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ABSTRACT 

With the growing need of energy and the recent concerns 
about global warming, attention has been brought towards the 
integration of renewable energy sources into existing power 

grids. The optimal location of the units and their sizes are 
significant parameters that influence the overall performance 
of the power grid. Most of the recent placement and sizing 
methods rely on using heuristic optimization algorithms, 
which rely on particles that are randomly deployed in the 
search space in order to recognize the optimal values that 
minimizes the cost value. In this study, a geolocation-aware 
representation of the power grid is proposed, which allows the 

optimizers to conduct a more efficient search, as the changes 
of the values matches the movement of the particles in the 
search space. Hence, the proposed approach has been able to 
significantly improve the performance of the optimizers, 
which in return has significantly improved the characteristics 
of the power grid. Accordingly, the proposed approach has 
been able to improve the IEEE 33 bus radial distribution test 
system by reducing the loss to 6.7KW, compared to the 

original 24.97, by adding two generation units, with 
significant improvement in the voltage profile, with minimum 
voltage of 0.9976 Pu and maximum and average voltage of 
1Pu.  
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1. INTRODUCTION 
With the dramatic influence of using large centralized 
generation units that rely on fossil fuel to energize power 

grids [1-3], significant attention has been brought towards the 
use of renewable energy to satisfy the growing demand on 
energy [4, 5]. Generation units that rely on renewable energy 
are normally of smaller sizes and are distributed around the 
grid, which has led to the paradigm of Distributed Generation 
(DG), which is the main mean of integrating these resources 
into the distribution system. Instead of generating the power 
in remote areas and transmitting the power to the consumers, 
these resources are located closer to the consumers to improve 

the quality of the power being provided over the power grid 
[6, 7].The active and reactive power that are injected by the 
DG units to the grid have several benefits to the grid,  such as 
improving reliability and security, as well as reducing system 
oscillations. However, the main two benefits that DG has 
provided to existing centralized power grids is reducing the 
losses, caused by the need to transmit the power from the 
remote centralized units to the consumers, and improve the 

voltage profile. The significance of these features relies 

mainly on the positioning of the DG resource being connected 
to the grid. Accordingly, several researches have been 
conducted to investigate different methodologies that can 
optimize the placement of these resources [8].Heuristic 
optimization algorithms are widely used to optimize the 
placement of these resources. These algorithms do not interact 
with the operation of the system they are interacting with, 

instead, they only adjust the parameters that affect the 
operation of the system and monitor its performance, without 
the need to recognize how these parameters affect the 
operation of the system. The main aim of these algorithms is 
to balance the exploration of the search space and its 
exploitations, so that, the optimal values of the system 
parameters are recognized without the need to search for all 
possible combinations. Most of these algorithms, such as the 

Particle Swarm Optimizer (PSO) and Artificial Bee Colony 
(ABC), are inspired by the way these swarms conduct 
searches for food. Other algorithms, such as the Sine-Cosine 
Algorithm (SCA), use specially designed mathematical 
models that attempt to balance the exploration and 
exploitation. However, all of these methods rely on finding 
the position of the parameter values that produce the best 
fitness, locally and globally, and rely on these values in the 

search that is conducted in the next iteration [8-10].  

1.1 Problem Formation 
Despite the ability of several of the recent methods to 
optimize the placement of DG resources, in order to reduce 
losses and improve the voltage profile of the grid, the reliance 

on the busbar number in the optimization limits the ability of 
the optimization algorithms to conduct an efficient search, i.e., 
achieve balanced exploration and exploitation. In addition to 
the higher complexity and computer resources that are 
required by these optimization algorithms to recognize the 
optimal location of the DG resource, there is a significant 
chance of missing the actual optimal position in complex real-
life scenarios. For instance, in the IEEE 69-bus distribution 

test system, shown in Figure 1, the search space for optimal 
position of the DG resource to reduce losses is shown in 
Figure 2. As figure 2 shows, a particle moving from busbar 10 
to busbar 20 can continue searching in that direction, as the 
cost value, i.e., total loss, is being reduced. However, a 
particle that is moving from busbar 20 toward busbar 30 may 
terminate the search in that direction and change its direction 
after noticing a significant increment in the cost value. 
Alternatively, the hypothesis of this study is that presenting 

the search space of the DG grid to the optimization algorithm 
based on the geolocation of the busbars, as shown in Figure 3, 
a significant improvement can be achieved in the operation of 
the optimization procedure, which allows recognizing the 
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optimal location faster, without missing the actual optimal position, even in complex grids.  

 

Fig1: The IEEE 69-bus distribution test system [11]. 

 

Fig2: Total loss versus busbar number in which DG is positioned. 

 

Fig3: Geolocation-based search space for the IEEE 69-bus distribution test system 
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2. MATERIALS 
In order to validate the hypothesis of this study, three 
optimization functions are selected to compare their 
performance using the standard approach, in which the busbar 
number is used, and when the geolocation of the busbar is 
used during optimization. 

2.1 Particle Swarm Optimization (PSO) 
Particle Swarm Optimization (PSO) is one of the widely used 
algorithms to solve optimization problems, where a search 
space is generated based on the limits of the possible values 
for the parameters of the system. Then, a search is conducted 
in that space for the parameters values that produce the 

optimal performance of the system. To search for these 
values, a predefined number of particles are distributed 
randomly in that search space and the performance of the 
system is measured per each particle. For this initial step, the 
information per each particle is stored as the local best, which 
indicate that these parameters values have achieved the best 
system performance per this particle, in addition to the global 
best performance, where the information of the particle that 

has achieved the best system performance is stored in it [12, 
13]. 

Next, the PSO algorithm iterates through a predefined number 
of iterations, where per each iteration the position of each 
particle is adjusted and the system performance at that 
position is measured. If the system has a better performance at 
the new position, then the local best of the particle is updated 
using the information at the new position. By the end of the 
iteration, the best system performance achieved by any 

particle in the swarm is compared to the global best, where the 
information of the global best is updated using that particle’s 
information, if it has achieved better performance [14].  

To ensure balanced exploration and exploitation of the search 
space by the swarm particle, the position of each particle is 
updated per iteration using three factors, which are the last 
velocity of the particle in the previous iteration, the position 
of the local best of the particle, and the position of the global 

best achieved by the particles so far, as well as two random 
number to ensure the exploration. Moreover, three more 
parameters are considered, in the equation the calculates the 
velocity of the particle, to allow more control on the 
positioning of the particle in the search space. The first 
parameter controls the effect of the latest velocity of the 
particle, i.e. in the previous iteration, which is known as the 
inertia. For better exploitation, the value of the inertia (w) is 

decreased, within a certain range, as more iterations are 
completed by the algorithm. Moreover, the parameters c1 and 
c2 control the effect of the distance between the current 
position and the local and global bests, respectively [15]. 
Equation (1) shows the computations required to update the 
velocity (V) of the ith particles in the search space, where P is 
the local best of that particle, G is the global best, X is the 
position of the particle at iteration t, G is the position of the 

global best, while r1and r2 are two random numbers that are 
generated per each particle per iteration. This velocity is used 
to calculate the new position of that particle, using equation 
(2) [15]. 

  
                 

              
         

                       
        (1) 

  
                

         
              (2) 

Algorithm 1 illustrates the main steps executed by the PSO in 
order to find the optimal parameters that optimize the 

performance of a system. 

Algorithm 1: The Particle Swarm Optimization algorithm. 

Begin 

  Step 1: Generate a search space according to the limits of 

the parameters. 

  Step 2: Generate M random particles P in the search 

space, with dimension D, each. 

Step 3: For each particle in M 

  Calculate the fitness of the particle  
 . 

  Update local best information          
 . 

Step 4: Select particle information with the best fitness as 

the global best G. 

Step 5: While the maximum number of iterations T is not 

reached 

 For each particle 

 Calculate velocity   
  using Eq. 2.7. 

 Calculate new position   
  using Eq. 2.8. 

 Measure the fitness of the particle. 

 If the new fitness   
  is better than the local best     

fitness 

Update local best          
  

 If the new fitness   
  is better than the global          

best fitness     
  

Step 6: Return global best position 

 

2.2 Artificial Bee Colony 
The colony of the artificial bees in the Artificial Bee Colony 
(ABC) algorithm consists of three groups of bees, which are 
the employed, onlookers and scout bees. Onlooker bees wait 

on the dance area to make decisions about the food sources 
selection while employed bees are the ones that go to food 
sources that they have already visited earlier. Scout bees are 
responsible of carrying out random searches for food sources 
in the defined space. Initially, half of the bees in the colony 
are set as employed bees while the other half is set as 
onlookers. The employed bees are distributed on the food 
sources around the hive, where each bee is assigned to a 

single source, where a bee assigned to a food source that 
becomes exhausted becomes a scout. As soon as a bee 
becomes a scout, it starts searching for new food sources [16]. 

Per each cycle, the employed bee is sent to the food sources to 
measure the nectar amount of that source. Then, the onlooker 
bees select the food sources after collecting the information 
collected by the employed workers. Additionally, scout bees 
are recognized and sent to possible food sources to measure 

their nectar amounts. Initially, when no information is 
available about the space around the hive, scout bees are sent 
to random locations to measure their nectar amounts and 
come back to the hive. Based on the measured amounts, the 
onlooker bees make the decision and send the employed bees 
to the sources they have found previously that persist in their 
memories and investigate for better food sources, visually. 
Finding a food source with higher amount of nectar increases 
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the probability of selecting that source by the onlooker bees. 
If that food source is selected, the employed bee is directed to 
that source. 

The food source position within the ABC algorithm 
symbolizes a potential solution to optimize the problem, while 

there is a corresponding nectar quantity of the food source 
(fitness) regarding the related solution. The amount of 
onlooker bees or the employed bees remain equal to the 
amount of population solutions. A randomly distributed first 
population was generated by ABC in the first step P (G = 0) 
of SN solutions (the positions of the food source), in which 
SN stands for the population size. For every solution the D-
dimensional vector is each solution (food source) xi (i = 1, 2, . 

. . , SN), in which the D represents the amount of optimization 
parameters. When initialization is complete, there is a 
subjection of the position population to the repeated cycles, C 
= 1, 2, . . . , Cmax, regarding the search procedures of the 
adopted bees, scout bees, and the onlooker bees. A 
modification regarding the position is generated by the 
onlooker be or the artificial employed bee in a probabilistic 
manner in her memory to seek for the new source of food and 

get the nectar amount tested, which is the fitness value 
regarding the new source. Considering real bees, new food 
sources are produced on the basis of the comparison process 
regarding the food source in a specific territory based on the 
information the bee puts together, visually.  

Our model involves the generation of the position regarding a 
new food source on the basis of the comparison process 
regarding positions of food sources. Nevertheless, the model 

also shows no implementation of any information by the 
artificial bees for comparison. The source position of the food 
is selected randomly and a modification is generated on the 
existing one in their memory as provided in (2.10). As long as 
there is a higher nectar quantity of the new source compared 
to the former one memorized by the bee while forgetting the 
previous one. If not, the previous position will be kept.  

Once the search process has been completed by all the 
employed bees, the nectar information regarding the sources 

of food is shared by them and the information of their 
positions with the onlooker bees are set for the dance spot. 
The nectar information obtained from every employed bees is 
assessed by the onlooker bee ad a food source is selected with 
the probability associated to the amount of its nectar. Just like 
the employed bee, a modification is generated regarding the 
position in her memory and the amount of the nectar is 
checked regarding the source of candidate. Based on the fact 

that there is a higher center compared to the previous one, the 
new position is memorized by the bee while the old one is 
forgotten. A food source is selected by the onlooker bee based 
on the probability value related to the food source, a 
calculation of pi is done as presented in Equation (3) [16].  

   
    

     
  
   

  (3) 

In which the fit i is considered the solution i fitness value 
assessed by the employed bee, typically proportional to the 
food source nectar amount within the position I while the 

amount of food sources remains SN, typically the same as the 
amount of employed bees (BN). The employed bees in this 
manner get their information exchanged with the onlookers. 
For the candidate food position to be generated from the 
previous one, Equation 4) is used by ABC [16].  

                      (4) 

Where k ∈ {1, 2, . . ., BN} and j ∈ {1, 2, . . ., D} remain the 

random choice of indexes. Even though there is a random 
determining of k, it is important that it is different from i. The 
random number within the [-1,1] range is φi,j controlling the 
generation of the source position of a neighbor food revolving 
around xi,j while the modification stands for the visual 

comparison regarding the bee’s neighbor food positions. In 
equation (4), there is a difference existing between the 
decrease in xi,j and xk,j  parameters, as well as the position 
perturbation for the decrease in xi,j. Therefore, the more the 
search gets to the optimum solution within the search space; 
there is an adaptive reduction of the step length.  

If there is a production of the parameter by this operation goes 
beyond the predetermined limit, an acceptable value would be 

set for the parameter. This study involves the parameter value 
going beyond the limit and being set to its limit value. There 
is a replacement of the abandoned food source by the bees by 
the scouts. There is also a simulation of the ABC algorithm 
through a random production of the position and replacement 
with uninhabited one. If the position in the ABC algorithm is 
not enhanced with the help of a predetermined amount of 
cycles known as limit, at this point the food source is 

considered abandoned. Once there is a production of each 
source position of the candidate vi,j , and an evaluation occurs 
by the artificial bee, there is a comparison of its performance 
to the one for xi,j. If the old source nectar is the same with or 
of lesser quality to the new food, a replacement can occur in 
the memory with the old one. If not, it is better to just leave 
the old one. What this means is that a covetous selection 
mechanism is adopted as the operation of selection between 
the current and also the previous food sources. There are four 

main selection processes adopted by ABC algorithm:  

1. The artificial onlooker bees discover promising regions 
among those discovered so far by conducting a global 
selection process based on Equation 4. 

2. The employed artificial bees in a certain region carry out a 
local selection process, based on the local information about 
that region available for those bees. (Inspired by the actual 
information used by the real bees, such as the color, fragrance 

and shape. However, even with real bees, the actual type of 
the nectar in the source is not identified until a bee reaches 
that source. These bees then use their memory to decide the 
optimal food source in the neighboring sources, using 
Equation 5. 

3. Of the amount of nectar that is found in a candidate source 
is found to be better than another known to the bee, it selected 
the source with more nectar, according to the greedy selection 

process. The bee also forgets about past sources that have 
relatively limited amount of nectar and memorize the 
recognized new source. Otherwise, the currently being used 
source is kept in its memory. 

4. Scouts carry out a random selection process to ensure 
balance between exploration and exploitation. 

As these steps show, there are three parameters that are 
required in order to define the operation of the ABC 

algorithm, which are the food source count, the boundaries of 
the search space that surrounds the hive, as well as the 
maximum cycle number. The number of onlooker or 
employed bees is set according to the number of food sources 
that are surrounding the hive. 

2.3 The Sine-Cosine Algorithm 
The Sine Cosine Algorithm (SCA) also initiated a predefined 
number of random points in the D-dimensional space of the 
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system being optimized.  The next position X of point i at 
iteration t out of T total iterations is set by Equation (5) [17]. 

  
     

  
                  

    
                  

  
                  

    
                  

  (5) 

where P is the destination position, r1, r2, r3 and r4 are random 
numbers. r4 is in the range [0,1], where its value determines 

which equation, the sine or cosine, is going to be used for 
computing the next position of the point. The parameter r3 has 
a range of [0,2] and brings a random weight for the 
destination in order to stochastically emphasize, when the 
value is greater than one, or deemphasize, when the value is 
less than 1, the effect of destination in defining the distance. 
The random number r2has a range [-2,2] and defines the 
distance that the point is going to move, toward or outward 

the destination point. Finally, r1 dictates the region of the next 
move, either between the current position and the destination 
point, or out of it. The effect of these number on the 
movement a certain point in the space is illustrated in Figure 
4.  

 

 

Fig 4: The random movement of a point in the SCA 

algorithm [17]. 

In order to balance the exploration and exploitation in the 

SCA algorithm, the value of r1 is computed using Equation 
(6) [17]. 

      
 

 
 (6) 

where a is a predefined number that is multiplied by the ratio 
of the current iteration to the total number of iterations. The 
value of r1 computed using this equation allows wider 
exploration at the beginning of the iteration, and more 
divergence toward the optimal coordinates as the iterations 
approach to the predefined maximum number of iterations.  

3. METHOD 
For each generator to be added to the grid, the optimizer is 
required to provide three values, the x and y coordinates of the 
generator, as well as its size. The boundaries of these values 
are set based on the geographical boundaries of the grid, e.g., 
distances from a reference point or longitude and latitude 
values, for the location, in addition to the maximum capacity 

of the generator for the size optimization. The busbar that is 
closest to the selected coordinates is selected by the proposed 
method in order to connect the DG unit to. The cost is 
calculated based on the total losses in the system and the 
voltage profile, when the DG units are connected to the 
selected busbars. The calculated cost in the proposed method 
provides a balanced weight to both the voltage profile and the 
total losses. However, a 5% Pu voltage constraint is defined, 
so that, the cost is increased dramatically when such 

constraint is exceeded. Accordingly, the cost of the voltage 
profile is calculated as shown in Equation (7), which produces 
a value of zero when all voltages are equal to 1 Pu, and a 
maximum of 1 when all voltages are on the edge of the limits. 

Otherwise, when the limits are exceeded, a cost of 100 is 
outputted to indicate the violation to the optimizer. 

       

 
 
 

 
 
                                        

                                        

 

 
               

 

   

                   

  (7) 

In addition to the voltage profile, the proposed method also 
includes the losses of the system in the cost computations. To 
balance the effect of these factors on the total cost, unless the 

voltages constraints are violated, the formula shown in 
Equation (8) is used to calculate the cost of losses, where L is 
the loss in the grid before adding the new DG unit and LDG is 
the total loss in the grid after adding the DG unit to the 
selected busbar. According to this formula, a value of one is 
returned when the computed loss after adding the DG to the 
grid is equal to the total loss before adding the generator. 
However, if the added generator increases the total loss in the 

grid, a value greater than one is returned, whereas reducing 
the loss returns a value less than one. Finally, the total cost is 
delivered to the optimizer by adding the calculated costs for 
the loss and voltage profile. 

      
   
 

 (8) 

The calculated costs are delivered to the optimizers per each 
particle for the set number of iterations, as shown in 
Algorithm 2. Then, based on the methodology of the 
optimizer, the optimal placement of the generator is selected. 
The performance of the proposed method is evaluated by 

measuring the average cost per each iteration of the three 
different optimizers, PSO, ABC and SCA. Each optimizer is 
run for ten times, ten iterations per each run with three 
particles. The average cost of the proposed method per each 
iteration is measured and compared to the average cost when 
the number of the busbar is used. The improvement in the 
cost, i.e., the reduction, illustrates the improvement in the 
performance of the optimizer.  

Algorithm 2: Geolocation-aware DG placement optimization. 

Input: Search coordinates. 
Output: Multi-objective cost value. 

Step1: x, y ← Read selected coordinates. 

Step2: {x1, x2, …, xn}, {y1, y2, …, yn} ← Read 
coordinates of the busbars. 

Step3: {d1, d2, …, dn} ← Measure Euclidean distance 
between x, y and each busbar. 

Step4: Select busbar that has min{d1, d2, …, dn}. 

Step5: Simulate grid and measure CostVP and CostL 
costs. 

Step6: Return CostVP and CostL 

 

4. PERFORMANCE EVALUATION 
Two models are used for the evaluation of the proposed 
method, which are the IEEE 69-bus distribution test system 
and the IEEE 33-bus radial distribution system. Per each 
system, two scenarios are simulated, in which one and two 
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DG units are added with a maximum capacity of 1MW. The 
parameters of the simulated systems are collected from [18] 

for the IEEE 33-bus radial distribution system and from [19] 
regarding the IEEE 

69-bus distribution test system.Three optimization algorithms 
are used for the evaluation, which are the PSO, ABC and 
SCA. All experiments are implemented and conducted using 

Python programming language, where the PYPSA library [20] 
is used to simulate the power grids, whereas the Opytimizer 
library [21] is used to implement the optimizers. To illustrate 
the improvement in the performance of the optimizer when 
using the proposed geolocation-aware approach, the number 
of particles per each optimizer is set to five, where each 
optimizer is set to run for ten iterations. To avoid any biased 
evaluation, according to the random initialization of the 

particles, each optimizer is run for ten times and the average 
fitness per each iteration is used to illustrate the performance 
of the optimizer at that iteration. The performance of the 
proposed optimization approach when using the PSO 
optimizer, shown in Figure 5, illustrates the significant 
improvement in localizing and sizing the added generators. 
This improvement is illustrated by the lower cost value 
achieved by the same optimizer when using the proposed 

geolocation-aware approach, even in the case in which two 
generators are added to the 69-bus distribution system, where 
the standard approach has shown lower cost at the first 
iteration.Additionally, the performance of the ABC optimizer, 
shown in Figure 6,show the ability of the proposed 

optimization approach to optimize the placement and sizing of 
the added generation unit in most of the scenarios, especially 
in more complex distribution system, i.e., the 69-bus 

system.The slightly better performance achieved by the 
standard placement approach when adding two generators to 
the 33-bus system is a result of lower number of busbars in 
the system, which has allowed the ABC optimizer to 
recognize the optimal placement faster, as the number of 
busbars is less in this model. Using the proposed approach, 
the optimizer needs to move the particles in relatively larger 
steps to change from one busbar to another, which is not the 

case when using the busbar number to specify the busbar. The 
proposed optimization approach has also been able to 
significantly improve the performance of the SCA optimizer 
for all scenarios, including when adding two generators to the 
69-bus distribution system, as shown in Figure 7, in which the 
standard approach has achieved better performance for the 
first two iterations. However, the average cost by the end of 
the ten iterations is significantly lower than that in the 

standard approach, which illustrates the significance of the 
propose geolocation-aware optimization, as the changes that 
the optimizer is making comes along with the description of 
the grid.  
 

 

Fig 5: Performance of the PSO optimizer. Left: Adding a single generator; Right: Adding two generators; Top: 33-bus 

distribution system; Bottom: 69-bus distribution system 
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Fig 6:Performance of the ABC optimizer. Left: Adding a single generator; Right: Adding two generators; Top: 33-bus 

distribution system; Bottom: 69-bus distribution system 

 
Fig 7: Performance of the SCA optimizer. Left: Adding a single generator; Right: Adding two generators; Top: 33-bus 

distribution system; Bottom: 69-bus distribution system

The average cost achieved by each of the classifiers in both 
scenarios, as well as averages achieved by each optimization 
approach, i.e., the standard and average approaches, are 
summarized in Table 1, which shows the significant 

improvement achieved by using the proposed geolocation-
aware approach. Overall, the proposed method has been able 
to reduce the cost, i.e., achieve better operation for the power 
grid, in all scenarios, accept the case in which the ABC 
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optimizer is used to optimize the location and size of two DG 
units in the IEEE 69-bus radial distribution system. 
Additionally, the PSO has achieved the lowest average cost, 
in all scenarios, compared to the other optimizers, especially 
when the proposed optimization approach is used. 

Accordingly, the use of the proposed optimization approach to 
find the optimal location and size of DG units to be added to 
existing power grids can significantly improve the operation 
conditions of that grid. 

 

Table 1: Summary of the evaluation results 

 
IEEE 33-bus radial distribution system IEEE 69-bus radial distribution system 

  

 
Single DG Unit Two DG Units Single DG Unit Two DG Units Average 

Optimizer Proposed Standard Proposed Standard Proposed Standard Proposed Standard Proposed Standard 

PSO 1.04 1.13 0.7 0.82 1.03 1.11 0.81 0.9 0.895 0.990 

ABC 1.1 1.12 0.69 0.82 1.19 1.24 0.83 0.79 0.953 0.993 

SCA 1.07 1.16 0.77 0.91 1.29 1.37 0.98 1.02 1.028 1.115 

Average 1.07 1.14 0.72 0.85 1.17 1.24 0.87 0.90 0.958 1.033 

 

In addition to the acceleration of the performance of the 
optimization algorithms, the improvement in the distributed 
grid, illustrated by the better voltage profile and less losses, 
are measured when using the PSO optimizer with the 
proposed optimization approach. This evaluation is conducted 
using the 33-bus radial distribution system, where one and 

two generators are added to the grid. As shown in Table 2, the 
proposed method has been able to significantly reduce the 
losses and improve the voltage profile, especially when two 
generators are added. When a single generator is added, the 
method proposed by Haider et al. [22] has been able to 
achieve similar results, according to the lower complexity of 
the search space. However, a significant improvement is 
achieved when using the propose optimization approach to 
add two generators, according to the better illustration of the 

search space to the PSO optimizer, which allows more 
efficient search of the optimal values.  

Table 2: Characteristics of the 33-bus distribution system 

in different scenarios 

Method 

DG 

Placement 

and (size) 

Losses 

(KW) 

Voltage (Pu) 

Min Max Average 

Without 

DG 
- 24.97 0.9880 1 0.9931 

Standard 16 (1MW) 15.55 0.9925 1 0.9981 

Proposed 6 (1MW) 14.04 0.9925 1 0.9979 

Haider et 

al. [22] 
6 (1MW) 14.04 0.9925 1 0.9979 

Standard 
14 (1MW) 

30 (1MW) 
7.32 0.9976 1 1 

Proposed 
14 (1MW) 

31 (1MW) 
6.7 0.9976 1 1 

Haider et 

al. [22] 

6 (1MW) 

16 (1MW) 
11.36 0.9975 1 1 

 

5. CONCLUSION 
With the growing significance of renewable energy, the 
addition of smaller distributed generation units has become 

the center of attention of several researchers. Specifying the 
size of the unit and the optimal placement have direct 
influence on the performance of the power grid, in terms of 
reliability and stability. Accordingly, a new optimization 
approach is proposed in this study, which provides the 
optimization algorithm with geolocation information to 

improve the efficiency of the search task of the optimization 
algorithm. The proposed approach has shown significant 
improvement in the performance of different types of 
classifiers, by finding better placements in shorter intervals. 
Additionally, the results show that the use of the proposed 
method has been able to further improve the power grid, by 
reducing the losses and improve the voltage profile, compared 
to the standard optimization and existing state-of-the-art 
methods. The propose method has been able to reduce the 

losses of the IEEE 33-bus radial distribution test system from 
24.97KW to 6.7KW when two generators are added to the 
grid, with minimum voltage of 0.9976 Pu, whereas the 
maximum and average voltages across all busbars is 1Pu. This 
improvement in the efficiency of the optimization allows 
recognizing the optimal placement and sizing for complex 
real-life scenarios, with a huge number of busbars, according 
to the efficient and more-suitable representation of the power 

grid to the optimization algorithm.  
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