
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 17, July 2021

17

Jindo: Smart Microservice Monitoring and Development

Tool

Mehmet Göktürk
Computer Science Dept

GTU
Gebze Turkey

Imran Kazdal
R&D Center

Borsa Istanbul A.Ş.
Istanbul Turkey

Ahmet Faruk Biskinler
R&D Center

Borsa Istanbul A.Ş.
Istanbul Turkey

ABSTRACT

Recent developments and programming trends made

microservice architecture quite a popular approach for

enterprise information systems. Classical monolithic mega-

applications are slowly being replaced with microservice

based container clusters. Advantages such as scalability,

maintainability an suitability for continuous development and

harmony with agile software teams make them a favorable

choice. Yet there are some disadvantages regarding their

operation, management and development. Especially in large

institutions where large number of microservices are

developed and put into service, monitoring them in runtime

becomes burden as well as keeping them in harmony with

each other. Developers may face serious difficulties sometime

after an enterprise microservice transformation.

Lack of adequate monitoring, difficulties in understanding the

underlying program control logic can cause serious problems

and disruptions as well as unacceptable performance.

Furthermore, microservice development is not enterprise wide

controlled process yet. In this work, an integrated enterprise

scale microservice monitoring and production system has

been introduced. Smart features relying on machine learning

techniques are used to monitor performance of microservices

predictively on a heterogenous enterprise scale environment.

Moreover, through a development control and template code

generation feature, microservices that are being developed

within the institution are put into tighter control. The system

named as Jindo, included additional features related to

security and maintenance as well. The results obtained

suggest thatsystem managers and developers were affected

very positively and enterprise application performance can be

enhanced through Jindo system.

General Terms

Software creation and management, Software post-

development issues, System administration

Keywords

Microservice, service monitoring, model driven development,

ide, software development

1. INTRODUCTION
Microservice-based enterprise software development and

operation recently become a preferred choice due to widely

recognized advantages. Since development, commissioning,

operation, debugging and alsoscalability features of

monolithic large structures are relatively poor, recent

literature and experts suggest a shift towards microservice

based architectures. Initially, service oriented architectures

(SOA) were seen as primary solutions for interoperability and

scaling in enterprise solutions. Service oriented architectures

opened the roadwork for further smaller services where

development, operation and maintenance can be divided and

assigned onto smaller structures both as teams and as

hardware[1].

Popularity of scalable virtualization container architectures

made smaller services be more viable solutions for enterprise

software systems. The term microservice architecture is then

used to indicate small scale, usually single or simple tasks that

are associated with primary functions of monolithic

applications. It is seen that popularity of microservices in

heavily used enterprise software systems is significant yet is

brings serious new challenges to development[2][3].

Wide acceptance and positive perception of microservice

architectures among developer community also leads to

several misconceptions as well. They are usually seen as

lifeguards where hard to maintain projects are already causing

terrible times with developers begging for complete

transformation[4]. Such cravings for microservice

transformations by developers mostly ignore structural

changes that are necessary to implement in application design,

development, operation and maintenance. Traditional

complexity in monolithic application is then moved onto

network layer and interworkings of the microservices by

microservice transformation, rendering traditionally easy to

track things very difficult such as performance tuning,

security, parameter passing, database design, code design and

so on[5][6][7].

Yet, fast moving enterprise software development

bandwagon, with many teams working together, tight

deadlines, serving thousands of customers need a viable

change in development perspective and currently microservice

transformation is one of the solutions as taken as future path

to go[8].

Moreover, rapid change in enterprise needs, lack of qualified

software developers, methodologies that tend to eliminate

software developer personnel errors, DEVOPS systems put

additional pressure on large scale organizational software

development[10][11].

In this study, an integrated smart system is developed in order

to address the needs of large enterprise with high number of

microservices (over 100) working in a heterogenous

environment. Such organizations require continuous

development of new microservices, continue migration of old

monolithic architectures, moving to container based

architectures and require careful planning and monitoring of

all the systems in an efficient and secure manner. The system

developed is named as Jindo featuring consolidated

management, monitoring and development framework of

enterprise wide microservice solutions. It is also empowered

with smart predictive performance monitor enabling to take

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 17, July 2021

18

measures such as scaling up and restarting in advance before

service interruptions occur.

The rest of the paper is organized as follows. First the issues

in Microservice transformation is mentioned. Then

implemented Jindo architecture is presented. Main features or

implemented solution are discussed. Predictive algorithms are

introduced. Performance of predictive monitoring and

management features are presented. A conclusion and

discussion are added to the end.

2. MICROSERVICE

TRANSFORMATION
Transformation from procedural programming languages to

object oriented languages posed significant challenges at the

time of transitional years. Many developers were hesitant

since control structures were less visible to them once objects

were responsible from the execution of traditional program

logic[12].

A similar transformation is now ongoing with the

microservices. Many crucial parts of the program structures

that were classically wired into object methods and object

behaviors are now separated into different microservices.

Although it may seem quite reasonable and fruitful at the

beginning, such transformations bring several problems

associated with them. First, application logic is pushed

towards network layer where relations between object classes

are somewhat mapped to relations between different

microservices, with quite a lot of exceptions. Therefore entire

application needs to be reviewed and restructured, considering

shift to network communication from object communications

where simple pointers and stack would make lightning speed

transfer of data between objects[13][14]. With microservice

architectures, “processing” and “transfer” costs become main

competing parameters while dividing application into

microservices in addition to separation of concerns principle.

3. JINDO ARCHITECTURE
Jindo Architecture combines fundamental needs of enterprise

information systems in microservice development and

deployment under one roof. Main categories of functions of

Jindo are given as follows:

- Microservice Management and Monitoring

- Automated Template Based Code Generation

- Security and Authorization

- Logging and Predictive Analytics

Figure 1: Jindo Microservice Monitoring System

Structure

4. SMART MONITORING METHOD
Monitoring task is one of the fundamental tasks in enterprise

software systems operations. Classical server monitoring tools

have been widely used for a quite amount of time. Moreover,

runtime technologies and virtualization paradigms lead to

further enhancements in monitoring systems. With the

introduction of Service Oriented Architectures, monitoring

“services” rather than “servers” became the primary

focus[15].

One aspect of microservice migration is providing facilities

for efficient monitoring. A "Service Record Database" is

usually created for the central management of microservices.

In this database, service names, servers that services are

running on, addresses and port of the server they are running

on are stored. The services are then extracted from this

database and shown on a visual topology map or in the form

of a display list.

Various visualization techniques can be utilized for systems

management and developer staff in order to enable better

understanding both active microservices and those under

development in an institution[16].

Through this strategy, as studied in previous research, "Visual

Topology Map & Chart Module" has been created within the

scope of this work. Thus, it became possible to interpret

relationships between microservices, comprehend and

improve system and program architecture, avoiding possible

errors and bottlenecks.

Microservices are individually run yet dependent program

units. Conveying dependency information to user has been

indicated as crucial in monitoring microservices. In Jindo,

dependency topology screen between services can be

displayed. For this purpose, NodeJS, Angular and vis.js

libraries were used to display relevant dependency

information as a graph with nodes as microservices. In

addition to dependencies between services, dependencies of

the file system and the database have been shown, including

additional data which developers may need in an assimilable

structure.

A service management module was developed with a structure

that can automatically register and provide management

functions for the server on which the services are running.

Throughan automatic service discovery feature, each newly

added microservice to the microservice record pool

automatically updated in the visual topology map using the

open source “Consul” infrastructure.

Figure 2: Jindo Microservice Monitoring Interface

Primary functions that access to up-to-date information and

actions to be taken to all services that are automatically

registered in the details section through the interface, are

given below:

• Listing microservices

• Access to service detail information

• Filtering operations

• Identifying inter-service dependencies and inferring

impact analysis

• Display and save visual topology map of the services

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 17, July 2021

19

• Follow-up of service health status changes

• Configuration management

• Alarm monitoring and management

• Log monitoring and management

• Action management (Start, Stop, Kill etc.)

4.1 Service Log Module
Post event and predictive analysis of microservices require

logging performance parameters accordingly. With the log

module developed in Jindo, fundamental log operations can

be performed in accordance with “Kibana” system.

Integration with Kibana is provided by clicking on a log

message on the screen to obtain further detailed information

including events that happen before and after.

The logs of the microservices are obtained by reading the data

from the log files with the “Logstash” application installed on

the relevant servers, processing efficiently with the

Elasticsearch application and displaying on “Kibana” system.

While there were microservice application logs, microservice

request logs on Kibana, they can be processed in any log

analyzer as any file kept on the server.

Furthermore, the logs shown on Jindo application log screen

are also integrated with Consul and are able to receive Consul

events belonging to the microservice of interest.

If the operator wants to examine more detailed information

about an error log, he can see log of the microservice in the

relevant time interval in detail by clicking on the log message

in the interface. At this integration point, the Jindo application

directs the Kibana address with an address that has been

processed accordingly.

Further achievements on top of log data can be obtained

through implementation of predictive log analytics. Jindo, for

this purpose has been equipped with machine learning tools

that can estimate oncoming problems before they happen. A

specially developed microservice proactive anomaly

detection/ action module of Jindo provide anticipation of

microservice metric data with intelligent learning algorithms.

It can be used in detecting errors and / or alarm situations

before they occur and take relevant actions in advance.

Estimation is performed using collected metric data via

clustering and regression models developed using past data.

Service metrics are recorded in a time series database by

means of java agents that are defined in JVM parameter

sectionof microservices that are of interest. Situational

estimations of metric data are performed with Jindo AI

module. The estimates are then transferred to the graphics

user interface and action engine via metric-entity-service.

Figure 3:Proactive Monitoring Engine

For example, the JVM parameters of file-download-

capability-service were arranged and metric data were saved

to InfluxDB as follows:

“-javaagent:'/opt/agent/java-influxdb-metrics-agent-0.0.6-

SNAPSHOT.jar=servers=10.57.2.16:8086,database=int2,i

nterval=1,tags.host=yconnd01,tags.ip=10.57.2.139,tags.mi

croservice.name=file-download-capability-service'”

Using Java agent method,various metrics such as “metrics”,

“lang”, “nio” etc. that are already included as java library

metrics can be obtained easily. For example, HTTP request

metrics on the service, “SystemCpuLoad”,

“HeapMemoryUsage.used”, “NonHeapMemoryUsage.used”,

“MemoryUsed” etc. are some of the metrics that wereobtained

and utilized by Jindo.

In order to construct prediction models, “stress load” data was

first created by performing load tests on the services in test

environments and the predicted estimations were compared

against these. These are discussed in results section of this

work. Since human system operators and managers are highly

interested in current condition and estimated conditions of

these metrics, a metrics monitoring user interface has been

created. A metrics monitoring screen has been designed to

give system monitoring person a deeper understanding of the

enterprise information systems under operation. This user

interface is based on interface in Figure 4.

Figure 4:Jindo Microservice Metrics

Based on the results returned from the Jindo AI module,

proactive actionsare then taken according to the threshold

values entered in the Alarm Handle Service. A continuous

round robin running tracking engine tracks all the parameters

that are set in tracking mode by comparing them first with

preset thresholds. When found appropriate, scaling operations

are then performed on the container by calling “Alarm Handle

Service” and“Container Manager Service” respectively.

Proactive monitoring function is enhanced by adding machine

learning properties to the module, in addition to the simple

threshold detection. Various machine learning methods are

performed and compared in order to label outlier performance

metrics. They are validated against labeled data that are

collected during stress testing of enterprise services in test

environment. Results of proactive algorithms are discussed in

detail in section 7 “performance results”.

4.2 HealthCheck Module
As dealing with microservices, tight coupling of various

elements in program structure yet being run as separate

services makes root cause analysis difficult. This is

sometimes due to incorrect design and transition to

microservice architecture from a monolithic program[17].

In order to find the root cause of problem and make impact

assessment in case of presence of any error in an enterprise

system, Jindo displays health status information of the

services in a visually understandable format. With the data

obtained from Consul helper application, the health status,

state changes, relations with each other and the number of

requests they made to each other per second of all

microservices being used and newly developed are shown on

the visual topology map that is drawn by Jindo user

interface.For example, a smoothly working microservice and

the server (s) that it runs on are displayed in green on the

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 17, July 2021

20

topology map. If at least one of the servers where the service

is running has an error, it will appear in yellow and a damaged

microservice(s) are displayed in red. This allows operator to

identify relations that are associated with error and find and

fix the problems as soon as possible and take necessary

actions. Color coding scheme of health check user interface is

given in Figure 5.

Figure 5:Health Check Color Coding

5. JINDO DEVELOPER TOOLS
Aside from monitoring and management functions, enterprise

organizations are in need of tools that guides and keeps

production of microservices under control due to several

reasons. Jindo developer tool module aims to help

microservice development in organization with the knowledge

and expertise that are gained from monitoring and

management data as well as current state of the art.

In the module developed, it is aimed to keep the microservices

creation and management behavior of the developer staff

under control as well as automatically perform many tasks

that were considered as repetitive, routine and boring for

developers. These repetitive “bureaucratic tasks” in fact cause

significant portion of common errors and disintegration of

programming discipline.Similar to the traditional monolithic

software development languageswhere similar types of

template-based graphics libraries and add-ons supporting

framework components are integrated into development

environments Jindo tries to integrate microservice creation

and templates into development environment so that routine

parts of development process can be regulated and

streamlined. With a similar approach, it is aimed to obtain

significant advantages by applying to the process of in-house

development of microservices throughout enterprise.

5.1 Automatic Code Generator Module
Today’s most new generation developers do not want to write

code that is routine and repetitive, without creative features,

less interesting and challenging tasks can be automated. In

order to alleviate burden of next generation developers,

automatic code generator module provides opportunity to the

software developer to model the current microservice project

through help of auxiliary functions and interface to the finest

detail. It then allows developer to save it and manage it. A

template support tool allows developer to generate desired

microservice code by selecting from existing template set.

The templates provide support throughseveral technologies

incorporated into Jindo module and expect developer to

answer several interactive questions. (MongoDB, Oracle,

Frontend, Backend, etc.). Developer is then asked to select

project types and fill other constraints and parameters.

After completion of initialization questions, the microservice

developmentproject is automatically derived and presented to

the software developer for detailed development work to

continue.With the help of Jindo production tool developed in

the study, it is ensured that the software developer downloads

the derived code to its own development environment and

work on it there and continue to work by customizing the

derived code and submit through enterprise software

development environment. In addition to the reduced burden

of developers, improved software reuse is one of the

significant advantages. This is accomplished in accordance

with catalog management function which is discussed in next

section.

The module was initially planned to accomplish automatic

code generation approach to transform around 300

microservices into a new structure in the enterprise. It is

expected to be adopted by sister institutions and then planned

to be launched as a commercial software development tool.

With the help of module, analysis, development and API

documentation will be standardized and automated within the

enterprise. Since transformations of existing microservice

software base is usually required, the module supports

transformation by providing a unified generation interface and

codebase.

5.2 Catalog Management
Cataloging and classification of services is a feature that

developers want most of the time in enterprise software

development due to large basis of existing software. Through

cataloging and classification, software reusability can be

increased and development processes can be improved.

Althoughall microservices can be developed and managed

relatively manually, it may take a significant time for

developers to achieve an adequate level of developer

situational awarenessas the number of microservices

increases. The advantages of Jindo providing catalog

management functions are reported by developers within the

enterprise and it is considered as one of the strengths of the

developed system.

In addition to basic management functions, scope definitions

are also used to narrow down developer context into the target

microservice. With the module, it is ensured that only

microservices in a certain scope suitable for the developer’s

context are highlighted without a large list of all

microservices.

The management, tracking and reporting of the projects

through cataloging include, infrastructure components,

technical-functional details (group / person information that

developed the project, application IP, port information,

database, URL, user name, password information, etc.) are

recorded in catalog data.

5.3 TeamCity Integration
TeamCity is a build management and continuous integration

and continuous delivery (CI/CD) server from JetBrains

company. Jindo allow integration of microservice

development and deployment with TeamCity software.

Through this integration, service related plans can be created

on TeamCity. In this way, service can be deployed to the

desired environments automatically. Deployment package

release can be released to the relevant environments.

First of all a service specific deployment plan can be created.

This plan can be accessed and edited at any time. In this way,

the deployment plan of all services is kept in a common,

easily accessible and manageable place.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 17, July 2021

21

Secondly, services can be easily deployed to the desired

server. In case of any error during deployment, TeamCity will

give a warning and indicate that the deployment has failed.

Since the outcome is automatically visible from Jindo

environment, proper use of TeamCity platform is also

provided.Lastly, version control and related information

regarding versioning of the service that is deployed can be

obtained through Jindo-TeamCity integration.

5.4 GIT Integration
GIT is software for tracking changes in any set of files,

usually used for coordinating work among programmers

collaboratively developing source code during software

development. It’s a widely popular tool among developers and

software developing institutions. It can be locally deployed or

public GIT server can be used wo empower collaborations.

Primary goals of GIT system include speed, data integrity,

and support for distributed, non-linear workflows. Using GIT

integration feature of Jindo,a project can be transferred to GIT

system automatically. In this way, the integrity and version of

a project can be tracked through GIT.Some of therelevant

advantages of GIT are therefore transferred directly to Jindo

system as follows:

Providing the opportunity to manage and organize all

services in a common area.

Making observation of the codes of the service possible.

Making collaboration with external actors possible through

GIT.

6. SECURITY FEATURES
Microservice transformation in enterprise environments may

create new security issues which are not previously common.

In a traditional monolithic application, objects and methods

and other relevant functions share the same memory space

with the same security privileges under an operating system

security scheme. However, when these programs are

transformed into separate microservices, functions, threads or

child processes that were in the same program memory

become “foreign” to each other[18][19]. This immediately

requires attention on security and integrity mechanisms that

allow cooperation between microservices which once were

methods/functions of the same monolithic application

[20][21][22].

Jindo system defines special approach to security problems of

microservices through several authentication features.

6.1 User Authorization
When a user log into the application incorporating

microservice, authentication of the user is performed with

security and authorization module. The specified verification

mechanism has been implemented using “Spring Security”

(JWT) technology and LDAP integration in Jindo.

Spring Security ensures that the application developed

becomes more secure by providing its own authentication and

authorization models. In addition to security, it is useful to

developers since it can be easily integrated into any web

application and supports multiple types of authentication

methods. Among these, In-memory, DAO, JDBC, LDAP etc.

can be given as primary examples. Spring Security has an

infrastructure that can be integrated separately.

Jindo can allow developers to utilize LDAP authentication

methods. LDAP (Lightweight Directory Access Protocol) is

an open source directory service protocol with a highly

flexible architecture that is generally used for authentication.

It is the communication language used by applications to

communicate with other directory service servers. Directory

Services stores users, passwords, computer accounts and

shares this information with other entities on the network.

Due to its advantages, Spring Security technology was used in

Jindo Security and Authorization Module and authorization

mechanism was established by integrating with LDAP among

the supported authentication types. In this way, users can log

in to the application by authenticating with their LDAP

username and password. The user authentication to login to

application is given in Figure 6 and explained in step by step

below.

Figure 6: User Authentication

1. A login request is sent to the microservice side, which is

integrated with LDAP, with the user name (or mail) and

password on the client login page.

2. With the information sent to the microservice side, the

user name and password are verified over LDAP.

3. If the username and password are valid, the token is

created with a pre-determined secret key and the token turns

to the client side.

4. After logging in, all other requests of the user in the

application are verified over the token.

6.2 Authorization BetweenMicroservices
Transformation of monolithic applications to microservices

result in microservices calling each other frequently. As

described previously, it becomes necessary to introduce a

security mechanism. In Jindo, as microservices call each

other, OAUTH2, a standardized protocol used for

authorization between services is utilized. In case a service

calls another service, the following checks are carried out step

by step:

1. The microservice to be called receives tokens from

the OAUTH2 server with its authorized user.

2. The service to be called makes a request to the service

with the token received.

3. The called service checks the authorization of the

received token through the OAUTH2 server.

4. If the requested token is authorized, a response is

returned to the API.

Between microservice authorization model used in Jindo

security approach is shown in Figure 7.

Figure 7:Microservice Authorization Model

Furthermore, authorization levels of microservice users can be

defined by authorized users through the Jindo application.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 17, July 2021

22

With these separate authorizations, each API of each service

can be accessed based on authorization.

7. PERFORMANCE RESULTS
It has been reported by over dozen of microservice developers

that Jindo enterprise system helped them in development of

new microservices or making new refactored versions of

existing ones. Operational staff also provided very positive

feedback about the user interface and reported benefits after

using initial release versions of the monitoring user

interface.On the other hand, the most interesting part of the

Jindo system to be evaluated is the power of predictive

monitoring module. By completion of Jindo microservice

monitoring and management tool, it was necessary to evaluate

methods used.Through the metrics collection module data has

been collected from over hundred microservices. As a result

of the load tests, test data sets were obtained. The data are

kept in InfluxDB storage database. Machine learning

algorithms, clustering and regression models are run on these

metrics that are recorded on the order of seconds. Following

sections briefly describes the results that are obtained using

each method.

7.1 Clustering Models
In order to be able to determine an outlier, it is hypothesized

that clustering algorithms on time series data can be utilized

as a simple approach. K-means model, one of the

unsupervised learning models, was first chosen as the

clustering algorithm. K-means model was run on CPU,

Memory, and request metrics.

The model is regularly rebuilt in specified periods.K-means

model can mark which dataset the new point belongs to in a

very short time as response time. Elbow method was used to

determine number of clusters. The results of Elbow method

yielded 6 clusters (WCSS 1.3, 6). A real time visualization

method is developed for metrics that come from the metrics

collection module. The outcomes were visually successful but

further models were suggested due to classification

performance.

7.2 Regression Models
In regression model approach, models were studied on

collected data using LSTM, XGBOOST, Random Forest, AR,

ARIMA and HWES models. Due to the correct estimation

rates and speed, workwas continued with AR, ARIMA and

HWES models after initial trials.With XGBOOST, the mean

square error RMSE value obtained was 0.030330. Generally,

the estimates did not come close to the real values. Random

Forest was used and Mean square error RMSE value was

calculated as 0.026360.An alternative Holt Winters model has

been tested by changing the seasonal periods parameter.

Examples from the work done were visualized. Mean square

error is 0.0004 and 0.0001, respectively. The estimations

made were close to the real values as seen in Figure 8.

Figure 8:Holt Winters Model Results

Then ARIMA model estimation parameters were changed to

observe the mean square error values.The average of the error

decisions was calculated as 0.0009 in ARIMA. Accordingly,

p, q, d values were chosen as 10.0.0.

The graph in Figure 9 has been obtained by giving ARIMA

model q, p, d parameters respectively 10,0,0. Blue colored

data represent test data, and orange colored data represent data

estimated by Arima model. Each step in the graph has been

tried to be estimated in seconds. The mean square error

(MSE) was calculated as 0.00041.

Figure 9:ARIMA Model Results

ARIMA model results were then transferred onto monitoring

and smart prediction interface that is shown in Figure 9. For

comparison AR (Autoregression) model was also tested.

Autoregression Model parameters were automatically selected

by the model and estimations were made.

In Figure 10, blue colored values represent test data and red

colored values represent estimates on test data.In the study,

the mean square error value (MSE) value was calculated as

0.0009.The real-time predicted data in the Jindo application

with the AR model are shown in Figure 11.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 17, July 2021

23

Figure 10:ARIMA Predictor on Monitoring Interface

Figure 11:AR Model results

After testing with above models AR, ARIMA and HWES

models were found to provide satisfactory performance. The

precision and accuracy rates in the second-order estimation

results were found to be high in the ARIMA and

HWESmethods. Yet, AR model, was chosen for its speed and

accuracy. In figure 12, prediction interface is shown with

green lines representing actual data and dashed lines

representing estimated values. Therefore AR Predictor on

Monitoring Interface was selected for initial operations.

Figure 12: AR Predictor on Monitoring Interface

8. CONCLUSION
Given the requirements of high availability and low latency,

microservice transformation has been in place for quite some

time. However, large number of heterogenous microservices

made off-the-shelf tools unusable. If, a software is going to be

developed from scratch, then it would be much easier to work

with available development platforms or develop a simpler

solution. However, with an enterprise of this size, large

number of microservices are already in service, each of them

belonging to different generation of paradigms and rules.

Development of Jindo allowed enterprise system monitoring

engineers and developers to get the big picture of what is

running for the whole operation and empowered them for

writing better microservice code.

Since they were interrelated, not only for monitoring, but also

development process was considered in the work. Effortswere

made to integrate microservice production tool with

commonly used operating environment and developer tools:

Docker, Kubernetes, Consul, Kibana, TeamCity, SVN,

GITwereamong the leading ones.

Finally, a design was made to expand the microservice

standard API specification to support the API / documentation

of the services, and development and sample integration

libraries were provided based on this new specification. In

addition to the dependencies between the services, it is aimed

to indicatethe file system and database dependencies. For this

purpose, a visual module was created and the relationship

between services was shown in the user perspective. This

way, the assimilation of the system architecture by future

software development staffwasimproved. Initial reports were

significantly positive from within the enterprise developer

community.

The use of Jindo can improve assimilation of the system

architecture by future software developer staff and provide

situational awareness to the developers.

We believe that Jindo or similar tool will become essential for

large scale enterprises where microservice transformation and

development continues. We hope to create a commercial

version in coming years for others to use.

9. DISCUSSION AND FUTURE WORK
During the work performed in the enterprise, we realized that

majority of problems are caused by poor understanding of

underlying structure of problems and poor understanding of

how microservices work by developers and system managers.

Microservices do not simply work like servers. They are

interconnected, functions are separated with different database

scopes etc. Therefore, system monitoring paradigm does not

simply alleviate performance problems of microservices.

There is a network layer, different performance metrics and

different latency issues. These have to be addressed very well

by developers and also have to be enforced by system

managers.

One of the future works that are required after this study is to

make developer user studies in order to understand how such

a tool can improve programming quality and programming

performance of developers and how they are related to

microservice runtime performance and probability of bugs

being present. We are planning to make a companywide

formal questionnaire study to obtain formal initial results to

assess positive outcomes. .

10. ACKNOWLEDGMENTS
This study has been prepared in line with the studies being

carried out in a part of TEYDEB-1501 Project named “Jindo-

New Generation Proactive Microservices Management and

Development System” numbered TÜBİTAK-3190614.

11. REFERENCES
[1] Dragoni, Nicola, Saverio Giallorenzo, Alberto Lluch

Lafuente, Manuel Mazzara, Fabrizio Montesi, Ruslan

Mustafin, and Larisa Safina. "Microservices: yesterday,

today, and tomorrow." In Present and ulterior software

engineering, pp. 195-216. Springer, Cham, 2017.

[2] Hassan, Sara, Nour Ali, and Rami Bahsoon.

"Microservice ambients: An architectural meta-

modelling approach for microservice granularity." In

2017 IEEE International Conference on Software

Architecture (ICSA), pp. 1-10. IEEE, 2017.

[3] Rademacher, Florian, Jonas Sorgalla, and Sabine

Sachweh. "Challenges of domain-driven microservice

design: a model-driven perspective." IEEE Software 35,

no. 3 (2018): 36-43.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 17, July 2021

24

[4] Pahl, Claus, and Pooyan Jamshidi. "Microservices: A

Systematic Mapping Study." In CLOSER (1), pp. 137-

146. 2016.

[5] Asik, Tugrul, and Yunus Emre Selcuk. "Policy

enforcement upon software based on microservice

architecture." In 2017 IEEE 15th International

Conference on Software Engineering Research,

Management and Applications (SERA), pp. 283-287.

IEEE, 2017.

[6] Haselböck, Stefan, Rainer Weinreich, and Georg

Buchgeher. "An Expert Interview Study on Areas of

Microservice Design." In 2018 IEEE 11th Conference on

Service-Oriented Computing and Applications (SOCA),

pp. 137-144. IEEE, 2018.

[7] Naily, Moh Afifun, Maya Retno Ayu Setyautami, Radu

Muschevici, and Ade Azurat. "A framework for

modelling variable microservices as software product

lines." In International Conference on Software

Engineering and Formal Methods, pp. 246-261. Springer,

Cham, 2017.

[8] Edling, Erik, and Emil Östergren. "An analysis of

microservice frameworks." (2017).

[9] Seifermann, Valentin. "Application performance

monitoring in microservice-based systems." Bachelor's

thesis, 2017.

[10] Esposito, Christian, Aniello Castiglione, and Kim-

Kwang Raymond Choo. "Challenges in delivering

software in the cloud as microservices." IEEE Cloud

Computing 3, no. 5 (2016): 10-14.

[11] Di Francesco, Paolo, Patricia Lago, and Ivano Malavolta.

"Migrating towards microservice architectures: an

industrial survey." In 2018 IEEE International

Conference on Software Architecture (ICSA), pp. 29-

2909. IEEE, 2018.

[12] Thönes, Johannes. "Microservices." IEEE software 32,

no. 1 (2015): 116-116.

[13] Nikiforov, Roman. "Clustering-based Anomaly

Detection for microservices." arXiv preprint

arXiv:1810.02762 (2018).

[14] Zasadziński, Michał, Marc Solé, Alvaro Brandon, Victor

Muntés-Mulero, and David Carrera. "Next stop" noops":

Enabling cross-system diagnostics through graph-based

composition of logs and metrics." In 2018 IEEE

International Conference on Cluster Computing

(CLUSTER), pp. 212-222. IEEE, 2018.

[15] Zwietasch, Tim. "Online failure prediction for

microservice architectures." Master's thesis, 2017.

[16] Thalheim, Jörg, Antonio Rodrigues, Istemi Ekin Akkus,

Pramod Bhatotia, Ruichuan Chen, Bimal Viswanath, Lei

Jiao, and Christof Fetzer. "Sieve: Actionable insights

from monitored metrics in microservices." arXiv preprint

arXiv:1709.06686 (2017).

[17] Wu, Li, Johan Tordsson, Erik Elmroth, and Odej Kao.

"Microrca: Root cause localization of performance issues

in microservices." In NOMS 2020-2020 IEEE/IFIP

Network Operations and Management Symposium, pp.

1-9. IEEE, 2020.

[18] Eismann, Simon, Cor-Paul Bezemer, Weiyi Shang,

Dušan Okanović, and André van Hoorn. "Microservices:

A Performance Tester's Dream or Nightmare?." In

Proceedings of the ACM/SPEC International Conference

on Performance Engineering, pp. 138-149. 2020.

[19] Mateus-Coelho, Nuno, Manuela Cruz-Cunha, and Luis

Gonzaga Ferreira. "Security in Microservices

Architectures." Procedia Computer Science 181 (2021):

1225-1236.

[20] Gkikopoulos, Panagiotis, Josef Spillner, and Valerio

Schiavoni. "Monitoring Data Distribution and

Exploitation in a Global-Scale Microservice Artefact

Observatory." arXiv preprint arXiv:2006.01514 (2020).

[21] Knoche, Holger. "Sustaining runtime performance while

incrementally modernizing transactional monolithic

software towards microservices." In Proceedings of the

7th ACM/SPEC on International Conference on

Performance Engineering, pp. 121-124. 2016.

[22] Lavin, Alexander, and Subutai Ahmad. "Evaluating

Real-Time anomaly detection algorithms--The Numenta

anomaly benchmark." In 2015 IEEE 14th International

Conference on Machine Learning and Applications

(ICMLA), pp. 38-44. IEEE, 2015.

[23] Ueda, Takanori, Takuya Nakaike, and Moriyoshi Ohara.

"Workload characterization for microservices." In 2016

IEEE international symposium on workload

characterization (IISWC), pp. 1-10. IEEE, 2016.

IJCATM : www.ijcaonline.org

