
International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 18, July 2021 

31 

Visual Sorting: Visual Paradigm Implementation for Tree-

based Sorting Algorithm 

Achmad Ginanjar 
Directorate General of Taxes 

Gatot Subroto 40-42 
Jakarta, Indonesia 

 
 

ABSTRACT 
In the world of sorting algorithms, the visual interpretation 
approach has not been explored yet. In the attempt at this 
approach, this paper will explore an algorithm that uses object 
unit values for sorting purpose. Those unit values represent 
how visual interpretation understanding an integer. The unit 
values were taken from an integer and split into values of unit, 
ten, hundred, etc. The integer was processed from a list of 
integers. Those integers in the list then sorted. The sorting 

process was done in two steps. The two processes are similar 
to the concept of divide and conquer in other sorting 
algorithm but having different logic. The results were shown 
to be accurate and stable. The result also indicated that the 
process could be done parallel. This indicates that the visual 
interpretation approach can be used as a sorting algorithm 
with the possibility of parallel execution. 

Keywords 

Tree sorting, visual paradigm, python sorting, integer sorting, 
tree object, time complexity, OOP 

1. INTRODUCTION 
The human problem-solving scenario has inspired many 
researchers to solve IT problems for decades. From Object-
Oriented Concept to Artificial Neural Network (ARNN) 
algorithms are inspired on how a biological system works. 
One of which is how the visual (human eye) mechanism 
works to solve problems. When human see a cat or any object, 
human do not write any complex math to recognise it as a cat. 

Similarly, the way how a person drawing on paper that guided 
by visual interaction, inspired the foundation of drawing on a 
screen (Sutherland, 1938). Those paper starts a considerable 
jump for IT invention till now. Moreover, Elliot, E. (2018, 11 
1). The Forgotten History of OOP1 stated that the terminology 
of Object-Oriented Programming coined by Alan Kay in 1966 
or 1967 also inspired by Sutherland’s work.  

In the world of sorting algorithm, the visual interpretation 
approach has not been explored yet. Many sorting algorithms 

implement the sorting concept solely based on an object as an 
object complete value. In contrast, this paper will explore an 
algorithm that uses an object unit value for sorting purpose. 
On the basis of this unit, the sorting algorithm evaluate the 
unit values and construct grouping like object. This object is 
the basis of sorting result retrieval. 

                                                             
1 Elliot, E. (2018, 11 1). The Forgotten History of OOP. 
Retrieved from Medium: https://medium.com/javascript-
scene/the-forgotten-history-of-oop-

88d71b9b2d9f#:~:text=%E2%80%9CObject%2DOriented%2
0Programming%E2%80%9D%20(,his%20Sketchpad%20The
sis%20in%201963. 

2. METHODOLOGY 

2.1 Definition 
The experiment implements a few technical terms that 
frequently used to explained the method practised. The most 
important term used alongside the experiment was “tree 
object”. 

1.1.1. Definition 1 
Let 

                        
                     

 
Equation 1 Last Object 

T be a dictionary object that has n keys. In this experiment   

is an integer between 0 to 9, inclusive and without repetition. 
d_max represent the maximum size of integers in a List, 
where size is the count digit. d is an integer that count how 

many integers that similar.  This        object is the last 

object of a tree. 

1.1.2. Definition 2 
Let  

                      
                

 

Equation 2 Tree Object 

T be a tree object that has n child where n between 0 to 9 
inclusive and unique. d represent the level of a tree.   In this 
experiment    is a tree object T with d as a name. Therefore,  

   is a tree object that has string 0 as name.  

1.1.3. Definition 3  
Let  

       
Equation 3 Root Object 

R be root and a tree container. The evaluation of R is always 
at 0 level and require 1 complexity to build. Therefore, the 
minimum complexity to start the algorithm and sort nothing is 

always 1 or   . 
 

1.1.4. Definition 4 
Let  

                     
Equation 4 List of Integers 

L be a list of integers. The member of the list is not unique. 
The size of the list is the count of their member.  
The list was generated with bellow python code: 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 18, July 2021 

32 

1. def genList(n,n2=1000000): 
2.     return [rd.randint(0, n2) 

for i in range(n)] 

Pseucode 1 List Generation 

2.2 Preliminaries 
The current experiment involved splitting a value as a unit’s 
level. The split values were values of unit, ten, hundred, etc. 
This method based on the understanding of how a human 
visual works. When comparing tens and hundreds, the human 

does not always take a complete value and compare them. 
However, by only look at the digit length, human know that 
hundreds are bigger than tens. 

  compared with    

Fig 1 Hundreds vs Tens 

Even without knowing the real value, hundred(left) is bigger 
than ten(right) in the above picture. Therefore, both objects 
can be sorted into [ ten, hundred].  

The latter step was building tree object to represent level and 
group level. The tree object was built per level. The final tree 
object will have a nested tree inside a Root. The depth of a 
tree depends on how much level a number has. For example, 
an integer of 435 will have three nested trees representing a 
unit of 5, a ten of 3 and a hundred of 4. 

 
Fig 2 Unit levels 

2.3 Splitting an Integer 
In this experiment, one thousand lists (L) of different length 
of integer were generated randomly. Each list L had member 

size from 0 to 100.000 integer. Each list L was processed 
separately in ascending order by the size of the list. A 10 step 
were used to get 10.000 lists out of the maximum 100.000 
size. For example: 0,10, 20,….100.000  

Each list L then iterated through its member. Each member of 
the list L that is an integer value, then split into the unit, tens, 
hundred etc. The split process was started from the biggest 
unit of each integer. An integer of 146 was split into 1, then 4, 

and lastly, 6. In the case of integer 146, 1 had 4 as its member, 
and 4 has 6 as its member. 

2.4 Constructing Tree Object  
Using tree object implementation, each unit was grouped by 
its unit level. In the case there was an integer that having a 

smaller maximum unit,  compared with the previous integer, 
then 0 is added to represent a higher unit. For example, 
integer of 34 represented with 0034 to represent 0 hundred 
and 0 thousand.  
 

2 3 4 5   
  
2 3 4 5 

  3 4   0 0 3 4 
 1 4 6   0 1 4 6 

3 5 6 7   4 5 6 7 
3 2 1 0   3 2 1 0 
   3   0 0 0 3 

Fig 3 Conversion 

The construction of the tree object was started by initiating an 
empty tree object. That object was used as a root container to 
maintains the whole nested tree object. This object was the 
same object like any other tree object in this paper. The only 
difference was the user names the object.  

 
The next step was to insert each integer into the tree. Each 
integer that had been split as a result of the previous 
procedure, was inserted one by one. Similar to splitting 
integer, inserting the integer was started from the biggest unit. 
Following the previous example, using an integer of 146, 1 
was inserted first, then followed by 4, then 6.  This process 
will create an object such as 

                 

Equation 5 A level 

The least T object was different from its roots. The last T 
object was a dictionary that records the occurrences of an 
integer. For example, if a list consists of two integers of 146 
like  

                   

Then   
                

Fig 4 Similar Integers 

This represent that there are two 146 integer value in the list 
L. 

2.5 Obtaining sorted integer 

 

Fig 5 Tree Object 

The tree    object then reviewed to get the sorted integers. 

From the last object, which represents the last or smallest unit, 
the integer is evaluated. Started from the last child, up to the 

parent        of each tree, then continue to the upper parent 

         until reach the top root      . 

 
For each tree   , the collection process were made by 

ascending walk throughout a list of integer from 0-9 ( 
[0,1,2,3,4,5,6,7,8,9] ) for each child. In the least tree    , 

multiple numbers were returned when the original list L had 
more than one value that equal.  

2.6 Proof of Concept 
Each group were sorted with two different algorithms. The 
algorithms were the Visual Sorting algorithm (the subject of 
this paper) and the python default sorting algorithm, Timsort 
algorithm that proposed by Peters, T. (2002, 07 20)2. The 

                                                             
2 Peters, T. (2002, 07 20). [Python-Dev] Sorting. Retrieved 
from Python Mailinglist: 

root hundred ten unit 

T0 

0 

0 

0 

3:1 

3 

4:1 

1 

4 

6:1 

2 

3 

4 

5:1 

3 

5 

6 

7:1 

2 

1 

0:1 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 18, July 2021 

33 

results then compared in both values and time executions. The 
experiment was done only with integer type object. Another 
type of objects like string or float, is not studied yet. However, 
the implementation will be similar. In addition, the 
experiment was done with the python language. The 

performance might not be the best compared to low-level 
language such as C. Nevertheless, the algorithm was done in 
such a way that might be the best in the python way.  

3. RESULTS AND DISCUSSION  

3.1 Tree Object 
Implementation of tree object for sorting from other studies 
resulted in a similar tree object with apparent differences. 
According to Skylarof et al. (2005), the value of the tree 
object was the complete value of its own number. For 
example, for an integer value like 789. In Skylarof works, A 

single node of a tree object that contains the integer is having 
789 as its value. In contrast, In this experiment, a value like 
789 was split into its unit to represent levelling. The figure 
below shows the differences between both methods. 

789  789 

Binary tree sort  Visual Sort 

   

 

 

 
Fig 6 Binary Sort vs Visual Sort 

As can be seen, the visual sort object size is more significant 
than the binary tree sort object.  This was because visual sort 
breaks a value into units, while on the other hand, binary tree 
sort treats a value as a complete value. However, in the 
experiment, with more value, the visual sort was resulting in 

similar objects with a binary tree sort. The figure below shows 
the final object of both algorithms. 

[2345,34,146,4567,3210,3] 

Binary tree sort 

 
 

                                                                                               
https://mail.python.org/pipermail/python-dev/2002-
July/026837.html 

 [2345,34,146,4567,3210,3] 

Visual Sort 

 

Fig 7 Final Tree Result 

 Using this approach for object creation, the visual model 

results in better computation consumption. This is because 
there was not any comparison done to determine bigger or 
smaller value. Unlike a binary tree sort that compares two 
value in each step, the visual model breaks units only. The 
behaviour is similar to the merge sort algorithm (Skiena, 
2008) that breaks a list into sub list until only a single value 
left. 

3.2 Obtaining Sorted Value 
The final step of the visual sorting algorithm in this 
experiment was sorted value retrieval. The results of the 
visual sorting algorithm were sorted value like the one 

produced by binary tree sort. However, the time used to 
execute visual sorting was more significant than the time 
achieved by the default python sorting algorithm.  
 

 

Fig 8 Time Comparison, Time Sort vs VIsual Sort 

 

 

 

T0 

789 

T0 

7 

8 

9 

 

root 

0 

0 

0 

3 

3 

4 

1 

4 

6 

2 

3 

4 

5 

3 

5 

6 

7 

2 

1 

0 

  

 
root 

 
3 

 
34 

 
146 

 
2345 

 
3216 

 
3567 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 18, July 2021 

34 

Sorted values: 

   3 

  3 4 

 1 4 6 

2 3 4 5 

3 2 1 0 

3 5 6 7 

Fig 9 Sorted Values 

Nevertheless, the result suggests that visual sorting can be 
used as an alternative to the sorting algorithm that available 
now. 

3.3 Correctness and Time Complexity 
The implementation of visual sorting was straightforward. It 
did not need any complex mathematical theory and 
implementation. Due to this fact, the correctness of the visual 
sorting algorithm result can be guaranteed. This theory is 

proofed by this experiment that gave consistent and ordered 
result for each list L. 
 

 

Pseucode 2 Get Sorted Value 

One of the downsides of this method was time complexity. 
Due to its nature, the Visual Sorting algorithm time 
complexity mostly depends on the maximum integer size in a 
list. In this paper, maximum size was known with d notation. 
The maximum d value was also translated as the depth of a 
tree. Below is a comparison with other soring method stated 
in this paper: 

Table 1 O Time Complexity 

No Name Best Worst 

1. Timsort           

2. Merge Sort                 

3. Visual Sorting     + 1         

 
Due to the nature of visual sorting works, there is a big 
opportunity for parallel sorting implementation. This is 
because each integer was processed individually without 
actually comparing with other value. With a better coding 
algorithm, the visual sorting algorithm can be done parallelly.  

4. CONCLUSION 
Prior works have documented the successfulness of sorting 
algorithms using a tree-based algorithm; Skylarof for 
example, introduces the Binary Tree Sort algorithm for 
sorting by building a tree object with two legs each node. 
Sutherland did another major work that is important to 

mention. His study starts the merging of visual concept into a 
computer model. However, these studies have never been 
implemented together. 

In this study, the implementation of a visual concept is 
applied in a sorting algorithm. The algorithm sorts the value 
base on its single unit. This study found that in all experiment, 
the values are sorted correctly. Although the time is not better 
than the Tim Sort algorithm, visual sorting can be helpful in 
some cases. These findings merge the sorting tree algorithm 

and visual concept, confirming that a unit value like units, 

tens, hundreds, etc., can be very meaningful in computer 
algorithm as to how the human brain interprets it. Also, a new 
sorting algorithm is introduced. This study, however, 
introduces that the benefit of the sorting algorithm may 
address more time and resource to finish. Most notably, this is 

the first study to our knowledge to implement a sorting 
algorithm with a visual concept.  

The results provide compelling evidence for long term 
collaboration between researchers to explore how the human 
vision works and implement it in a computer model. 
However, some limitations are worth addressing. Although 
the concept is easy to draw, the experiment was assessed with 
Python language; there might be an improvement if low-level 

programming language was being used. Another limitation 
arises because the study was done with only integer-base 
values. Future work should therefore include other low-end 
language and other data type. 

In the future, this study can be extended with a different data 
type. This study focuses on the integer data type. The string 
data type that commonly uses can be implemented with a 
slight adjustment. Another extension can also implement low-

level programming like C, C#, C++ that can guarantee the 
robustness.  

5. DECLARATION 

Funding 
This research received no external funding. 

Conflicts of interest/Competing interests 
The authors declare no conflict of interest. 

Availability of data and material 
All data and material were produced in the lab by code 
supplied, therefore can be done repeatedly. No data sharing 
available except the code. 

Code availability 
The codes are attached in the paper and were produced by 
author. 

6. REFERENCES 
[1] Zhang, Jian & Jin, Rui. (2021). An Improved Bubble 

Sort Method - Marking Bubble Sort. 10.1007/978-3-030-
70042-3_121.  

[2] Liu, Yu-Zhe & Tang, Shyue-Ming & Chang, Jou-ming. 
(2021). On the Decycling Number of Bubble-sort Star 
Graphs.  

[3] Akhter, Naeem & Idrees, Muhammad & Furqan-ur-
Rehman,. (2016). Sorting Algorithms – A Comparative 
Study. International Journal of Computer Science and 

Information Security,. 14. 930-936.  

[4] Skiena, S. S. (2008). 4.5: Mergesort: Sorting by Divide-
and-Conquer. In The Algorithm Design Manual (2nd ed.) 
(pp. 120-125). Springer. 

[5] Sklyarov, V., Skliarova, I., & Pimentel, B. (2005). PGA-
based implementation and comparison of recursive and 
iterative algorithms. 

[6] Sutherland, I. E. (1938). Sketchpad, a man-machine 

graphical communication system. Massachusetts 
Institute of Technology. 

 

IJCATM : www.ijcaonline.org 


