature so each processes executes independently ,

but in the case of Cooperative processes[2] here resources are
sharable in nature so processes execution must depend on
some other processes execution.

So we require to synchronize processes in the case of
Cooperative Processes[2].

Before describing the detailed introduction about Process
Synchronization, we must familiar with these terms and
properties of Process Synchronization[2].

1.1 Race Condition

This is one of the major situation which will arise when

multiple processes have compete for same resource at a time.
We describe this condition through an example:
Suppose we have a process P1 (cooperative process) and a
resource R1 (sharable in nature) and these R1 resource have
to allocate to process P1 then after some times other
processes suppose (P2, P3, P4, P5) comes into main memory
and wants to acquire these resource R1 and these all
processes generate requests for resource R1 but we also
known that processes never wait why ? because these

resource R1 is sharable in nature and all these remaining five
processes (P2, P3, P4, P5) compete for this resource R1 and
after some time when P1 execution completes and it released
resource R1 , then a very complex situation may arise that
which processes will give this resource R1 and here conflicts
all processes for resource R1, that’s why we require that we
have a perfect solutions to synchronize all processes and this
processes confliction for resource R1 (which is sharable in

nature) is called Race Condition and this sharable resource is
called Critical Section and generally this time of resource
allocation problem is called Critical Section Problem.

Note: Race Condition always occur in Cooperative

processes and with those resources which is sharable in

nature.
Now we see some solutions for Critical Section Problem, for

Process Synchronization we require to solve critical section
problem and we consider these three terminology which is
desirable solution for Critical Section.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 15, July 2021

12

1.1.1 Mutual Exclusion
[2]

1.1.2 Progress
[2]

1.1.3 Bounded Waiting
[2]

1.1.1 Mutual Exclusion
[2]

In this preferences if one process is in the critical section ,
then no other process enters in critical section (Here sharable

resource is called Critical Section) . In other words only one
process enters into critical section or at a time critical section
share with only one process other processes, which acquire
critical section must wait until process released that critical
section. So it’s one of the most fundamental property of
process synchronization.

1.1.2 Progress
[2]

Progress play’s a major role in the anatomy of Process

Synchronization , progress says that if one process executes
their critical section and other processes must wait for critical
section then if the process which is presently reside or
execute critical section wants to again execute it’s own
critical section then it’s must execute with out any trouble
means other processes doesn’t interfere with this process

until it’s released their critical section as their wish. We
understand this with the help of an appropriate example,
suppose we have a process P1 and a sharable resource R1
(which is critical section for process P1) and at present
instance P1 is in their critical section or R1 allocates to P1
but some time later or some other instances processes (P2,
P3, P4, P5) resides in main memory and wants to demand
critical section but here all remaining processes (P2, P3, P4,

P5) must wait and if P1 completely executes their critical
section R1 and P1 again executes their critical section R1
then it’s must execute other remaining processes (P2, P3, P4,
P5) doesn’t interfere in the execution of Critical Section (R1)
again by process P1.

1.1.3 Bounded Waiting
[2]

Bounded Waiting says that if one process executes their
Critical Section then other processes which also wants to

acquire critical section must wait infinitely until this process
which is currently reside in critical section will released or
regret critical section as wish.

Here represents the skeleton of Critical Section Problem.

Fig a : Block diagram of critical section problem

Here Shows that how a process enters in Critical Section ,
now first is called Entry Section , where a process enters in
Critical Section , now the second one is called critical section
which is a sharable resource generally we called it’s Critical
Section and now the third one is called exit section where a
process released the Critical Section and the last one is called
remainder section where the process executes remaining
code.

2. SOME PREVIOUSLY KNOWN

METHODS
2.1 Turn Variable

[3]

Turn Variable is one of the most fundamental method for
process synchronization , but we know that we ensures
process synchronization if we achieve Mutual Exclusion ,
Progress and Bounded Waiting , but using turn variable we
only achieve Mutual Exclusion means only one process at a
time is in Critical Section , but we don’t achieve progress and
Bounded Waiting , so this method is not very appropriate to
do process synchronization.

Let’s see some chunks of code , which ensures process
synchronization (only mutual exclusion) using Turn
Variable.

Initially we assume turn = 0,

P0 P1

while(1)
{
 while(turn!=0);

 //critical section
 turn = 1;
 //remainder section
 //exit section
}

while(1)
{
 while(turn!=1);

 //critical section
 turn = 0;
 //remainder section
 //exit section
}

Fig. b turn variable block diagram

2.2 Flag Variable
[3]

Flag variable is also one of the most fundamental method for

Process Synchronization , but one main disadvantage using
flag variable is , some time system is in deadlock , so the
throughput of this method is not very well so that’s why this
method doesn’t contains a well defined practical applications
approach , but one main advantage with this method is that
it’s ensure mutual exclusion , but system is in deadlock so no
progress occurred or no bounded waiting.

Let’s see some chunks of code of process synchronization
using flag variable.

Initially,

Flag variable also works with two processes , so here we

write two process codes for process synchronization using
flag variable, initially we use two flag variable name says
flag[0] and flag [1] and we assume both variable value False
(F) initially , so let’s see how Flag variable works.

do

{

 Entry section

 Critical section

 Exit section

 Remainder section

}while(1);

flag[0] flag[1]
F F

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 15, July 2021

13

P0 P1

while(1)
{
 flag[0]=’T’;
 while(flag[1]);

 //critical section
 flag[0]=’F’;
 //remainder section
 //exit section

}

while(1)
{
 flag[1]=’T’;
 while(flag[0]);

 //critical section
 flag[1]=’F’;
 //remainder section
 //exit section
}

Fig. c A block diagram of flag variable.

So the flag variable also ensures Mutual Exclusion , but not
ensures progress and bounded waiting.

2.3 Peterson’s Algorithm
[3]

Peterson’s Algorithm is one of the most appropriate and
adequate solution of process synchronization. Before going
to the depth of this algorithm firstly we must know that
Peterson’s also gives a two process solutions for process
synchronization , means we have a two process code for
process synchronization.

Peterson’s Algorithm also ensures all major objectives of
Process Synchronization :

2.3.1 Mutual Exclusion

2.3.2 Progress

2.3.3 Bounded Waiting
So , that’s why it’s becomes one of the most strong algorithm
for process synchronization.Generally Peterson’s Algorithm
is a combination of turn variable method and flag variable.

Symbolically

Peterson’s Algorithm = Turn Variable + Flag Variable.
We consider some parameters before going to the chunks of
code of Peterson’s Algorithm.
Initially we take turn = 0 ,

and flag variables values are as follows :

flag[0] flag[1]

F F

Let’s see some chunks of code of Peterson’s Algorithm.

P0 P1
while(1)
{
 flag[0]=’t’;
 turn=1;
 while(turn==1&&f
lag[1]==’t’);
 //critical section

 flag[0]=’f’
 //remainder section
 //exit section
}

while(1)
{
 flag[1]=’t’;
 turn=0;
 while(turn==0&&f
lag[0]==’t’);
 //critical section

 flag[1]=’f’
 //remainder section
 //exit section
}

Fig. d : A block diagram of Peterson’s Algorithm

So Peterson’s Algorithm satisfied Mutual Exclusion,
Progress and Bounded Waiting.

2.4 Semaphores
[3],[6]

Semaphores is also one of the most convenient and
appropriate solution for Process Synchronization , but a one
main significant thing , which becomes semaphore most
appropriate solution for process synchronization rather than
others is that it’s also solved the Critical Section problem
and also decides the order of execution and Resource
management. Peterson’s Algorithm only ensures and solved

Critical Section problem means it’s ensure Mutual Exclusion
, Progress and Bounded Waiting but it’s doesn’t ensure or
decide the order of execution of processes and none do
Resource management , but Semaphores can do following
things:

 Solving the Critical Section Problem.

 Decide the order of execution of processes.

 Resource Management.

Semaphore contains two operations:

 Wait

 Signal

Initially we take s=1

In Semaphore we write two separate code for these two
operations , which create some overhead during process
synchronization , but overall it’s efficiency and throughput is
also very well and one main features which becomes it’s

most convenient is that decidability of the order of execution
of processes.

Let’s see some chunks of codes these two operations:

Fig. e : A block diagram of wait , signal operations

Let’s see some skeleton of code where these two operations
wait and signal have to be used.

Initially we consider s=1;

do

{

 wait(s);

 //critical section

 signal(s);

 //remainder section

 //exit section

}while(T);

Fig.f : A block diagram of Semaphores

Note: Process also context switch in Critical Section.

Wait operation Signal operation

wait(s)

{

 while(s<=0);

 s=s-1;

}

signal(s)

{

 s=s+1;

}

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 15, July 2021

14

3. A NEW PROPOSED METHOD FOR

PROCESS SYNCHRONIZATION USING

ONE PROCESS CODE
In the all previous methods like (Peterson’s Algorithm and

Semaphores) all process synchronization codes works with
any two processes at a time , means we write two separate
code for Process Synchronization , which increases some
overhead when we run that sharable code , which works on
any two processes but we also achieved the main objectives
of Process Synchronization , which is Mutual Exclusion ,
Progress and Bounded Waiting , but here we do or achieve
these three main objectives of process synchronization using

only one process code , so no overhead have to occurred or
no need to write two separate code for any two processes for
process synchronization.

The major objectives which have to achieve using this
method are as follows:

 Any number of processes have to shared this code.

 At any time only one process is in the Critical Section ,

so Mutual Exclusion ensures.

 If a process executes it’s critical section and if it wants

to execute again it’s critical section then it’s executes
again and again , so progress ensures.

 If a one process is in critical section and another

process wants to enter in critical section , then it’s must
wait so Bounded Waiting also ensures.

 The Time complexity and Space complexity of this

code is very easy and simple.

 This code follows versatility no need to write two

separate code for synchronization , so no overhead
occur during Processes Synchronization.

So these are some major advantages of this code , which
discussed above.
The skeleton of this code are as follows:

Here we use two variables to synchronize processes , which
is s1 and m.

Initially we take m=0,

while(1)

{

 s1=m--;

 while(s1);

 /*critical section*/

 s1++;

 m++;

 /*remainder section*/

 /*exit section*/

}

Fig.g : A block diagram of proposed method

Flow chart of this code:

Fig. h : A flow chart of this code

So this is the code for process synchronization , Now we
describe that how it’s satisfied the three major objectives of
process synchronization , which is Mutual Exclusion ,
Progress and Bounded Waiting one by one.

Mutual Exclusion
[4]

Non Pre-emptive processes
[4]

We take some literature explaining to verify this:
Suppose we have process p1 like this
And initially the value of m=0 , firstly we check for Non pre-

emptive process,

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 15, July 2021

15

P1 , initially m=0 P2 comes after p1 , m=-1

while(1)
{
 s1=m--; //s1=0 and m=-1
 while(s1); //here condition false

 critical section //P1 in CS
 s1++;
 m++;
 remainder section
 exit section
}

while(1)
{
 s1=m--; //here s1=-1 and m=-2
 while(s1); //condition true , P2 here

 critical section //P1 in CS
 s1++;
 m++;
 remainder section
 exit section
}

Fig. I : A block diagram of non preemptive process

So you see that when we use Non Pre-emptive approach only
one process is in the critical section , another process have to
wait , In the above example when process P1 is in the critical

section , P2 must wait and trap in while loop , Now when
process P1 comes out of it’s Critical Section , then P2 entering
in Critical Section , Let’s see:

P1 , currently s1=-1 and m=-2 after comes P2 P2 after executing p1 s1 = 0 and m=-1

while(1)
{
 s1=m--; //s1=0 and m=-1
 while(s1); //here condition false
 critical section
 s1++; // here s1=0
 m++; // m=-1
 remainder section
 exit section

}

while(1)
{
 s1=m--; //here s1=-1 and m=-2
 while(s1); //condition false
 critical section //P2 in CS
 s1++;
 m++;
 remainder section
 exit section

}

Fig. j : A block diagram of non preemptive process

So you see that when P1 comes out from it’s Critical Section ,
then P2 entering it’s critical section , so when we take those
processes which doesn’t pre-empt during execution or Non

Pre-emptive in nature then we see Mutual Exclusion satisfied.
Note: this code shares any number of or n number of
processes.

Pre-emptive Processes
[4]

Now we shows that how this code works as same as Pre-
emptive processes.Initially take m=0,

P1 , initially m=0 P2 comes after P1

while(1)
{
 s1=m--; // here s1=0 and m=-1

 …………….//this place P1 pre-empt.
 while(s1);
 critical section
 s1++;
 m++;
 remainder section
 exit section
}

while(1)
{
 s1=m--; //here s1=-1 and m=-2

 while(s1); //P2 trap in this loop
 critical section
 s1++;
 m++;
 remainder section
 exit section
}

Fig. K: A block diagram of preemptive process

Now you see in this above code firstly P1 comes into the
memory and wants to execute Critical Section and run this
code , initially we take m=0 , so according to the code when
P1 runs the code s1 =0 and m=-1 and then after executing this
parameter P1 pre-empt and suddenly P2 comes into the
memory and it’s also wants to execute Critical Section but P2
also run this code and when P2 run this code the current value

of m=-1 so here s1=-1 and m=-2 and the condition of while
loop is true P2 trap in this while loop until P1 enters in
Critical Section and after execution Critical Section by P1
when it goes out Critical Section , then P2 have a chance to
enter in critical Section , so Mutual Exclusion also satisfied
for Pre-emptive Processes using this code.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 15, July 2021

16

P1 , initially m=0 P2 comes after P1

while(1)
{
 s1=m--; // here s1=0 and m=-1
……………………//this place P1 pre-empt.
// when P1 achieve resources it’s enter critical section
here s1=0 is store in their PCB AC Register

 while(s1); //condition false
 critical section //P1 is in CS

 s1++; //after executing CS s1=0
 m++; // here m=-1
 remainder section
 exit section
}

while(1)
{
 s1=m--; //here s1=-1 and m=-2
 while(s1); //P2 trap in this loop

//when P1 comes out critical Section ,then s1=0 and P2 is
in critical section

 critical section //here p2

 s1++; //here s1=1
 m++; here m=0
 remainder section
 exit section
}

Fig. l: A block diagram of preemptive process

Now We see that after achieving resource by P1 , execute it’s
critical section and P1 also read S1 = 0 value and store the
previous state in their PCB and after executing it’s critical
section when P1 exits Critical Section s1++ gives result 0
because P2 can do currently S1 value is -1 so after s1++ the
results will become 0 and similarly m1++ gives result -1
because P2 can do m1=-2 , so after executing m1++ the result
will become -1 so , when s1=0 P2 is in Critical Section and

when P2 exits Critical Section S1 will become 1 and m will
become 0 and next process will chance to enter it’s Critical
Section.

Progress
[4]

Progress means if a Process is in their Critical Section and it’s
wants to execute again their critical section then , it’s must
executes with our any discrepancy.
Progress may apply on one process or more than one process.

For one Process:

Initially we take m=0, the chunks of code are as follows:

P1 , initially m=0 Again P1 execute , Now m=0

while(1)
{
 s1=m--; //here s1=0 and m=-1
 while(s1); //condition false
 critical section //p1 is in CS
 s1++; //here s1=1
 m++; //here m=0

 remainder section
 exit section
}

while(1)
{
 s1=m--; //here s1=0 and m=-1
 while(s1); //condition false
 critical section //p1 is in CS
 s1++; //here s1=1
 m++; //here m=0

 remainder section
 exit section

}

Fig. m: A block diagram of progress

So, we easily see that we achieve progress , a process is in
their critical section or have to executes their critical section
as many as their wish.

Bounded Waiting
[4]

Bounded Waiting means a process must wait when some
another process is in their critical section and , using this code
we easily seen that their must be have a bounded waiting. In
other words when multiple processes comes into the system ,
then each process must wait for critical section , which is
currently assigned at that moment to that remaining process ,
and each process bounded waited to each other.

At the end we conclude that this one process code for process
synchronization is reliable to work with any number of
process and preservers the three main objectives of Process
Synchronization through which we ensure that a process must

be synchronize and these three objectives are (Mutual
Exclusion , Progress and Bounded Waiting).

4 APPLICATIONS OF THIS

METHOD
[5]

There are a numerous applications of this one process code ,
some applications of this method are as follows:

 Dining Philosopher’s Problem[5].

 Producer Consumer Problem[5].

 Barber Shop Problem[5].

 River Crossing Problem[5].

 Baboon Crossing Problem[5].

These are some numerous problem , where this one process
code fit to solving this. This one process code for process

synchronization gives a better results to solving this problem
with better time complexities.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 15, July 2021

17

5 FUTURISTIC SCOPE
As we all known that a Research is never ending process , we

can’t bound Research work, In the method of this (Process
Synchronization using one process code) , various exploration
area are still existing here and , In this literature , we
discussed some futuristic exploration area or futuristic scope
of this method.

 Using one Variable:In all the Previous Process

Synchronization code like (Peterson’s Algorithm and
Semaphores) all algorithms works with two variables to
synchronize the code , even our novel method also
works with two variables , so we achieve reliability but
not to flexibility. To achieve flexibility we require that
we developed or do some changes in that code that we
are able to perform similar actions or similar tasks with
one variable and also take concern that when we do this

one variable , we preservers the objectivity of Process
Synchronization , that is (Mutual Exclusion , Progress
and Bounded Waiting).

 Decide Order of Execution :Like Semaphores is

also capable to decide the order of execution of
processes means using Semaphores , we have a
capability that we decide the order of execution of that
processes , that which process executes first , and which
is second , and so on. Suppose Let we have 6 processes
name says (P1, P2, P3, P4, P5, P6) and if we using
Semaphore we also Synchronize that processes and also
we have a ability that we decide the order of execution

of that processes , that which comes first and which
comes second and so on suppose we want to execute
process P2 first then we execute process P2 first and
then we want to execute Process P6 then we execute
process P6 and so on , and also synchronize all
processes. So we do this using Semaphores , but using
this one process code , we can’t do this so this one is a
major futuristic scope in this method.

6 CONCLUSION
Operating System play’s a major role in each computing
contexts , and it is the most significant tool for every
computing devices , but in today’s era of computing
technologies , the computation becomes complex and we face

a big hurdle of concurrency. Now to overcome this hurdle the
need of hour is we resolve this and made to operating system
versatile in today’s era. In Operating System Concurrency

directly relates to processes , when multiple processes wants
to execute same time , then the problem of con currency occur
, but many time concurrency is helpful and many time it
shows the sign of inconsistencies , but this is the major
question regarding operating system , that how we resolve this

concurrency , so this one process code for process
synchronization is a desirable method , which resolves this
and there are many futuristic scope regarding this method ,
like in one process code we also to do process synchronization
, but we can’t decide the order of execution using this method,
so this is a big futuristic scope in this method and we also
optimize the time complexities of many other process
synchronization variable , In the previous methods all adopt

two separate code for any two processes , but here we write
only one code to do synchronize the processes. Hope so there
are still many advancements in this code which will done in
the near future.

7 ACKNOWLEDGMENTS
I am very much grateful to all respected professors of DIET
Rishikeshfor his kind help, lasting encouragement, valuable
suggestion throughout the entire period of my project work. I

am highly indebted to his astute guidance, sincere support and
boosting confidence to make this Dissertation successful.

The acknowledgment will be incomplete if I fail to express

my obligation and reverence to my family members and
friends whose moral support is great factor in doing this
research.

8 REFERENCES
[1] Andrew S. Tanenbaum, “Modern Operating Systems”,

2nd Edition, Pearson Education, 2004.

[2] AbrahamSilberschatz , Peter B Galvin , Gerg Gagne,

“Operating System Concepts” ,9th Edition , Wiley , 2015.

[3] Gary Nutt, “Operating Systems”, 3rd Edition, Pearson
Education, 2004.

[4] Harvey M. Deitel, “Operating Systems”, 3rd Edition,
Pearson Education, 2004.

[5] DhananjayM.DhamDhere, “Operating Systems A
Concept – Based Approach”, 3rdEdition, McGraw Hill
Education (India) Private Limited, New Delhi, 2003.

[6] Silberschatz , “Operating System Principals”, 7th Edition,

ISBN 13: 9788126509621 , Wiley.

IJCATM : www.ijcaonline.org

