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ABSTRACT 
Gradient descent method is commonly used as an 

optimization algorithm for some machine learning problems 
such as regression analysis and classification problems. This 
method is highly applicable for real life of yearly demand- 
price commodity, agricultural products and Iris flowers.  This 
study proposed the combination of Dai-Yuan (DY) and Saleh 
and Mustafa (SM) conjugate gradient methods for the 
optimization of supervised machine learning problems. 
Experiments were conducted on combined DY and SM with 
well-known conjugate gradient methods using a fixed learning 

rate. The efficiency of the combined methods and existing 
models was evaluated in term of number of iterations and 
processing time. The experimental results indicated that the 
combined conjugate gradient method had the better 
performance in term of number of iterations and processing 
time. 
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1. INTRODUCTION 

Machine learning technique is a key research area that gives 
computers ability to learn and classify data as well as 
predicting output for new data.  A good number of effective 
optimization methods had been proposed for the performance 
and efficiency of machine learning methods. The goal of 
optimization is to find the possible solutions to a problem in 
order to make the best decision. Such decision is to minimize 

cost or to maximize profit in which both (cost and profit) can 
be expressed as a function. Therefore, optimization is the 
process of finding the best solutions that give the maximum or 
the minimum value of a function [8]. 
The general mathematical model of optimization problems 
can be written in the form:  
 

          
                                                           

 
 

Where optimize stands for minimum or maximum of the 
function        which is assumed to be continuously 

differentiable. 
 
The optimal solution of a maximization problem is: 
 

                                          
   

                                                                   

 

while the optimal solution of a minimization problem is: 
 
                                             

   
                                                                   

 
Where S a subset of    is the feasible set. 

 
 
Optimization methods in the field of machine learning are 

faced with different difficulties such as global convergence, 
poor computational performance, processing time, and so on. 
Therefore, in this study a modified optimization method was 
proposed from the existing ones for solving some machine 
learning techniques within the shortest computation time with 
good convergence property. 

 

2. OVERVIEW OF RELATED METHODS 

AND NEW HYBRID METHOD 
The conjugate gradient method (CGM) is an optimization 
method that is applied in some specific areas. CGM can be 

used to solve linear equations and nonlinear optimization 
problems [12]. 
The general unconstrained optimization problem is given as 
 
 
                             
                                                                                                             
 
where        is continuously differentiable,      is an 

objective function and      is a vector with independent 

variables. The objective of the CGM is to find the minimum 
value of a function for unconstrained optimization problem 
and low memory usage [11], [5]. The CGM is commonly 

solved by iterative method which is defined as follows: 
 

                        
                                                           

 
where   is the current iterative point,    is the step size (also 

known as the learning rate) and    is the search direction of 

conjugate gradient method. The step size can be solved in two 
ways of the exact and the inexact line search. The search 
direction of conjugate gradient method    can be defined as 

follows: 
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where    is conjugate gradient (CG) coefficient of      and 

  is the gradient at point    .      is a scalar while 

          is at point   . 

 
Some well-known CG methods and their modifications have 
been proposed by many researchers. Dai [12] made a review 
on CG methods and divided into early and descent CG 
methods. 
 

The early conjugate gradient  methods includes Hestenes-
Stiefel (HS) method which was first introduced by Hestenes-
Stiefel in 1952 for solving linear CG method [12],  where the 
  is given as: 

 

                
  

 
  

          

    
          

                                                       

 
The drawback of this method is that it can only be used to 
solve linear equation [6]. 

Fletcher-Reeves (FR) method was presented in 1964 by 
Fletcher and Reeves [3] which proposed the first nonlinear 
CG method. CG parameter is as follows: 
 

                   
  

 
  

   
       

                                                                       

 
The drawback of this method is that it may fall into some 
circles of tiny steps which may sometimes be very slow in 
practical computation to converge [12]. 
 
In 1969, Polak, Ribiere and Polyak proposed another 

conjugate gradient parameter which performs better than the 
Fletcher-Reeves (FR) method for many optimization problems 
because it can recover automatically once small step is 
generated [12]. There method is as follows:    
 

                         
  

 
  

          

       
                                                  

 
Descent conjugate gradient methods includes Conjugate 
descent (CD) method, [4] proposed the CD methods in his 
monograph, with    as 

 

                              
  

 
   

   

    
     

                                                      

 
Other than the FR, PRP and HS methods, the CD method can 
ensure the descent property of each search condition provided 
that the strong Wolfe conditions are used. 
 
The Dai-Yuan (DY) method: To enforce a descent direction in 
case of the standard Wolfe line search, [2] proposed a new 
conjugate gradient method, where the    is given as: 

 

         
  

 
  

   

    
          

                                           

 
Some other modifications of conjugate gradient methods are: 

Liu-Storey (LS) conjugate gradient method: proposed in 1992 
by [8].    is as 

 

             
  

 
   

          

    
     

                                                           

 
Rivaie-Mustafa-Ismail-Leong (RMIL) conjugate gradient 

method: proposed in 2012 [9].    is as 

 

                   
    

 
  

          

       
                                                   

 
Kamilu et al (KMAR) conjugate gradient method in 2015 [7]. 
   is as 

 

               
    

 
  

          

              
                                                  

 

Sulaiman-Mustafa (SM1) conjugate gradient method in 2018 
[10].    is also given as 

 

      
   

 
  

     
    
      

          

    
          

                                   

 
The main objectives of the study is to propose a modified 
conjugate gradient method for solving some machine learning 
techniques within the shortest computation time with good 
convergence property. The proposed conjugate gradient 
method was also applied to some supervised machine learning 
models such as linear, multiple and logistic regressions which 
were evaluated in terms of number of iterations and 

processing time. 
  

New Conjugate Gradient Coefficient 
A new conjugate gradient coefficient,    based on 

combination of DY (11) and SM1 (15) methods had been 
named HCG35 conjugate gradient which is as follows: 
 

   
     

 

  
   

    
          

 
  

     
    
      

          

    
          

 
            

 
The HCG35 algorithm is as follows: 
Step 1: Given x0, set k=0. 

Step 2: compute   based on   
     

as in (16). 
Step 3: compute search direction dk based on (6).  

If       , then stop, otherwise go to step 4. 

Step 4: compute step size    

Step 5: update a new point by using (5) 
Step 6: stopping criteria. 

If             and       , then stop.  

Otherwise go to step 1 with k = k + 1. 

 

3. CONVERGENT ANALYSIS 
By using theoretical proofs, the proposed method should be 
able to satisfy the convergence analysis. This section will 
delve deeper into the sufficient descent properties of this 
method.  
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Sufficient Descent Condition 
From 16, 

  
     

 

  
   

    
          

 
  

     
    
      

          

    
          

 
 

 

 

    
 

    
        

     
 
  

      
              

    
        

     

 
  

   

 

    
 

    
        

     
 
    

 
   

              

    
        

     

 
  

   

  
     

 

    
 

    
        

     
 
    

         
        

    
        

     
 

           

 
From Salleh and Alhawarat, 2016, can reduce 

 

                       
        

        
      

                                

Then (17) becomes: 
 

   
      

    
 

     
     

 
    

 

     
     

 

  
    

 

      
 
                   

 
Using the descent properties 

 

     
              

              
                                      

 
There is a need to show that the method satisfies (20) 

 
From the search direction   , this gives  

 

             
      

         
     

                                              
 
The following theorem would be used to show that proposed 
method satisfy (20) 
 

Theorem 1: for a search direction    and a CG coefficient 

    
     

 in a CG method, the condition 

    
              

  holds for all k > 0. 

 
Proof: by induction 

If k = 1, then   
          

 , thus (20) holds true. 

Now, show for k > 1, (20) also holds. 
From (21) this gives 
 

    
          

      
         

      
 

               
     

      
                                                                   

 
From (22), reduce (20) holds for all k > 0. 

 

Global convergence 

Subsequent assumptions are used to prove the global 
convergence properties. 

Assumption 1 
i.      is constrained below on the set    which is 

continuous and differentiable in a neighborhood   of the level 

set                         with the initial point   . 
ii. The gradient      is Lipschitz continuous in  , 

      such that  

 
                                . 
 
From assumption 1, the Zoutendijk condition was derived as 

in Lemma 1 which has been proven by Zoutendijk, 1970. 
 

Lemma 1 
Suppose that Assumption 1 is true, let any CG method of the 
form (5) and (6),        . Therefore, the next Zoutendijk 

condition holds 
 

                     
  

   
 

     

 

     

                                                                    
 
Theorem 2: Suppose that Assumption 1 is true, let any CG 
method of the form (5) and (6),        and the coefficient 

   is obtained by (81), Then 

 

                              
   

    

                                                                    
 
Proof: by contradiction 
 Suppose Theorem 2 does not hold, there is existence of a 
constant   such that 

 
                             
                                                                             

 
   can be rewritten as 

 

                  
     

                                                               

Square both side of (26), 

 

    
        

           
       

     
       

              

Divide through (27) by      
      

 , 
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Appling (19), this gives 

      
 

     
      

 
 

 

      
 
 

This implies that 

      
 

            
  

 

        
            

 

   

 

                   
    

     
       

 
  

 
                                                                   

From (29) and (23) 

 
    

     
       

   

 

   

 

Since this contradicts lemma 1. Thus, proof accomplished. 

 

4. NUMERICAL STUDY 

4.1 Parameters setting 
All algorithms in this study were implemented on a PC 
workstation with Intel® Core™ i5-5020U CPU @ 2.20GHz, 
8GB of RAM, 358.27GB hard disk capacity. Python 
programming language is used to implement this study. This 
is due to the availability of vast amount of open source 

python-based libraries and packages such as Numpy, Pandas, 
Matplotlib,and so on. 

 

4.2 Description of benchmark functions 
4.2.1 Problem 1 [1].  
The data adopted is composed of the yearly demand and price 

of a commodity as sample of the data is illustrated in table 1.  
 

Table 1: Problem 1 
Price 1 2 2 2.3 2.5 2.6 2.8 3 3.3 3.5 

Deman

d 

5 3.5 3 2.7 2.4 2.5 2 1.5 1.2 1.2 

 

Formulation of the model 
From the data set in table1, there exists a linear relationship 
between the demand and the price. 
 
Hypothesis:     
                                                                                                      
 
                                                                                          

 

                                               
   
                                                                                                 

 
Parameters:  
                                                                                   
 

                   
 

  
      

    

 

 

      
 
                             

 

4.2.2 Problem 2  
The data used was collected from Food and Agriculture 
Organization of the United Nations 
(fao.org/faostat/en/#data/QC). The sample of the data is 
shown in table 2.  

 

Table 2: Problem 2 

Year Annual 
Rainfall 
(AR) 

Area 
(million 
Hectare
) 

Food 
Price 
Index 
(FPI) 

Productio
n (1000 
Tons) 

Yield 
(MT./Hec
tare) 

2000-

01 1120.2 
2199 

42.86 
1979 

2 

2001-
02 981.4 

2117 
67.14 

1651 
1 

2002-
03 1278 

2185 
58.00 

1757 
1 

2003-

04 1085.9 
2210 

50.43 
1870 

1 

2004-
05 1185 

2348 
71.57 

2000 
1 

2005-
06 1133 

2494 
74.29 

2140 
1 

2006-

07 120.7 
2725 

72.86 
2546 

1 

2007-
08 986.4 

2451 
73.71 

2008 
1 

2008-
09 1184.2 

2412 
60.57 

2632 
2 

2009-

10 1075 
1840 

69.43 
2234 

2 

2010-
11 974.7 

2433 
60.00 

2818 
2 

2011-
12 1075 

2269 
76.86 

2906 
2 

2013-

14 1133.9 
2931 

81.00 
3041 

2 

2014-
15 1180.2 

3082 
86.43 

4082 
2 

2015-
16 1075 

3122 
98.14 

3941 
2 

2016-
17 972.8 

3170 
89.71 

4410 
2 

2017-
18 1189.9 

3600 
93.71 

4662 
2 

2018-
19 1212.2 

3600 
97.14 

4788 
2 

 
 

Normalization of data collection 
Studying the data, the input variables for year have dynamic 
range which differs by orders of magnitude and thus suggests 
that a suitable normalization should be applied so that the 
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transformed variables all cover the same range. Thus, the 
linear scaling transformation was used to normalize the 
collected data. 

   
          

              
                                                             

 where              is the data set.    is now the ith 

normalized data. 
 

Formulation of the model 
The multiple linear regression analysis will be carried out by 

using annual Rainfall (x1), area under cultivation (x2), food 
price index (x3) data as independent variable and rice yield (y) 
data as dependent variable.  
 
The model is shown below: 

                            
                                              

 
                         

                                                                           
 

                                         

 
                 

                                                                                       
 
Objective function is given as follows: 
 

         
 

  
       

 

 

      
 
                                                         

 
4.2.3 Problem 3  
The problem was obtained from the Iris flowers dataset. The 
Iris flowers data involves predicting the flower species given 
measurements of the iris flowers. The variable names are: 

1. Length (  ) 

2. Width(  ) 

3. Class(iris Setosa (1) and iris virginica (0)) 
 

The model formulation: 
Hypothesis: 

                                       
 
           

                                                                                            
 

                                             

    
       

 
 

       
                                                                                

 
Parameters:                                               
 
Cost function: 
 
       
 

 
                                     

                   

 
The proposed conjugate gradient method is employed to solve 
these problems in order to assess the performance in 

comparison with some well-known conjugate gradient 
methods and gradient descent method. 

4.3 Discussion of Results 
This sub-section is devoted to the application of the proposed 

conjugate gradient methods (HCG35) in comparison with 
gradient descent, Hestenes-Stiefel (HS), Fletcher-Reeves 
(FR), Polak - Ribiere - Polyak (PRP), Conjugate descent (CD) 
and Dai-Yuan (DY) methods. 

 

4.3.1 Test problem 1 
For test problem 1, five experiments were performed with the 
same initial guess in order to evaluate the efficiency of the 
method. The stop criteria used in the experiment for all the 
algorithms convergence is assumed if        where 

       and the symbol “-” was used to represent that the 

algorithm does not converge. The initial point for the 
parameters          is set to be (0, 0) using a fixed learning 

rate       . The results are depicted in Table 3. 

 

Table 3: Experimental results for problem 1 

Methods 
Number of 
iteration 

Processing 
time 

Optimal 
values 

HCG35 60 0.34 0.03179 

FR 196 0.8 0.0318 

HS 1909 8.15 0.03199 

GD 3533 18.6 0.03219 

PRP 3539 18.06 0.03219 

DY - - 12.5476 

CD - - 5.94274 

 
The numerical results of table 3 show the result of the 
proposed algorithm with some existing algorithms when 
applied to test problem 1. The results were ranked based on 
the number of iterations prior to reaching the optimal values 
(minimum cost). The numerical results indicated that the 
proposed algorithm have made significant performance 

among all algorithms. The performance from implementation 
of problem 1 indicated that the proposed algorithms (HCG35 
with 60 iterations) outperformed gradient descent (GD) 
method (3533 iteration), Hestenes-Stiefel (HS) method (1909 
iterations), Fletcher-Reeves (FR) method (196 iterations), 
Polak - Ribiere - Polyak (PRP) method (3539 iterations) in 
term of number of iterations. The HCG35 outperformed all 
other methods in terms of processing time as indicated in table 

4. It is noted that conjugate descent (CD) method and Dai-
Yuan (DY) method failed to solve problem 1 at different 
learning rates of 0.0001, 0.001, 0.1, 0.9, 0.01 and 0.009. The 
performance results of the both proposed and existing 
methods are illustrated in figure 1 based on the number of 
iterations. 
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Figure 1: Relationship between optimal values and 

number of iteration for problem 1. 
 
From the Figure 1, the lower curve is referring to HCG35 
method which indicated that the method is highly competitive 
and is better than the existing methods of FR, HS, GD and 
PRP methods in solving the problem 1. 

 

4.3.2 Test problem 2 
For test problem 2, five experiments were performed with the 
same initial guess in order to evaluate the efficiency of the 
methods. The stop criteria used in the experiment for all the 

algorithms convergence is assumed if        where 

        and the symbol “-” was used to represent that the 
algorithm does not converge. The initial points for the 
parameters are             (0, 0, 0, 0) and the learning rate 

was set to         .  The results are depicted in Table 4. 

 

Table 4: Experimental results for problem 2 

Methods 
Number of 

iteration 

Processing 

time 
Optimal values 

HCG35 640 1.15 0.01360303 

FR 991 1.77 0.01360303 

HS 25297 42.86 0.01360303 

GD 49443 78.58 0.01360303 

PRP 49509 92.64 0.01360303 

CD - - - 

DY - - - 

 
Similarly, the numerical results of Table 4 showed the 
performance of the proposed algorithm with the existing ones 
when applied to test problem 2. The results were ranked based 
on number of iterations prior to reaching the optimal values 
(minimum cost). The numerical results indicated that the 
proposed HCG35 have made significant performance among 
all considered algorithms. The performance from 

implementation of problem 2 indicated that the proposed 
algorithm HCG35 with 640 iterations outperformed gradient 
descent (GD) method with 49443 iterations, Hestenes-Stiefel 
(HS) method with 25297 iterations, Fletcher-Reeves (FR) 
method with 991 iterations and Polak - Ribiere - Polyak (PRP) 
method with 49509 iterations. Conjugate descent (CD) 
method and Dai-Yuan (DY) method failed to solve problem 2 

at different learning rates of 0.0001, 0.001, 0.1, 0.9, 0.01 and 
0.009. The performance results of the both proposed and 
existing methods are illustrated in figure 2 based on the 
number of iterations. 
 

 
Figure 2: Relationship between optimal values and 

number of iteration for problem 2 
 
From the Figure 2, the lowest curve is referring to HCG35 
method which shows that it is highly competitive and the 
performances are better than the methods of FR, HS, GD and 
PRP methods in solving problem 2. 

 

4.3.3 Test problem 3 
For test problem 3, five experiments were performed with the 
same initial guess in order to evaluate the efficiency of the 
methods. The stop criteria used in the experiment for all the 
algorithms convergence was assumed if        where 

       and the symbol “-” was used to represent that the 

algorithm does not converge. The initial point for the 
parameters          were (0, 0, 0) and the learning rate was 

        .  The results are depicted in Table 5. 

 

Table 5: Experimental results for problem 3 

Methods 
Number of 

iteration 
Processing time 

Optimal 

values 

FR 1304 8.25 7.42249 

HCG35 1313 7.56 7.42249 

HS 57553 342.02 7.42255 

GD 105797 870.51 7.42249 

PRP 105806 541.51 7.42262 

DY - - - 

CD - - - 

 
Table 5 shows the results of the proposed algorithm (HCG35) 
and existing methods. The numerical results indicated that the 
HCG35 has made significant performances among all 
algorithms. The HCG35 with 1313 iterations is highly 
competitive with the Fletcher-Reeves (FR) method with 1304 
iterations but in terms of processing time HCG35 takes 7.56 
μs to reach its optimal value while FR takes 8.25 μs. The  

HCG35 outperformed gradient descent (GD) method, 
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Hestenes-Stiefel (HS) method and Polak - Ribiere - Polyak 
(PRP) method while  conjugate descent (CD) method and 
Dai-Yuan (DY) method  also failed to solve problem 3 at 
different learning rates of  0.0001, 0.001, 0.1, 0.9, 0.01 and 
0.009. The performance results of the both proposed and 

existing methods are illustrated in figure 3 based on the 
number of iterations. 

 
Figure 3: Relationship between optimal values and 

number of iteration for problem 3 
 

From the Figure 3, the lower curves are HCG35 and FR 
methods and they are highly competitive. The performance of 
both HCG35 and FR are better than the methods of HS, GD 
and PRP in solving problem 3. 

 

5. CONCLUSION 
From the three tests performed on all algorithms using 
regression and the classification problems, it was confirmed 
that HCG35 CGM performed better in terms of number of 
iterations and processing time. The HCG35 proved to be a 
better optimization algorithm when compared to some well-
known gradient descent optimizers such as GD, HR, FR, PRP, 
CD and DY for solving some machine learning problems 
prior to reaching the optimal values. This shows that the new 

optimization algorithm provides an improved optimization 
algorithm to be used in the field of machine learning. The 
scope of the work had been on a single neural network called 
perception, in which an improvement could be extended to 
multilayer neural network. The work also concentrated on one 
dependent variable in which an extension could be done on 
more dependent variables. 
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