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ABSTRACT 

In this study, reconstruction of clearer images using error 
optimization techniques was done. Minimization of noise 

from the image and the study of the performance of a 
combination of the Weiner Filter (WF) via the Least Mean 
Square (LMS) Algorithm and the Modified Decision Based 
Unsymmetrical Trim Median Filter (MDBUTMF). MATLAB 
7.11.0 (R2010b) as a digital signal processing tool was used. 
The findings reveal that the WF-LMS algorithm fails to 
remove salt noise (zero valued pixels). These findings turn out 
to be a potential contribution of this study to the field of DSP 
in computational physics and optics. Several studies in 

multirate digital signal processing have not pointed this 
anomaly of WF-LMS algorithm in their work nor has it been 
published by any publishing institutions to the best of our 
knowledge. MDBUTMF performance was found to be better 
than WF-LMS at high noise variances. However, observations 
show that the resolution of the image with MDBUTMF 
decreases with increasing noise variances (NV). The results of 
the proposed method (a combination of WF-LMS and 

MDBUTMF) were found to be generally effective and 
superior compared to WF-LMS and MDBUTMF when used 
separately. The method therefore makes a potential 
contribution in improving restoration and visibility of images. 
For qualitative evaluation and measurement, the Mean 
Average Error (MAE), Mean Square Error (MSE), Peak 
Signal to Noise Ratio (PSNR) and Signal to Noise Ratio 
(SNR) were used and the effectiveness of the filters increases 

in the order of WF-LMS, MDBUTMF and the proposed 
method. It is concluded that the generality that WF-LMS de-
noises salt and pepper noise no longer applies. It is also 
concluded that the proposed method is superior compared to 
the WF-LMS and the MDBUTMF when used separately. It is 
then recommended that WF-LMS needs modification to de-
noise the salt noise and thus the proposed method of 
combination of WF-LMS and the MDBUTMF.   

General Terms 

Mean Square Error, Modified Decision Based Unsymmetrical 
Trim Median Filter (MDBUTMF), Weiner Filter via the Least 
Mean Square and Peak Signal to Noise Ratio. 

Keywords 

Image Reconstruction; Weiner Filter; Signal Processing; Least 
Mean Square; Signal to Noise Ratio. 

1. INTRODUCTION 
The process of removing noise from the original image is still 
a demanding problem for most researchers [1] and [2]. Visual 

information transmission is very valuable today. People prefer 
still images to a thousand of words [1]. However, noises do 
accompany signals during their creation, transformation and 

transmission and this affects image visibility variably and 
imposes hardship to its scientific interpretation and analysis 
[2].  

Thus far, when an image is acquired by any imaging systems, 
often the vision system for which it is intended fails to use it 
directly. It may be corrupted by random variations in 
intensity, illumination, poor contrast and impulse noise 
introduced in the system. Such problems call for digital image 
enhancement techniques [1] and [3]. 

This paper presents some tools for digital image signal 
processing and reconstruction. Basically, in this paper, error 
minimization techniques were employed where competing 

and unwanted signals such as impulse noises and in particular 
salt and pepper noises are removed from the desired signal. 
Many researches and industries have attached value to high 
image resolution and visibility; Remote Sensing, Medical 
Imaging, Non-destructive Evaluation, Forensic Studies, 
Military, Film Industry, Document processing and Printing 
Industry require improvement in the area of digital image 
processing [4]. 

Digital Signal Processing and image reconstruction in the 
above areas have been made simpler by the development of 
multirate system theory [5]. Multirate signal processing theory 

deals with analysis of a system comprised of multiple signals 
at different sampling rates. The theory has traditionally been 
applied to the contexts of filter banks [6]. This plays a very 
important role in signal decomposition, analysis and 
reconstruction [7]. 

In reconstructing images, several approaches were developed 
[8]. The most widely used is the filtering approach. This paper 
employed optimal observation model using WF-LMS together 
with the MDBUTMF. The model uses Least Mean Square 
Error (LMSE) method to optimize errors in the signals and 
multirate system can be applied to it. This method is not 

extensively used in digital image processing because of the 
mathematical complexity involved in calculating the filter 
coefficients desired for image reconstruction [4]. WF-LMS is 
used for de-noising a set of input signals that are degraded by 
salt and pepper noise. It is a class of optimum linear filters [9], 
[10] and [11]. The design of the filter is distinct. It is based on 
a statistical approach and is optimal in the sense of Minimum 
Mean Square Error (MMSE) [12]. 

However, WF-LMS is ineffective at high noise variances [8]. 
The MDBUTMF was proposed to de-noise salt and pepper 
noise introduced in an image [13]. In the MDBUTMF 

algorithm, the noisy image is de-noised by a 3X3 window 
elements and then pixels are arranged in increasing or 
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decreasing order. Then the pixel values ‘0’s and ‘255’s in the 
image (i.e., the pixel values responsible for the salt and pepper 
noise) are removed and the median value of the remaining 
pixels is used to replace the noisy pixel. This algorithm was 
found to be ineffective in de-noising salt & pepper noise at 
high noise variances ranging from 70% to 95% [14]. 

It is noted that the Adaptive WF-LMS does not give a better 

result even at low noise variances and the MDBUTMF does 
not give a better result at salt and pepper noise variances 
ranging from 70% to 95%. Therefore, a combination of the 
Adaptive WF-LMS and the MDBUTMF (WFLMS-
MDBUTMF) algorithm is proposed in this study for improved 
image restoration and visibility. The principle behind the 
selection of these filters is not to use the already best 
performing filters but to improve image visibility using an 
appropriate combined method.  

2. SALT AND PEPPER NOISE ON 

IMAGE, VIDEO SIGNAL AND AUDIO 
The salt and pepper noise cover the surface of image with 
black and white spots. Conventionally, 0’s are responsible for 

the black while 255’s values are responsible for the white 
spots on the images [15]. In video signals, it causes ripples on 
the television screen [15]. This makes images in television 
screen distorted and undesirable to human visual system. In 
audio channel, they cause odd sound that distorts the original 
messages being conveyed to the listeners. This study is 
concerned with salt and pepper noise removal from images. 

Various kinds of noises exist in an image and a variety of de-
noising techniques have been proposed by different 
researchers [16]. Gaussian, speckle, salt & pepper, shot noises 
are types of noises that are present in an image. The principle 

approach of image de-noising is filtering. The filtering 
techniques used are median, Gaussian, average and Weiner 
Filtering. The resulting image from these approaches is either 
blurred or over smoothed due to losses. In this paper a new 
approach of combining WF-LMS and MDBUTMF is 
proposed. 

3. DIGITAL IMAGE 

REPRESENTATION, COORDINATE 

CONVENTION AND MATRIX 

REPRESENTATION 

Equation 1 is the conventional representation of the images to 
be considered. The image information was then represented in 
matrix form as shown in equation 2. 

The image information generated above was stored in gray 
scale coding scheme for computational efficiency. It 
represents the brightness of the image at that point [17].  
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A linear adaptive WF-LMS with the noisy data as input was 
designed and the requirement of minimizing the effect of the 
noise at the filter output was considered as shown in Figure 1 
[18]. The filter coefficients are modified by a feedback 

process designed to make the filters’ output y[n] close to the 
desired signal d[n] by minimizing the error e[n]. The filter 
output, the error and filter coefficients were calculated 
adaptively using the LMS algorithm in equations; 

( , ) ( ) ( , );y i n x n h i n      

                   (3) 

[ , ] [ ] [ ]e i n d n y n                   (4) 

[ , 1] [ , ] [ , ] [ ]n nh i n h i n e i n x n                   (5) 

where; 

[ ]x n is the noisy signal 

[ ]e n is the error 

[ ]d n is the original signal and   is the convergent factor. 

 

 

 

 

 

 

Figure 1: Adaptive Filter [18] 

The filtering process described above starting from image 

acquisition, data class and intensity coding, signal 
decomposition and decimation, translation and computation of 

filter coefficients are summarized in Figure 2. 
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Figure 2: Adaptive Wiener Filter illustration design for image de-noising 

The LMS algorithm suggests that for iteration number, N; 
y(i,n) is the desired signal output, AAA(n) is the undistorted 
signal input, e(i,n) is the signal error to be optimized when the 
filter updates itself to a desired value and h(i,n) is the filter 
coefficient that keeps updating by a feedback process until the 

error is minimized. In a multichannel representation and for 
periodically time varying signals, the estimate can be written 
as presented by Semmlow et al. [19]. 

4. MODIFIED DECISION BASED 

UNSYMMETRICAL TRIM MEDIAN 

FILTER (MDBUTMF) 
This algorithm was proposed by Chaitanya [16] and is 
proposed in this paper to be used in combination with the 
Adaptive WF-LMS. Its operation is described below. 

1. The pixels inside the window are sorted out in ascending 
order.  

2. Min, max and median of the pixel values in the 

processing window are determined. 

3. The algorithm reads the noisy image, p(i,j) which is 
taken as a processing pixel.  

4. If the central pixel lies between minimum and maximum 
values, then it is detected as uncorrupted pixel and is left 

undisturbed. Otherwise, it is considered as a corrupted 
pixel.  

5. If the processing pixel is detected as corrupted, a 3x3 
window is taken around the pixel.  

6.  If the processing window contains all minimum or 
maximum pixel elements only, then the processing pixel 
was replaced by the second element above or below it.  

7. If the processing window contains both minimum and 

maximum pixel values, then the processing pixel is 
replaced by the mean of the elements in the window  

8. If the processing window contains not only the min or 
max value, the minimum and the maximum are trimmed 

for n=1:N; for i=1:N 

y(i,n)=x(n)*h(i,n); 

e(i,n)=AAA(n)-y(i,n); 

h(i+1,n)=h(i,n)+0.000005*e(i,n)*x(n); 

end 

end 
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out and the processing pixel was replaced by the mean of 
the remaining elements in the window. Then the window 
is moved to a new set of values, with the next pixel to be 

processed at the center and steps 1-8 is repeated as shown 
in Figure 3. 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Modified Decision Based Unsymmetrical Trim Median Filter (MDBUTMG) [13] 

The algorithm in figure 3 was translated into an executable 
MATLAB program and its functionality was tested first on a 
data matrix and an image sample. Later the proposed method, 

that is, a combination of WF-LMS in Figure 2 and the 
MDBUTMF in Figure 3 was considered. 
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Figure 4: Proposed Weiner Filter-Modified Decision based Unsymmetrical Median Filter 

As can be seen, the proposed method has two stages. In the 
first stage, the filtering of the noisy image is done by WF-
LMS. This results into image which is still noisy because of 
the Wiener Filter’s failure to de-noise salt and pepper noise at 

high noise variances. In the second step, the MDBUTMF 
picks up the pixels generated by the WF-LMS and then output 
image, which is clearer, is obtained. 
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Noise Ratio (SNR). 
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1
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where;  

 ( , )x i j is original pixel value 

               ˆ( , )x i j  is the corrupted signal 

M and N are the image signal dimensions  
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6. RESULTS 
The response of the WF-LMS to different salt and pepper 
noise variances was observed. A few rows of the image pixel 
were extracted, 40% of salt and pepper noise was added to it. 
The results show that the WF-LMS is very effective to 

reconstruct the pixel values replaced by pepper noise, altered 
due to decimation and translation and those that remained 
unaffected (table 1). A significant finding shows that WF-
LMS does not de-noise black coloured noise (zero valued) as 
indicated in table 1. The evaluation results show that if the 

selected corrupted signal, x[n], is zero valued, the estimated 
signal outputs are all zeros and the signal error e[i,n] equals 
the original signal value, AAA[n]. Since x[n] and the first 
filter coefficient are zeros, all the updated filter coefficients 
are also zeros. For example, the noisy signal x[1], that is, pixel 
replaced with salt noise (zero valued signal) as in table 1 was 
selected and the output y[i] and h[i] are zeros respectively for 
all the iterations. This algorithm supports the finding that WF 

via LMS does not effectively remove salt and pepper noise at 
high noise variances.  

The optimal model in figure 3 was applied to minimize the 

error. Table 1 shows that WF-LMS removes white colored 
noise (255) and minimizes error due to translation and 
decimation. For example, for x[6] the real pixel value is 146 
but the corrupted signal has 138 as its pixel value. This is not 
the effect of the salt and pepper noise but rather the effect of 
decimation and translation on the signal. A perfect 
reconstruction of 145.5837 closure to 146 (the original pixel 
value) was achieved. To achieve this nearly perfect value, the 

filter adjusts its coefficient N+1 times as shown in table 1 
until it reaches 1.0474. From table 1, it can be seen that the 
error is zero. This result matches the requirement of optimal 
filtering only for the pixel values replaced by pepper noise, 
altered due to decimation and translation and those remain 
unaffected. 

Table 1: Operation of Adaptive Weiner Filter in optimal process 

 

Pixel 

replaced by 

salt noise 

Pixel 

Unaffected 

Pixels Replaced by Pepper 

Noise 

Pixel Changed due 

to Decimation and 

translation 
Original Pixel 

values 129.0000 111.0000 120.0000 128.0000 150.0000 146.0000 129.0000 

Noisy Pixels 0.0000 111.0000 255.0000 255.0000 255.0000 139.0000 138.0000 

Filter 

coefficients 0.0000 0.9957 0.4692 0.5011 0.5865 1.0474 0.9315 

Denoised pixels 0.0000 110.5194 119.646 127.7741 149.5575 145.5837 128.5470 

Error  129.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 
It can be concluded from the table that; 

I. The algorithm does not meet the optical requirement 
for perfect image reconstruction. The optimal 

filtering condition is only true for the pixel values 
replaced by pepper noise, altered due to decimation 
and translation and those remain unaffected. For 
pixel value replaced by salt noise, the optical 
requirement does not apply. 

II. The errors for the pixel values replaced by pepper 
noise, altered due to decimation and translation and 
those remain unaffected are minimized by WF-LMS 
algorithm while the error for the pixel values 

affected by salt noise are unnecessorily big. 

III. Filter coeeficients for the pixel values replaced by 
pepper noise, altered due to decimation and 

translation and those that remain unaffected update 

themselves until they reach the desired values and 
the errors are minimized to zeros. The filter 
coefficients for the pixel values affected by salt 
noise do not update themselves. They remain as the 
initial filter values (zero’s).  

To observe this anomaly in the WF-LMS, the filters 
coefficients and error terms in table 1 were plotted against 
iteration number N. From figure 4, it can be seen that as the 

filter updates its coefficients, the errors keep reducing until 
they converge to zero. However, for the pixels values replaced 
with salt noises, the filter does not update its coefficients as 
shown. The explanation to this problem is mathematically 
expressed in table 1. The error terms for the pixel replaced by 
salt noise also remain constant at original pixel values as 
shown in table 1 and in figure 4. 
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(a)                                                                          (b) 
Figure 4: Convergence of square error in optimal process: (a) variation of updated filter coefficient with iteration number and 

(b) variation of error with iteration number in optimal process 

Where the value decreased, it increased the mean, the 
decimation (D) and translation (T) resulting into the pixel 
value getting lower or higher than the original pixel value 
(See table 1).  

From figure 4, the study established that the WF-LMS 

algorithm cannot achieve perfect image reconstruction. The 
algorithm satisfies the optimal condition selectively. It is this 
selective response of WF-LMS algorithm to salt and pepper 
noise values that makes the filter vulnerable to de-noise salt 
and pepper noise even at low noise variances as shown in 
figure 4(b). 

6.1 MDBUTMF Algorithm and its Response to Salt and Pepper Noise 
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Figure 5: Output of MDBUTMF: (a) Noisy date matrix (b) De-noised data matrix 

The significant application of MDBUTMF to the proposed 
algorithm is that it eliminates even the salt noises which are 
not possible to be removed by the WE-LMS as was shown in 
table 1. Its major diadvantage however is that it cannnot 
restore the original pixel values that have changed value due 
to decimation and translation. The argument being that the 
pixels that have changed their values due to decimation and 
translation are not always salt (zero valued) or pepper noise 

(255 valued) as shown in figure 5.  

Since MDBUTMF is designed to detect and de-noise salt and 
pepper noise and leave the other pixel values unaffected, it 
would take the pixels altered due to decimation and translation 

as the true pixel values which is not. For this reason, it is not a 
good practice to impelment MDBUTMF algorithm on 
decimated and translated signals. However, this problem is 
sorted out by implementing WF-LMS algorithm first. 
Therefore a combination of WF-LMS and the MDBUTMF is 
expected to give better results.  

After testing the algorithms on the test image and the data 
matrix, full image reconstruction was considered.  
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6.2 Application to Makerere University 

Main Building  
To observe the effect of Wiener Filter, the MDBUTMF and 
the proposed method on a real image, a portion of an image 

(extracted from Makerere University main building) shown in 
figure 6 was used. Figure 6(a) shows the original image to 
which salt and pepper noise of different noise variances was 
added (figures 6(b)-6(d)). The resultant signals were 
decimated with a decimation factor, L=3. 

 
(a)                                         (b)                                           (c)                                          (d) 

Figure 6: Effect of Salt and Pepper Noise on Makerere University Image  (a) the Original image, (b) the image blurred with 20% 
salt and pepper noise, (c) the image blurred with 40% salt and pepper noise, (c) the image blurred with 60% salt and pepper noise                     

 
(a)                                           ( b)                                            (c)                                       (d) 

Figure 7: Outcome of WF-LMS algorithm in de-noising salt and pepper noise from Makerere University (a) Original image, 

(b) outcome of WF for 20% salt and pepper noise, (c) outcome of WF for 40% salt and pepper noise, (d) outcome of WF for 

60% salt and pepper noise 

 
(a)           (b)                    (c)                     (d) 

Figure 8: Application results of MDBUTMF on Makerere University Main Building (a) original image, (b) outcome of 

MDBUTMF for 20% salt and pepper noise, (c) outcome of MDBUTMF for 40% salt and pepper noise and (d) outcome of 

MDBUTMF for 60% salt and pepper noise 
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           (a)               (b)              (c)                             (d)                   

Figure 9: Application Result of WF-LMS-MDBUTMF on Noisy Makerere University Main Building Image: (a) original image, 

(b) outcome of WF-MDBUTMF for 20% salt & pepper noise, (c) outcome of WF-MDBUTMF for 40% salt & pepper noise (d) 
outcome of WF-MDBUTMF for 60% salt & pepper noise 

The adaptive WF-LMS algorithm was implemented on the 
distorted image in figure 6 to de-noise the salt and pepper 
noise introduced to it. The outcome of this is shown in figure 

7 which shows that the WF-LMS algorithm effectively 
removes white colour noise (250 valued) but fails to remove 
the black colour noise (zero valued). The undesired images in 
figures 7(b)-7(d) are a result of un-denoised salt noise (black 
dots) on the images. The density of the salt noise increases 
with increasing noise variances as shown in figures 7(b)-7(d). 
Therefore, the Weiner Filter is not good for salt and pepper 
noise at high noise variances.  
 

The adaptive MDBUTMF algorithm of a 3X3 window size 
was implemented on the images in figure 6. The outcome is 
shown in figure 8. It is observed that the performance is better 
than the WF-LMS algorithm even at higher noise variances. 
However, the resolution of the image becomes very low as 
high noise variances are reached as shown in figure 8(d). In 
addition, some artifacts have been introduced in the image. 
The algorithm effectiveness reduces as high noise variances 

are reached. In this study, the MDBUTMF begins to 
effectively fail to de-noise salt and pepper noise as the noise 
variance approaches 60%. 
 
In figure 9, the WF-LMS and MDBUTMF algorithms were 
combined. The combined algorithms were performed on the 
images in figure 6 in succession. The WF-LMS was first 

implemented followed by the MDBUTMF. The outcome turns 
out to be generally superior and it gives an image of relatively 
the same resolution as the original image irrespective of the 

noise level introduced in the signal. The advantage of this 
method is that, first the optimal filtering technique compares 
the corrupted pixels with the original image and adjusts the 
filter coefficients to minimize errors. Then, the pixels that get 
into MDBUTMF are approximated values to the original 
image. If this is not done before, the MDBUTMF would 
accept any value that had replaced the original pixel value due 
to decimation and translation. The remaining salt noises (zero 
valued) that were not de-noised by the WF-LMS are removed 

by conditions in the MDBUTMF algorithm. However, there 
are some few black dots in figure 9(c) caused by repeated 
substitution from some windows that contain only zeros. 
Increasing the window size of the MDBUTMF will help to 
reduce this problem. 
 
The same procedure was repeated for the standard Lena 
picture as shown in figures 10 to 12. The outcome was similar 

to the observations made for the image extracted from the 
Makerere University main building. 
 
The process was also repeated on an image of the picture 
taken of the Department of Physics, Makerere University. 
These are shown in figures 13 to 15. The observations made 
are found similar to the previous two images. 

 

6.3 Application to Lena Picture  

 

 
(a)          (b)            (c)             (d) 

Figure 10: Application result of WF in de-noising salt and pepper noise from Lena: (a) original image, (b) outcome of WF for 

20% salt and pepper noise, (c) outcome of WF for 40% salt and pepper noise and (d) outcome of WF for 60% salt and pepper 

noise 
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(a)          (b)            (c)             (d) 

Figure 11: Application of MDBUTMF in de-noising Salt and pepper from Lena: (a) original image, (b) outcome of MDBUTMF 

for 20% salt and pepper noise, (c) outcome of MDBUTMF for 40% salt and pepper noise (d) outcome of MDBUTMF for 60% 

salt and pepper noise 

 
(a)          (b)            (c)             (d) 

Figure 12: Application of WF-LMS-MDBUTMF in de-noising salt and pepper noise from Lena  (a) original image, (b) outcome 

of WF-MDBUTMF for 20% salt & pepper noise, (c) outcome of WF-MDBUTMF for 40% salt & pepper noise (d) outcome of 

WF-MDBUTMF for 60% salt & pepper noise 

6.4 Application to Makerere university-Department of physics Photo  

 
(a)                    (b)                  (c)               (d) 

Figure 13: Application of WF in de-noising salt and pepper noise from physics department (a) original image, (b) outcome of 

WF for 20% salt and pepper noise, (c) outcome of WF for 40% salt and pepper noise and (d) outcome of WF for 60% salt and 
pepper noise 

 
        (a)             (b)            (c)                (d) 

Figure 14: Application of MDBUTMF in de-noising salt and pepper noise from physics department: (a) original image, (b) 

outcome of MDBUTMF for 20% salt & pepper noise, (c) outcome of MDBUTMF for 40% salt & pepper noise and (d) outcome 

of MDBUTMF for 60% salt & pepper noise. 

 
          (a)             (b)              (c)                 (d)  

Figure 15: Application of the WF-LMS-MDBUTMF in de-noising salt and pepper noise from physics department (a) original 

image, (b) outcome of WF-MDBUTMF for 20% salt & pepper noise, (c) outcome of WF-MDBUTMF for 40% salt & pepper 

noise and (d) outcome of WF-MDBUTMF for 60% salt & pepper noise 
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Therefore, as can be seen from figures 9, 12 and 15, the 
proposed method performs better than the WF-LMS and the 
MDBUTMF in reconstructing the image blurred with salt and 
pepper noise. The method is able to reconstruct image from an 
image with salt and pepper noise variance as high as 90%. 

The method has effective image restoration and visibility. 
 
The MDBUTMF restores noisy image better than the WF-
LMS but it begins to smear the salt and pepper noise as the 
noise variances reach 60% as can be seen in figures 8(d), 
11(d) and 14(d). In addition, some artifacts get introduced into 
the image as in figures 8 and 14. These confirm that WF-LMS 
is ineffective at high salt and pepper noise variances ranging 

from 60% to 95% as shown in figures 8, 11 and 14. 
 

Our results confirmed that the WF-LMS would have been the 
best filter since it optimizes errors in the signal. Its failure is 
majorly attributed to its selective response to the specific salt 
and pepper noise. The selective response of WF-LMS to salt 
and pepper noise demands explanation which according to our 

understanding has not been revealed in the available literature. 

 

6.5 Quantitative Evaluation 
The performance evaluation of the filters was carried out 
using the MAE, MSE, PSNR and SNR. These parameters 
were evaluated for each of the techniques. The output of the 
proposed technique was compared with different standard 
techniques such as WF-LMS and MDBUTMF. 

Table 2: Mean Absolute Error (MAE) 

NV Image 
status  

Mean Average Error (MAE) 

  Muk main building Lena Dep. Of Physics 

  WF MDBUT
MF 

WF-
MDBUT
MF 

WF MDBUT
MF 

WF-
MDBUT
MF 

WF MDBUT
MF 

WF-
MDBUT
MF 

0.2 Noisy  27.0537 27.0503 27.0537 

Denoised 17.9616  9.3264 3.1787 12.9272 2.5268 0.7702 13.9324 2.9838 1.5178 

0.4 Noisy  54.7266 52.3389 52.6865 

Denoised 26.1669 13.4489 3.5493 25.0201 3.3740 1.1094 26.1649 3.9561 1.4891 

0.6 Noisy  78.5960 77.2506 77.1056 

Denoised 38.3135 19.9013 3.9348 37.4933 5.9865 1.5283 38.3135 6.5899 1.4926 

 
Table 3: Mean Square Error (MSE) 

NV  Image 
status  

Mean Squire Error (MSE) 

  Muk main building Lena Dep. Of Physics 

  WF MDBUT
MF 

WF-
MDBUT
MF 

WF MDBUT
MF 

WF-
MDBUT
MF 

WF MDBUTM
F 

WF-
MDBUT
MF 

20 Noisy  5214.6 3725.2645 4735.6571 

Denoised 3097.3 494.25 58.5533 1777.8706 47.4572 4.2685 2300.0119 192.7102 14.935 

40 Noisy  9818.5 7458.5628 9496.5892 

Denoised 5929.1 813.93 69.3635 3506.4011 76.1616 9.6328 4569.1684 253.7879 15.245 

60 Noisy  14397.9 11131.5919 14008.0184 

Denoised 8737.5 1585.05 103.138 5300.983 259.090 20.811 6835.0038 525.1168 19.188 

 
Table 4: Peak Signal to Noise Ratio (PSNR) 

NV Image 
status  

Peak signal to noise ratio (PSNR (dB)) 

  Muk main building Lena Dep. Of Physics 

  WF MDBUT
MF 

WF-
MDBUT
MF 

WF MDBUT
MF 

WF-
MDBUT
MF 

WF MDBUT
MF 

WF-
MDBUT
MF 

20 Noisy  10.9586 12.4192 13.2982 

Denoised 13.221 21.191 30.4553 15.6318 31.3678 41.8280 14.5135 25.2817 36.3885 

40 Noisy    8.2104 9.4043 8.3551 

Denoised 10.401 17.216 25.9034 12.6822 29.3134 38.2933 11.5324 24.0860 36.2994 

60 Noisy    6.5478 7.6652 6.6670 

Denoised  8.716 16.130 27.9966 10.8872 23.9962 34.9478 9.7834 20.9278 35.3005 
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Table 5: Signal to Noise Ratio (SNR) 

NV Image status  Signal to Noise Ratio (SNR (dB)) 

  Muk main building Lena Dep. Of Physics 

  WF MDBUT
MF 

WF-
MDBUTM

F 

WF MDBUTM
F 

WF-
MDBUTM

F 

WF MDBUTM
F 

WF-
MDBUTM

F 

0.2 Noisy  17.0803 6.76230 6.8189 

Denoised 22.2896 40.6420 61.9731 9.9749 25.7109 36.1711 9.9555 20.7237 31.8306 

0.4 Noisy    6.9241 3.74732 3.7971 

Denoised 16.1879 31.4913 47.0147 7.0253 23.6565 32.6364 6.9744 19.5281 31.7414 

0.6 Noisy  3.0613 2.0083 2.1090 

Denoised 11.9187 28.9887 56.3118 5.2303 18.3393 29.2909 5.2254 16.3698 30.7425 

 
From Tables 2 and 3, the results indicate that there is 

significant improvement in the quality of the de-noised signal 
in the order of WF-LMS, MDBUTMF and WF-MDBUTMF. 
WF-LMS algorithm produced the highest MAE and MSE 
meaning that noise is very dominant in the filter. The 
MDBUTMF algorithm produced lower MAE and MSE values 
compared to WF-LMS which gives the impression that the 
MDBUTMF significantly suppresses noise better than the 
WF-LMS even at high noise variance.  

The proposed technique on the other hand has a strong 
capability to suppress noise compared to WF-LMS and 
MDBUTMF. From table 2, the MAE for Lena at 20% noise 
variance is 12.9272, 2.5268 and 0.7702 while the MSE for 
Lena at the same noise variance is 1777.8706, 47.4572 and 
4.2685. Therefore, the performance of the filters increases in 
the order of WF-LMS, MDBUTMF and WF-MDBUTMF.  

The PSNR and SNR were computed to quantify the amount of 

noise in the signal/image. The results are shown in tables 4 
and 5. It is evident from Tables 4 and 5 that the proposed 
method performs best in terms of the PSNR and SNR, that is, 
it has higher PSNR than WF-LMS and MDBUTMF. 
Experimental results obtained show that at higher noise 
variance, the proposed method restores the original image 

much better than the WF-LMS and MDBUTMF when used 

separately. At noise variance of 40%, the PSNR and the SNR 
of the restored Lena image improves by approximately 28dB 
as compared to the noisy image as opposed to the case for the 
WF-LMS and MDBUTMF that give 3dB and 20dB 
respectively.  

For quantitative and qualitative interpretation and graphical 
illustration, salt and pepper noise variances were expanded 
from 10% to 90% and Lena picture was used (tables 6 and 7). 

Primarily, the extension of the noise variances to the higher 
domain was to test the capability of the proposed method in 
de-noising signals at such domain. 

From table 6, the noisy signal/image has high MAE and MSE 
values. When de-noised using the WF-LMS and the 
MDBUTMF, the noise is still dominant in the system as 
evidenced by the high MAE and MSE. However, the 
MDBUTMF proved to be better than then WF-LMS since it 

has lower MAE and MSE compared to the WF-LMS. The 
proposed method is however very effective in removing salt 
and pepper noise. This method has the lowest MAE and MSE. 
The plots of MAE and MSE against noise variances (%) are 
graphically represented in figure 16. 

 

Table 6: MAE and MSE for WF, MDBUTMF and the WF-MDBUTMF for Lena for 10%-90% of salt and pepper noise 
variances 

Lena Picture 

  MAE MSE 

  WF MDBUTMF WF-
MDBUTMF 

WF MDBUTMF WF-
MDBUTMF 

10 Noisy  14.6433 1891.3046   

De-noised 6.6150 2.2648 0.6355 869.6618 43.0741 2.2978 

20 Noisy  27.0503 3725.2645 3725.2645 3725.2645 

De-noised 12.9272 2.5268 0.7702 1777.8706 47.4572 4.2685 

30 Noisy  39.6230 5589.0534   

De-noised 18.8571 2.8693 0.9205 2632.1154 56.2588 6.1451 

40 Noisy  52.3389 7458.5628 7458.5628 7458.5628 

De-noised 25.0201 3.3740 1.1094 3506.4011 76.1616 9.6328 

50 Noisy  64.6079 64.6079 64.6079 9271.2559   

De-noised 31.2975 4.1920 1.2995 4410.9503 125.2531 14.333 

60 Noisy  77.2506 77.2506 77.2506 11131.5919 11131.592 11131.592 

De-noised 37.4933 5.9865 1.5283 5300.9838 259.0900 20.8112 

70 Noisy  89.8791   12979.9345   

De-noised 43.7365 9.4617 1.7733 6184.1886 545.2034 28.6604 

80 Noisy  102.4461   14867.1469   

De-noised 50.0131 16.6491 2.1037 7098.6356 1197.4690 48.8479 

90 Noisy  114.7627   16664.6946   

De-noised 55.8937 30.4329 2.5342 7921.8781 2469.7822 79.9545 
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       (a)            (b) 

Figure 1: Graphical representation of MAE and MSE (a) Graph of MAE versus noise variances and (b) Graph of MSE versus 

noise variances 

From figure 16, it shows that the proposed method has very 
low MAE and MSE compared to WF-LMS and MDBUTMF 
considered separately. Both MAE and MSE increase with 
increasing noise variances. The MAE and the MSE increase in 
the order of the WF-MDBUTMF, MDBUTMF, WF-LMS and 

the noisy signal/image as expected. This therefore shows that 
the WF-LMS and the MDBUTMF are vulnerable to noise 
reduction at high noise variances. MDBUTMF exhibits higher 
gradient for both the MAE and MSE. The MAE and the MSE 

for the MDBUTMF are almost constant at lower noise 
variances but it becomes non-linear as the noise variances 
reaches 60%. It is an indication that the method becomes 
vulnerable when the noise reached 60 or 65%. 
 

Further quality analysis was considered using the PSNR and 
SNR. The computed PSNR and SNR were tabulated in table 7 
and also graphically represented in figure 17. 

 
Table 7:  PSNR, SNR for WF, MDBUTMF and the WF-MDBUTMF 

 Lena Picture 

  PSNR (dB) SNR (dB) 

NV 

(%) 

Image status  WF MDBUTMF WF-

MDBUTMF 

WF MDBUTMF WF-

MDBUTMF 

10 Noisy  15.3631   9.7062   

De-noised 18.7372 31.7886 44.5176 13.0804 26.1317 38.8607 

20 Noisy  12.4192 12.4192 12.4192 6.7623   

De-noised 15.6318 31.3678 41.8280 9.9749 25.7109 36.1711 

30 Noisy  10.6574   5.0005   

De-noised 13.9277 30.6289 40.2455 8.2708 24.9720 34.5886 

40 Noisy  9.4043 9.4043 9.4043 3.7473   

De-noised 12.6822 29.3134 38.2933 7.0253 23.6565 32.6364 

50 Noisy  8.4594   2.8025   

De-noised 11.6855 27.1529 36.5676 6.0286 21.4960 30.9107 

60 Noisy  7.6652 7.6652 7.6652 2.0083   

De-noised 10.8872 23.9962 34.9478 5.2303 18.3393 29.2909 

70 Noisy  6.9981   1.3412   

De-noised 10.2179 20.7652 33.5510 4.5610 15.1083 27.9010 

80 Noisy  6.4085   0.7516   

De-noised 9.6191 17.3481 31.2423 3.9621 11.6912 25.5854 

90 Noisy  5.9128     0.2559   

De-noised 9.1425 14.2042 29.1024 3.4856 8.5473 23.4454 
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From table 7, high quality measure is obtained by the 
proposed method. The proposed method has higher PSNR and 
the SNR. The higher the PSNR or SNR, the better the 
image/signal quality. At 10% noise variance of salt and 
pepper, the PSNR are 18.7dB, 31.7886dB and 44.517dB for 

the WF-LMS, MDBUTMF and the WF-MDBUTMF 

respectively while that of SNR are 13.0804dB, 26.1317dB and 
38.8607dB respectively. Both the PSNR and the SNR increase 
in the order of the WF-LMS, the MDBUTMF and the 
proposed method (WF-MDBUTMF). The behavior of the 
PSNR and the SNR with change in noise variances is 

illustrated in figure 17. 

 
                                             (a)                                          (b) 
Figure 2: Graphical representation of PSNR and SNR (a) Graph of MAE versus noise variances and (b) Graph of MSE versus 

noise variances 

From figures 17(a) and 17(b), the WF-LMS performs worst 

compared to MDBUTMF and the proposed method (WF-
MDBUTMF) in terms of PSNR and SNR. It exhibits a sharp 
decrease in the PSNR and the SNR and a non-linear 
characteristic as soon as the salt and pepper noise variance 
were increased from 10% to higher values. It also maintained 
lower PSNR and SNR which is a common characteristic of 
poor filters. 

MDBUTMF exhibits a unique characteristic in terms of PSNR 
and SNR. The PSNR and the SNR remain high up to 40% of 
noise variance. From 40%, there was a marked decrease in 
both the PSNR and the SNR. This therefore means that the 

MDBUTMF performs well at some level of low noise 
variance. However, the difference between the MDBUTMF 
and the WF-LMS in terms of the PSNR and the SNR at 90% 
noise variance is only 5.0617dB. This means that even if the 
MDBUTMF is better than the WF-LMS, their performances 
are rather similar at high noise variances. 

The proposed method (WF-MDBUTMF) maintained the 
highest PSNR and SNR well above the WF-LMS and the 
MDBUTMF. The difference between the PSNR and the SNR 
for the WF-MDBUTMF and those of the MDBUTMF and the 
WF-LMS at 10% noise variance is 25.7804dB and 13.0514dB 

respectively while that of SNR is 25.7803dB and 13.0513dB 
respectively. 

7. CONCLUSION 
Results of the proposed method (a combination of WF-LMS 
and MDBUTMF) show that its performance is better than the 
WF-LMS and the MDBUTMF in reconstructing the image 
blurred with salt and pepper noise. This proposed method has 
effective image restoration and visibility.  

This new proposed method can further be improved by 

increasing the window size but care should be taken as 
increasing the window size could result into insertion of some 
artifacts in the image. This method could also be applied to a 
coloured image. 
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