
International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 2, May 2021 

 

1 

A Hybrid Cryptographic Scheme of Modified Vigenère 

Cipher using Randomized Approach for Enhancing Data 

Security 

Sazzad Hossain Saju 
Dept. of Computer Science and 

Engineering 
Hajee Mohammad Danesh Science 

and Technology University, 
Dinajpur, Bangladesh 

 

Sayed Mahmudul Haque 
Dept. of Computer Science and 

Engineering 
Hajee Mohammad Danesh Science 

and Technology University, 
Dinajpur, Bangladesh 

 

Liakot Hossain Lingcon 
Dept. of Computer Science and 

Engineering 
Hajee Mohammad Danesh Science 

and Technology University, 
Dinajpur, Bangladesh 

 
 

ABSTRACT 

Vigenère cipher is an ancient elementary method that uses a 
series of Caesar shifting for encrypting plaintext to ciphertext 
protecting it from adversaries. However, a frequency analysis 
attack is vulnerable in this type of cipher technique. This 
paper aims to enhance the security of the Vigenère cipher in a 
hybrid cryptosystem using a randomized approach including 
pseudorandom substitution, rearranging, padding, etc. In this 

approach, a complex key generation algorithm is used that 
generates a pair of subkeys from an input key. One of the 
subkeys, Subkey1 is used to generate an intermediate 
ciphertext. The other key, Subkey2 is used to further scramble 
the ciphertext. The slightest change in the input symmetric 
key produces an entirely different key pair. Hence, different 
encrypted results. It also increases the ranges of characters 
that Vigenère cipher can encrypt by including all ASCII and 

extended ASCII. Finally, the symmetric key is encrypted with 
the public key of RSA solving the key distribution problem of 
the symmetric cipher. This enhanced and modified Vigenère 
cipher in the hybrid cryptosystem overcomes all limitations of 
classical cipher and acts as a bridge between classical and 
modern cryptography.  

General Terms 

Cryptography, Security, Algorithm, Encryption 

Keywords 

Caesar Cipher, Vigenère Cipher, Encryption, Decryption, 

Key, Plaintext, Ciphertext, Cryptanalysis, RSA, Security, 
Symmetric, Asymmetric 

1. INTRODUCTION 
Cryptography is “the science and study of secret writing.” as 
defined by Yamen Akdeniz. The most significant reason for 

using cryptography is to preserve confidentiality. So that, 
anyone except the authorized person cannot read the message. 
Other importances are preserving integrity, non-repudiation, 
and authentication [1]. From ancient times to the modern era, 
cryptography is a big deal. Around 100 BC, Julius Caesar 
developed the Caesar cipher to send commands to his generals 
in the field. Ancient ciphers were concerned with only 
alphabets that could provide a minimum level of security at 
that period. In 1553 Vigenère cipher was invented that encrypt 

alphabetic text by using a series of interwoven Caesar cipher. 
Historically, many similar classical ciphers were invented that 
can be practically computed and solved by hand. 
Cryptography gets its most attention, especially in the modern 
era. During WWII, the cryptanalysis of Enigma and Lorenz 

SZ machines lead to the development of modern electronic 
computers. Because it required very fast simultaneous 
calculation to perform a brute force attack and theoretically 

cannot be computed with the human hand in a measurable 
time. At that period, Claude Shannon proved that a one-time 
pad cipher is unbreakable when the key material is truly 
random and of equal or greater length than the message [2]. 
Then with the invention of the internet, cryptography is not 
only a concern for the government and scientists but all of us. 
From mail, cash transactions, file encryption, password 
manager, multilayer password protection, many protocols like 

HTTPS, WPA2, TCP/IP are using cryptography on daily 
basis.  Due to a wide range of applications, modern cipher 
owns a very complex infrastructure because the attacks from 
the intruder were stronger than ever before with the increasing 
computational power of computers. So classical ciphers must 
have their modifications and many researchers have been 
working on that. Modern ciphers like AES, DES, or Blowfish 
have output ranges from ASCII 0 to 255. But these are 

symmetric-key ciphers. Symmetric ciphers are faster than 
asymmetric ciphers in encrypting a large volume of data. But 
they have a key distribution problem. While asymmetric 
ciphers like RSA have two keys: public and private. A public 
key is publicly announced, so anybody can encrypt using it. 
On the other hand, a private key is kept secret and used to 
decrypt. Also, the keypair is very large and must have to store 
somewhere while the symmetric key is usually simple enough 

to remember. So Many hybrid cryptosystems are now 
combining these symmetric-key and asymmetric-key ciphers 
where the symmetric-key is encrypted with the asymmetric-
key before transmitting [3]. This paper presents a new hybrid 
cryptosystem with the combination of the enhanced and 
developed version of Vigenère cipher and RSA. With 
asymmetric-encrypted key sharing and randomized symmetric 
approach, the cryptosystem is convenient to consider as a fast 
and reliable method.  

2. CLASSICAL METHODS 

2.1 Caesar Cipher 
Caesar Cipher or Caesar shift uses a constant for shifting 
letters to evolve the encrypted text. It is a monoalphabetic 
substitution i.e. the replacement is the same for the entire text 
to be encrypted. To encrypt a letter X, it uses encryption 
formula: En (X) = (X + n) mod 26 and for decryption, the 

algorithm uses decryption formula: Dn (X) = (X – n) mod 26. 
Here, X is the position of a letter and n is constant. The 
operation is performed on the overall 26 letters of the English 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 2, May 2021 

 

2 

alphabet. Here is an example of classical Caesar Cipher using 
a constant n=7, 

Plain text: 

MANYCIPHERSHAVEBEENDEVELOPEDTOPROVIDED
ATASECURITY  

Cipher text: 
THUFJPWOLYZOHCLILLUKLCLSVWLKAVWYVCPKL
KHAHZLJBYPAF 

2.2 Vigenère Cipher 
Vigenère cipher is a polyalphabetic substitution technique that 
encrypts alphabetic text. It uses a series of Caesar shifting 
based on the letters of a keyword. To perform this, the 
keyword has to repeat to be the same size as the plaintext. An 
example of encryption is given in Fig.1: 

 

Fig 1: An example of encryption using Vigenère cipher 

The ciphertext is produced by using a variable instead of a 

constant in the Caesar cipher equation. Letters are converted 
as A=0, B=1, C=2 …. Z= 25 and the variable changes based 
on the letters of the keyword. So Vigenère cipher must have a 
minimum of 2 key characters. Otherwise, there will be no 
difference with Caesar cipher. With a longer keyspace, it was 
believed at that period that the Vigenère cipher is 
indecipherable because the key materials are a random choice 
by the user. But the distribution of letters in a typical sentence 

of the English language has a very distinct and predictable 
shape. Therefore, ciphertexts generated with Vigenère cipher 
are prone to be broken easily using frequency analysis attack, 
brute force or exhaustive search, etc. Here, in Table-1 letter 
frequencies in the English language are given. This can be 
used to perform a frequency analysis attack on the Vigenère 
cipher. 

Table 1. Letter frequency in the English language [4] 

Letter Frequency Letter Frequency 

a 8.167% n 6.749% 

b 1.492% o 7.507% 

c 2.782% p 1.929% 

d 4.253% q 0.095% 

e 12.702% r 5.987% 

f 2.228% s 6.327% 

g 2.015% t 9.056% 

h 6.094% u 2.758% 

i 6.966% v 0.978% 

j 0.153% w 2.360% 

k 0.772% x 0.150% 

l 4.025% y 1.974% 

m 2.406% z 0.074% 

Here the plaintext shown in Fig.1 is a general English 
sentence hence the frequencies are corresponding to the table 
where the letter “E” has the highest frequency. Whereas in 
ciphertext, the letter “I” has the highest frequency. So “I” 
corresponds to “E”. Here, E=4 and I=8. So the distance is 4. 
Again 4=E, so the letter is also "E" in the keyspace. 

Therefore, it is clear that frequency analysis attack is 
vulnerable for Vigenère cipher. Also, the frequency analysis 
can be used as an essential factor in a genetic algorithm for 
the cryptanalysis of the Vigenère cipher. The genetic 
algorithm measures fitness for 20 randomly selected keys and 
searches the keyspace without necessarily knowing the key 
[5]. 

3. RELATED WORK 
There has been an enormous amount of research on 
cryptography to gain a higher level of security. Dr. V. Kapoor 
and R. Yadav proposed a hybrid cryptography technique to 
support cybersecurity infrastructure. This paper describes 
various aspects of cryptography as well as a proposed work 

addressing some of the core issues of cryptography [3]. A 
randomized approach was made by A. Jain, R. Dedhia, and A. 
Patil for enhancing the security of the Caesar cipher. It 
overcomes the limitations faced by the classical Caesar cipher 
by using a complex key generation technique. Instead of using 
a single key, this method generates two keys from the input 
key providing enhanced security [6]. Bhardwaj C. gives a 
modification of Vigenère cipher by random numbers, 

punctuations, and mathematical symbols. He used randomly 
generated numbers instead of the alphabet for the encryption 
key [7]. Md. P. Uddin developed a cryptographic algorithm 
based on ASCII conversion and a cyclic mathematical 
function. In this method, the original message is divided into 
packets binary matrices and each packet produces unprintable 
characters. So the encrypted result contains only control 
characters [8]. R.K. Singh developed a character jumbling text 
encryption method that varies with an odd or even number of 

characters. It is a lightweight encryption method that does not 
require any key from the user. The key is randomly generated 
inside the cryptosystem [9]. 

4. PROPOSED ALGORITHM 

4.1 Encryption 
In the encryption algorithm, a plaintext message M is an input 
from the user. Mlen is the message length. Mlen becomes an 

argument to the KeyGeneration function that returns a key 
pair: Subkey1 and Subkey2. The intermediate ciphertext C is 
produced from the operation of Subkey1 and M. For padding, 
the tilde characters are appended with C to be a multiplication 
of 8. After that, C is rearranged utilizing Subkey2. Finally, C 
is converted to hexadecimal format and the tilde characters are 
replaced with random control characters and/or extended 
ASCII based on the positions. The flowchart of the encryption 

algorithm is presented in Fig2. 

Pseudocode: 

1. Input the plaintext message M. 
2. Call KeyGeneration(Mlen) function to generate a 

pair of subkeys: Subkey1, Subkey2.  



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 2, May 2021 

 

3 

3. Intermediate ciphertext C is produced using 
formula: C[i] = (M[i] + Subkey1[i]) mod 94 for i=0 
to Mlen. 

4. Keep adding tilde character (~) after C until C.size() 
is not a multiplication of 8. 

5. For i = C.size() – 1 to 0 
a. Generate a random number j, using j = 

Subkey2[i] mod C.size()  
b. Exchange C[i] with C[j] 

6. Convert C to hexadecimal format. 
7. For i = 0 to C.size() 

a. Substitute tilde character (7E) with 
random control character (CC) when the 
position (i/2) is even and substitute with 
extended ASCII character (EA) when the 
position is odd.  

8. Transmit the ciphertext generated in step 7. 
 

4.2 Decryption 
In the decryption algorithm, the user inputs the ciphertext C. 
A variable pad_char indicates padding characters i.e. number 
of control characters and/or extended ASCII contained in C. 
From pad_char the original message length, Mlen is 
determined which becomes an argument to the KeyGeneration 
function. The key Generation function returns two subkeys: 

Subkey1 and Subkey2. Then the padding characters are 
replaced with tilde characters (7E) and the ciphertext is 

converted to the base format. Subkey2 inversely scrambles the 
ciphertext and the result is the intermediate ciphertext C. 
Finally, the operation of the C and Subkey1 reveals the 

original message M. The flowchart of the decryption 
algorithm is presented in Fig3. 

Pseudocode: 

1. Input the ciphertext C 
2. Calculate padding characters or pad_char and get 

original message length, Mlen = C.size()/2 – 
pad_char.   

3. Call KeyGeneration(Mlen) function to generate a 

pair of subkeys: Subkey1, Subkey2.  
4. Substitute the padding characters with tilde 

characters (7E) in C.  
5. Convert C to base format.  
6. For i = 0 to C.size() 

a. Generate a random number j, using j = 
Subkey2[i] mod C.size() 

b. Exchange C[i] with C[j] 
7. If tilde character (~) appears in C 

a. Shrink ciphertext length length by erasing 
where the tilde character begins.  

8. Original message M is revealed using formula: M[i] 
= (C[i] – SubKey1[i]) mod 94 for i=0 to C.size(). 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig 2: Flowchart of Encryption Algorithm 
 
 
 

 

 

 

Subkey1  

 If C.size() 

mod 8 is 0 

Add tilde characters 

Start 

KeyGeneration(mlen) Input Plaintext (M) 

For i=0 to Mlen C[i] = 

(M[i] + Subkey1[i]) 

mod 94   

Scramble ciphertext 

using Subkey2 

Convert to Hexadecimal 

Substitute 7E with 

random CC and EA 

N 

Y 

SubKey2 

Stop 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 2, May 2021 

 

4 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Flowchart of Decryption Algorithm 

4.3 KeyGeneration(Mlen) 
The KeyGeneration algorithm takes an input key K from the 
user. Message length or Mlen is an argument to the function. 
The input key, K becomes an argument to another Txt2Int 

function. This function returns a random number Seed 
generated from K. Then the input key is enhanced to be the 
same size as the message. The enhanced key is substituted 
using the random number Seed. Then the substituted key is 
rearranged and that is the Subkey1. If Subkey1 is not a 
multiplication of 8, then it is further repeated and again 
substituted with random characters. Finally, Subkey2 is 
already generated from Subkey1. So, the algorithm returns the 

keypair. 

Pseudocode: 

1. Input a key K 

2. Get a random number, Seed = Txt2Int(K) + Mlen 

3. While (K.size() ≠ Mlen) repeat K  

4. For i=0 to K.size() do substitution 

Seed = (K[i] + Seed) Mod 95 

Temp = K[i] + Seed 

if(Temp> 126) Temp = Temp – 95 

K[i] = Temp 

5. For i=0 to K.size()  do rearranges 

srand(Seed) 

j = rand() Mod K[i] Mod K.size() 

exchange K[i] with K[j] 

6. Subkey1 = K 

7. While (Subkey1.size() mod 8) is not equal to 0 

Subkey2 = repeate Subkey1 

8. For i=0 to Subkey2.size() do substitution 

Seed = (Subkey2[i] + Seed) Mod 95 

Temp = Subkey2[i] + Seed 

if(Temp>126)Temp = Temp – 95 

Subkey2[i] = Temp 

9.  Return Subkey1, Subkey2. 

KeyGeneration (Mlen) 

 

Mlen = C.size()/2 – 

pad_char 

If pad_char 

is 0? 

Start 

Input Key (K) Input Ciphertext (C) 

If tilde char (~) 

appear? 

For i=0 to C.size()                      

M[i] = C[i] – Subkey1[i] mod 94 

Stop 

Substitute CC and EA 

with tilde char (7E) 

Base conversion 

Subkey2 
Inversely scramble 

ciphertext using Subkey2 

 

Shrink ciphertext length 

N 

Y 

N 

Y 

Subkey1 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 2, May 2021 

 

5 

4.4 Txt2Int(K) 
1. Initialize Seed =0, grd=1 

2. For i=0 to K.size() do  

Seed = (Seed+K[i]) * grd 

grd *= 2 

3. Return Seed 
 

4.5 Existing Method 
RSA is an asymmetric key encryption technique where two 
prime numbers are taken initially and then the product of 
these values are used to create a public and a private key. The 
symmetric key is encrypted with the public key at the end of 
the symmetric encryption process. Similarly, at the beginning 
of the symmetric decryption, the private is used to reveal the 
original symmetric key.  

Pseudocode: 

1) Select two large prime numbers, p, and q. Let n= p.q 
2) Calculate Euler’s Totient: φ(n) = (p-1) (q-1) 
3) Find a random number e such that 1<e<φ(n) and 

relatively prime with φ(n) i.e. gcd(e,φ(n)) = 1 
4) Calculate a number d such that d = e-1 mod φ(n) 
5) Encryption: Given a symmetric key K in plaintext 

then the ciphertext CK = Ke mod n 
6) Decryption: The encrypted symmetric key is 

decrypted by the formula: K = CKd mod n 

 

5. Explanation with Example 

5.1 Encryption of the Plaintext 
Following the developed symmetric encryption algorithm step 
by step, the outcome is an encrypted string in hexadecimal-
format for the example taken below: 

Plaintext M: qwerty is my facebook password 

Key K: Qwerty12 

1) First step is to get the message length or Mlen from the 
input message M. 

Message length or Mlen = 30 

2) In the second step, Mlen is passed as an argument to the 
KeyGeneration function. The KeyGeneration function takes 
an input key K from the user. Then it returns the following 
keypair where Subkey1 has the same size as M and Subkey2 

have the size of multiplication of 8.  

Subkey1 = 3.,)v`W_v@IhEm75VdVN m;<*D#My 

Subkey2 = }LxBYZRRiJ4=#1h>5:1 @N*f1u9'Aa5c 

3) Third step produces the intermediate ciphertext C from the 
operation of M and Subkey1. The ciphertext C contains 
anything in the readable ASCII characters except the tilde 
character. The tilde character is reserved for padding. Here is 
the process for the first character in C: 

M[0] = q = 113 (ASCII) 

Subkey1[0] = 3 = 51 (ASCII) 

Temp = (113+51) mod 94 = 70 = F (ASCII) 

C[0] = F 

So, q  F, Similarly, 

Intermediate C = FG3=.{wj-`X%eu::]hg_-/M??Y<^/& 

4) Until the length of the intermediate C is not a 
multiplication of 8, then tilde (~) characters are appended to it 
in the 4th step. Here C.size() = 30. The nearest number 32 is a 

multiplication of 8. So (32-30) = 2 tilde characters are 
appended to C. This is enhanced C. 

Enhanced C = FG3=.{wj-`X%eu::]hg_-/M??Y<^/&~~ 

5) Step-5 scrambled the enhanced ciphertext C using the 
Subkey2. Process begins from end to the beginning of C. For 
each character in C of indexed i, a random position j is 
generated (j ≤ C.size()). Here is the first iteration: 

i = C.size() – 1 = 32 – 1 = 31 

j = Subkey2[i] mod C.size() =  Subkey2[31] mod 32 = 99 mod 
32 = 3 

Exchange C[31] with C[3]. Similarly, 

Scrambled C = %~h3~g^?F<`G/Y-/:u?-M]Xwe.{j&_:= 

6) The resultant C from step-5 is converted to hexadecimal 
format giving the following values: 

Hexadecimal conversion of C = 
257E68337E675E3F463C60472F592D2F3A753F2D4D5D58
77652E7B6A265F3A3D 

7) The hexadecimal converted C contains 7E that is the tilde 
character. Here are two tilde character at position 2/2 = 1 and 
8/2 = 4. So the first tilde character is replaced with random 
extended ASCII for the odd position and the second tilde 
character is replaced with random control character for the 
even position. 

Final ciphertext C = 
25A3683301675E3F463C60472F592D2F3A753F2D4D5D58

77652E7B6A265F3A3D 

At the end of the symmetric encryption process, the 
asymmetric encryption begins to encrypt the symmetric key. 
Here is the process for the taken symmetric key K: 

1) Two big prime numbers (p and q) and an auxiliary number 
(e) are chosen where gcd(e,φ(n)) = 1. Then the public key is 
(n,e). Here n = p.q and φ(n) = (p-1) * (q-1). Consider, 

p = 759902534011993492390886979244737626978083 

q = 1462428735316547974645342609 

e = 789063169 

Public key (n,e)  = 
(1111303301778999725974797086187383710241918191406
412745768346869038547, 789063169) 

2) Now the symmetric key is encrypted using formula CK = 
Ke mod n. K is the symmetric key. 

Symmetric Key, K = Qwerty12 

Encrypted Symmetric Key, CK = 
4526994CD2223D17221EDF1FF71F0E65973CFA2DF87DD
65C02733698D 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 2, May 2021 

 

6 

Table 2. The encrypted output produced by the 

cryptosystem 

Encrypted 

Symmetric 
Key (CK) 

4526994CD2223D17221EDF1FF71F0E65973
CFA2DF87DD65C02733698D 

Encrypted 
Message (C) 

25A3683301675E3F463C60472F592D2F3A75
3F2D4D5D5877652E7B6A265F3A3D 

 

5.2 Decryption of the Ciphertext 
The process begins with the asymmetric decryption of the 
encrypted symmetric key CK. Decryption isn’t possible 

without the private key and each public key and private key 
are unique pairs in RSA. 

1) Along with prime number p and q and the auxiliary number 
e, a new auxiliary number d is determined where d = e-1 mod 
φ(n). Then the private key is (n,d). Here d is calculated as:  

d = 3832800021658790301987535224552490953445373728 
66464546463111249522657 

Private key (n,d) = 

(1111303301778999725974797086187383710241918191406
412745768346869038547, 3832800021658790301987535224 
55249095344537372866464546463111249522657) 

2) Now the encrypted symmetric key is decrypted using the 
formula K = CKd mod n. 

Encrypted Symmetric Key, CK = 
4526994CD2223D17221EDF1FF71F0E65973CFA2DF87DD
65C02733698D 

Symmetric Key, K = Qwerty12 

After the symmetric key is retrieved, the symmetric 
decryption can begin to reveal the encrypted message C. Here 
is the step by step decryption processes explained for the 
taken example: 

1) User inputs the ciphertext C. 

Ciphertext, C = 
25A3683301675E3F463C60472F592D2F3A753F2D4D5D58

77652E7B6A265F3A3D 

2) In step-2, the number of padding characters are determined. 
From this, the original message length or Mlen is calculated 
as follows: 

pad_char = 2 (A3, 01) 

Mlen = C.size()/2 – pad_char = 62/2 – 2 = 30 

3) Mlen becomes an argument to the KeyGeneration function 
and it takes the input key, K from the user. Then returns the 
same keypair as encryption: 

Subkey1 = 3.,)v`W_v@IhEm75VdVN m;<*D#My 

Subkey2 = }LxBYZRRiJ4=#1h>5:1 @N*f1u9'Aa5c 

4) Step-4 replaces the padding characters of ciphertext C with 
the tilde character (7E). 

Substitute C = 
257E68337E675E3F463C60472F592D2F3A753F2D4D5D58
77652E7B6A265F3A3D 

5) The ciphertext C is then converted in base format and that 
is scrambled ciphertext. 

Scrambled C = %~h3~g^?F<`G/Y-/:u?-M]Xwe.{j&_:= 

6) Step-6 rearranges the characters of the ciphertext in proper 
position using Subkey2. Process starts from beginning to the 
end of C. After the end of iteration the result is enhanced C. 

First, i = 0 and  

j = Subkey2[i] Mod C.size() = Subkey2[0] mod 32 = 125 mod 
32 = 29 

So, C[0] exchanged with C[29]. Similarly, 

Enhanced C = FG3=.{wj-`X%eu::]hg_-/M??Y<^/&~~ 

7) Step-7 removes the tilde character from C if there is any. 
The result is intermediate ciphertext C. 

Intermediate C = FG3=.{wj-`X%eu::]hg_-/M??Y<^/& 

8) Finally, the original message M is revealed from the 
operation of the intermediate C and Subkey1. Here is the 
process for the first character in M. 

C[0] = F = 70 (ASCII) 

SubKey1[0] = 3 = 51 (ASCII) 

Temp = (70-51) mod 94 = 19 

Temp < 32, So Temp += 94 

M[0] = Temp = 113 = q 

So, T  q. Similarly, 

Message M = qwerty is my facebook password 

Table 3. The decrypted output produced by the 

cryptosystem 

Decrypted 

Symmetric 
Key (K) 

Qwerty12 

Decrypted 

Message 
(M)  

qwerty is my facebook password 

 

5.3 KeyGeneration(Mlen) 
The KeyGeneration function is the same in both encryption 
and decryption. It returns a key pair generated from an input 
key chosen by a user. Here the key generation is explained for 

the key used in the encryption and decryption example above.  

1) The user chooses a strong password as the input key. Here 
an assumption, 

K = Qwerty12 

2) The Txt2Int function takes K as an argument and returns an 
integer which is summed up with the message length or Mlen. 
That is a random number Seed, 

Txt2Int(K) = int(Q).20+int(w).21+…. +int(1).2K.Size() – 2 

+int(2).2K.Size() – 1  = 16899 

Seed = Txt2Int (K) + Mlen = 16899 + 30 = 16929 

3) The Key is repeated until K.Size() ≠ Mlen. Here K.Size() = 
8 and and Mlen = 30. Hence the result from step-3 is, 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 2, May 2021 

 

7 

Enhanced, K = Qwerty12Qwerty12Qwerty12Qwerty 

4) Step-4 performs a pseudorandom substitution of K using 
the random number Seed. Here is the process for the first 

character in the substituted key 

K[0] = Q = 81 (ASCII) 

Seed = 16929 

Seed = (Seed + K[0]) mod 95 = (16929 + 81) mod 95 = 5 

Temp = K[0] + Seed = 81 + 5 = 86 = V (ASCII) 

Q  V, Similarly, 

Substituted, K = V5)I` h<M, @Wv_3D#v7NmV*;ym.Ed 

5) In step-5, the substituted K is shuffled randomly to produce 

a further scrambled key-stream. The updated value of Seed is 
74 from step-4. This is used to indicate a random number in a 
pseudorandom sequence. 

srand(Seed) = srand(74) 

For, i = 0 

K[i] = K[0] = V = 86 (ASCII) 

K.Size() = 30 

j = rand() mod K[0] mod K.Size() = 22 

So, K[0] exchanged with K[22]. Similarly, 

Random indexed K = 

3.,)v`W_v@IhEm75VdVN m;<*D#My 

6) The result from step-5 becomes SubKey1. 

SubKey1 = 3.,)v`W_v@IhEm75VdVN m;<*D#My 

7) The length of Subkey1 is not a multiplication of 8. So it is 
enhanced and becomes an intermediate Subkey2: 

Int. Subkey2 = 3.,)v`W_v@IhEm75VdVN m;<*D#My 3. 

8) A random substitution is performed for Subkey2 similar to 

step-4. Here the Seed is initially 74 and this produces the 
following Subkey2: 

Subkey2 = }LxBYZRRiJ4=#1h>5:1 @N*f1u9'Aa5c 

9) The generated Subkey1 and Subkey2 get returned from the 
KeyGeneration function. Table-4 exhibits the results for the 
taken input key K. 

Table 4. The result from the KeyGeneration function for 

the example taken 

Input Key 
(K) 

Qwerty12 

Subkey1 3.,)v`W_v@IhEm75VdVN m;<*D#My 

SubKey2 }LxBYZRRiJ4=#1h>5:1 @N*f1u9'Aa5c 

 

6. RESULT AND DISCUSSION 
The result from the cryptosystem is very sophisticated with 
fast processing. The symmetric-key algorithm was simulated 
in the C++ programming language shown in Fig.4 and the 

RSA algorithm was implemented in Python for performing 
calculations over large integers. Both algorithms give 
encrypted results in the hexadecimal format and contain 

anything from ASCII and extended ASCII. Although it is 
possible to discriminate between the two from the analysis of 
the outputs. But the cryptanalysis will require both knowing 
the cipher technique and the key used. 

In the symmetric-key cipher, if the input key changes slightly, 
the output changes significantly because of the different key 
pairs. This is called the avalanche effect is shown in Table-5. 
The minimum input key length takes 8 characters and the 

minimum encrypted string is 16 digits. Also, the output is a 
multiplication of 16. Thus it hides the actual message length. 
The system robustness is also found in the scrambling of the 
ciphertext using Subkey2. So after base conversion, the result 
is still scrambled. Instead of using a small repeated key, the 
applied keypair exhibits more randomness in outputs over 
some existing systems. An enhanced Caesar cipher produces 
an encrypted string in only readable ASCII and also the 
original message length can be found directly from the 

encrypted output length. No standard password requirement is 
followed and it applied a fixed substitution using a table [6]. 
Here in this paper, the enhanced and modified Vigenère 
cipher overcomes these limitations as well as removes the 
drawbacks of classical ciphers. 

Encryption Decryption 

  

Fig 4: Simulation of the developed symmetric-key 

encryption and decryption process 

In the RSA algorithm, two big prime numbers are taken, and 

the product of these prime numbers is needed to be at least 
more than 1 million. Otherwise, factorization can be possible 
within measurable periods that would reveal the private key. 
There is no efficient algorithm except Euclid’s algorithm for 
factorization. So much bigger the number provides much 
more security. But even if the product is bigger but one of the 
prime numbers is small, then a simple brute force attack 
reveals the two primes. So both keys are needed to be bigger 
and they also have to have a bigger distance. Otherwise, a 

small difference is vulnerable too [10]. However, when a user 
avoids these vulnerabilities, the RSA algorithm provides 
reliable security and solves the key distribution problem of the 
symmetric-key algorithm. 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 2, May 2021 

 

8 

Table 5. Avalanche effect in Key Generation of the developed symmetric cipher when Mlen=30

Input Key (K) Qwerty12 Qwerty21 

Subkey1 3.,)v`W_v@IhEm75VdVN m;<*D#My  M cBQ-hv*ZH6?!TulK6w-$d?Zm_H9V 

SubKey2 }LxBYZRRiJ4=#1h>5:1 @N*f1u9'Aa5c Ww{^P}'>hcL#b$x/<(^vDhmMHVV?xo]} 

 

7. CONCLUSION 
In the ongoing development process of cryptography, a new 
cipher provides users one more option to choose for 
encryption. This randomness confuses an attacker in 
determining the cipher technique. This paper describes the 
frequency analysis attack on classical Vigenère cipher and 

proposed an algorithm that uses a randomized approach to 
produce ciphertext utilizing two keys where the frequency 
analysis attack has no impact and the key distribution problem 
is solved with the asymmetric-key cipher i.e. RSA. Also 
increases the ranges from ASCII to extended ASCII in the 
ciphertext. A brute force attack would not be efficient because 
of the avalanche effect. The key has to be the exact same, 
otherwise there would be no similarities helps in determining 

possible keys.  For password manager or financial data 
security or any kind of secret writing, the developed 
cryptosystem can be found to be useful for encrypting small to 
large text files to store or transmit data securely. 

8. REFERENCES 
[1] William Stalling. 2017. “Cryptography and network 

security”. (7th ed.). Prentice-Hall. ISBN: 
9780134444284 

[2] D. Kahn. 1967. “The Codebreakers”. The Story of Secret 
Writing. New York. Macmillan, 1967. ISBN 0-684-
83130-9. 

[3] Dr. Vivek Kapoor and Rahul Yadav. 2015. “A Hybrid 
Cryptography Technique to Support Cyber Security 
Infrastructure” International Journal of Advanced 

Research in Computer Engineering & Technology 
(IJARCET) Volume 4 Issue 11, November 2015, DOI: 
10.5120/ijca2016909863. 

[4] Agyepong, Enoch & Buchanan, William & Jones, Kevin. 
(2018). Detection of Algorithmically Generated 
Malicious Domain. 13-32. 10.5121/csit.2018.80802. 

[5] S. S. Omran, A. S. Al-Khalid and D. M. Al-Saady, "A 

cryptanalytic attack on Vigenère cipher using genetic 
algorithm," 2011 IEEE Conference on Open Systems, 
Langkawi, 2011, pp. 59-64, DOI: 
10.1109/ICOS.2011.6079312 

[6] A. Jain, R. Dedhia and A. Patil. 2015. “Enhancing the 
security of Caesar cipher substitution method using a 
randomized approached for more secure 
communication”, International Journal of Computer 

Applications, Volume 129, Number 2015, pp. 6-11, DOI: 
10.5120/ijca2015907062. 

[7] Bhardwaj C. 2012. “Modification of Vigenère cipher by 
Random Numbers, Punctuations & Mathematical 
symbols". Journal of Computer Engineering (IOSRJCE) 
ISSN: 2278-0661 Volume 4, Issue 2 (Sep.-Oct,2012), PP 
35-38, DOI: 10.9790/0661-0423538 

[8]  Md. Palash Uddin, Md. Abu Marjan and N.B. Sadia. 

2014. "Developing a cryptographic algorithm based on 
ASCII conversions and a cyclic mathematical function," 
2014 International Conference on Informatics, 
Electronics & Vision (ICIEV), May 2014, Dhaka, 
Bangladesh. DOI: 10.1109/ICIEV.2014.6850691. 

[9] R. K. Singh, T. Begum, L. Borah, and D. Samanta, "Text 
encryption: Character jumbling," 2017 International 
Conference on Inventive Systems and Control (ICISC), 

Coimbatore, 2017, pp. 1-3, DOI: 
10.1109/ICISC.2017.8068691. 

[10] Boneh, Dan. (2002). Twenty Years of Attacks on the 
RSA Cryptosystem. NOTICES OF THE AMS. 46. 

 

 

IJCATM : www.ijcaonline.org 


