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ABSTRACT 

This research investigates Logarithm Decreasing Inertia Weight 
(LogDIW) to improve the performance of Particle Swarm 
Optimization (PSO). The general problem of PSO algorithm is 
premature convergence when solving complex optimization 
problem. Some researchers try to solve the problem by 

modifying the PSO or proposing another PSO variants. Some 
PSO variants proved to have a better performance than the 
original PSO. The purpose of this research is to obtain some 
experimental facts to prove the efficiency of LogDIWPSO if the 
parameters are tuned correctly and to show that the 
LogDIWPSO performs better compared to the other PSO 
variants. In the early step of the experiment, a percentage value 
of search space boundary is obtained. This step is important to 
compute the velocity threshold of LogDIW based on the 

optimization problem. The next experiment is done to measure 
the performance of LogDIWPSO using six benchmark functions 
in optimization problems and to prove the superiority of 
LogDIWPSO compared to the other PSO variants. The 
experiment result shows that LogDIW achieves better 
performance than the other PSO variants. 
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1. INTRODUCTION 

Since introduced in 1995, Particle Swarm Optimization (PSO) 
had been improved and widely used in many applications. A 
modified PSO mainly focus to improve the convergence in order 
not to be trapped in the local optima. Some modifications also 
done in the parameters such as in the inertia weight, velocity 
clamping, the change in cognitive and social aspect value, and in 

the determination of personal best position (Pbest) and the 
global best position (Gbest). 

Inertia weight plays important role in the trade-off process 
between the diversification and intensification ability of PSO 
algorithm. When inertia weight strategy implemented in PSO 
algorithm, the particles will move around and adjust their 
velocity and position according to the original PSO equation in 
the search space. Inertia weight also has a role to balance the 

exploration and exploitation. Inertia weight will determine the 
contribution of the previous particle’s velocity for the current 
velocity. Original PSO that introduced by Kennedy and Eberhart 
in 1995 did not have inertia weight [1]. The concept of inertia 

weight was introduced in 1998 by Shi and Eberhart [2] [3]. In 

their research, a constant inertia weight was included in the 
algorithm. A large value of inertia weight facilitates the global 
search while a small value of inertia weight facilitates the local 
search. Therefore, the best result of PSO algorithm can be 
achieved by choosing the correct inertia weight. Several studies 
using inertia weight in PSO were carried out by [4][5][6]. 

Dynamic adjustment of inertia weight to improve the PSO 
performance have been proposed by many researchers. One of 

them is Random Inertia Weight (RIW) [7]. The experiment 
proved that this strategy will improve the convergence at the 
earlier iteration of the algorithm. Linearly Decreasing Inertia 
Weight (LDIW) strategy [8] also proposed to improve the 
efficiency and performance of PSO. The experiment shows that 
the inertia weight from 0.9 up to 0.4 produces the best result.  

Fang et al. (2008) proposed Chaotic Inertia Weight that took the 
advantage of chaos optimization. The research compares Chaotic 
Random Inertia Weight (CRIW)-PSO and Random Inertia 

Weight (RIW)-PSO and resulted in the better performance of 
CRIW-PSO [9]. The algorithm performs rough search step and 
fine search step alternately on its all evolutional process. Malik 
et al. (2007) presented a Sigmoid Increasing Inertia Weight 
(SIIW) [10]. They find that sigmoid function contributes in 
obtaining temporary minimum fitness function while Linearly 
Increasing Inertia Weight (LDIW) contributes to a faster 
convergence. Therefore, they combine the sigmoid function and 

Linearly Increasing Inertia Weight and also introduce SIIW that 
produces a significant improvement in the aspect of fast 
convergence and narrowing the aggressive movement to the 
solution region. Oscillating Inertia Weight [11] proposed a 
periodic change between the global search and local search and 
proved that the strategy is competitive in some cases especially 
in the aspect of convergence speed.   

Gao et al. in 2008 proposed a Logarithmic Decreasing Inertia 

Weight (LogDIW) with chaos mutation operator. Chaos 
mutation operator able to increase the ability to jump out from 
the premature convergence and increase the convergence speed 
and accuracy [12]. To handle the stagnation and premature 
convergence from PSO algorithm, Gao et al. in 2009 proposed 
Exponent Decreasing Inertia Weight (e-DIW) with stochastic 
mutation (SM) [13]. Stochastic mutation (SM) is used to 
increase the diversity of swarm while the e-DIW is used to 

increase the personal convergence speed. The larger inertia 
weight facilitates at the inclusive phase of the search space and 
then decrease linearly into smaller inertia weight. In [14] an 
improved particle swarm optimization (EWPSO) have proposed 
a novel strategy for inertia weight. In this algorithm, a nonlinear 
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inertia weight used. An exponential function of maximal and 
minimal fitness used this new inertia in each iteration. The result 
was compared with the standard PSO with linear decreasing 
inertia weight and RNW-PSO. Form the simulation showed that 
EWPSO more effective and efficient for the benchmark test. 

Based on the idea from [9], this research will investigate the 
used of Logarithm Decreasing Inertia Weight in PSO. The study 
will cover the comparison of the best fitness value and the speed 
of convergence between this algorithm and the other PSO 
variants. This paper is organized into six sections. Section 1 
introduces the problems and the reason why logarithm 
decreasing inertia weight is proposed to handle some problems 
in PSO. Section 2 explains the strategy of particle swarm 

optimization and the review of seven inertia weight strategies of 
particle swarm optimization will be explained in Section 3. 
Section 4 explains the experiment scenario and discusses the 
result in detail. The conclusion of this work is presented in 
Section 5. 

2.  PARTICLE SWARM OPTIMIZATION 

PSO was introduced by Eberhart and Kennedy in 1995 then 
modified by Shi and Eberhart in 1998 by adding a constant 
inertia weight in the algorithm. Large inertia weight facilitates 
global search while small inertia weight facilitates local search. 
The original PSO algorithm performs velocity updated and 

position updated (Everhart and Kennedy, 1995) as shown in 

equation (1) and equation (2) respectively.    
         

  

            
     

                 
  (1) 

   
       

     
                       (2) 

Where     and    are positive constants called acceleration 

coefficients,    and    are random numbers in the range of [0, 1], 

and w is the inertia weight. Large inertia weight will facilitate 
global exploration while small inertia weight will facilitate local 
exploitation. The i-th particle is presented as 
                  . The best previous position of the i-th 

particle is stored and presented as                   . The 

position gives the best fitness value. Index of the best particle in 
the population is presented with g symbol. The velocity of the i-
th particle presented as                   . During the 

update, the particle’s velocity in each dimension is bounded to 

    . D is a dimension of the search space. 

 

3. A REVIEW OF  INERTIA WEIGHT  
This study covers some PSO variants namely: (1) Constant 
Inertia Weight (CIW), (2) Random Inertia Weight (RIW), (3) 
Linearly Decreasing Inertia Weight (LDIW), (4) Chaotic 
Decreasing Inertia Weight (CDIW), (5) Chaotic Random Inertia 
Weight (CRIW), (6) Logarithm Decreasing Inertia Weight 
(LogDIW). 

3.1. Constant Inertia Weight 

A modified PSO with the concept of inertia weight w was 
introduced for the first time by Shi and Eberhart [2]. The 
research used a constant inertia weight (CIW) where a large 
constant is suitable for exploration while a small constant is 
suitable for exploitation. CIW can be computed using equation 
(5).  

                   (3) 

3.2. Random Inertia Weight  

Randomize in PSO was introduced by Eberhart and Shi [3] 
through the inertia weight strategy. A new method to compute 
the inertia weight is by using particle swarm to search and 

optimize the dynamic system. The random value of inertia 
weight is computed using equation (4).  

 

       
       

 
   (4) 

 

Where rand (.) is the random value in the range of 0 and 1. 
Equations 

3.3. Linearly Decreasing Inertia Weight 

LDIW-PSO is a PSO variant that implements linear descending 
(decreasing) inertia weight [4]. The strategy improves the 
algorithm significantly. In LDIW, inertia weight starts from 

some initial values and linearly decrease to smaller final values. 
Large inertia weight facilitates global search while small inertia 
weight facilitates local search.  

The initial and final values that usually used are 0.9 or 0.4. High 
initial value makes the particle moves in low viscosity medium 
that facilitates exploration while small inertia value makes 
particles moves in high viscosity medium that facilitates 
exploitation. However, by using linearly decreasing inertia 
weight lead PSO to premature convergence which is a fast 

convergence to the early optimum position. Equation (3) shows 
how to compute the LDIW.  

                 
      

    
       (3) 

Where ωstart and ωend are the initial value and final value of 
the inertia weight, t is the iteration at run time, Tmax is the 
number of maximum iteration, and ωt ∈ [0, 1] is the value 

of inertia weight at t-th iteration. 

3.4. Chaotic Descending Inertia Weight 

The idea of Chaotic Inertia Weight (CIW) uses chaotic mapping 
to find the inertia weight coefficients. Feng et al. [6] proposed to 
use logistic mapping. Chaotic inertia weight strategy consists of 
Chaotic Descending Inertia Weight (CDIW) and Chaotic 
Random Inertia Weight (CRIW). CDIW strategy uses the 

advantages of chaos optimization. Chaos is a non-linear dynamic 
system that sensitive to the initial value. The system has 
ergodicity and stochastic property characteristic. The final goal 
is to handle the premature convergence that occurred in 
LDIWPSO. Equation (6) presents the chaotic descending inertia 
weight. 

                     (5) 

Where     and    is the k-th chaotic number. The generator 

map has value between 0 and 1, initial value of   ∈       
and                           . 

                 
      

    
            (6) 

Where        and      is the initial and final inertia weight. 

CDIWPSO shows a better convergence precision, faster 
convergence speed and better global search performance. 

3.5. Chaotic Random Inertia Weight 

Chaotic Random Inertia Weight (CRIW) was introduced by 
Feng et al [6] and the formula is shown in equation (7). The 
purpose of this strategy is to improve the random inertia weight 
in equation (4) using logistic map in equation (5) and to avoid 

the local optima in the search process using the advantages of 
chaotic optimization. 

   
       

 
            (7) 

Where rand (.) is uniform random number in the range of [0, 1]. 
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3.6. Logarithm Decreasing Inertia Weight  

The empirical study shows that PSO with large value of inertia 
weight (w) has better global search capability compared to the 
smaller w with faster convergence. Gao et al. [9] introduce 
Logarithm Decreasing Inertia Weight (LogDIW) as shown in 
equation (8). 

                                         
(8)                                               
Where a is constant to adjust the evolutionary speed, a = 1. 

4. EXPERIMENT RESULT  

The claim of this research is validated using various 
experiments. Experiment is done by comparing the Logarithm 

Decreasing Inertia Weight Particle Swarm Optimization 
(LogDIWPSO) with the other five variants of PSO namely 
Chaotic Descending Inertia Weight Particle Swarm Optimization 
(CDIWPSO): Constant Inertia Weight Particle Swarm 
Optimization (CIWPSO), Random Inertia Weight Particle 
Swarm Optimization (RIWPSO), Linear Decreasing Inertia 
Weight Particle Swarm Optimization (LDIWPSO), and Chaotic 
Random Inertia Weight Particle Swarm Optimization 

(CRIWPSO). 
 

Six benchmark functions from the literature are used to test the 
performance of CDIW-PSO, CIW-PSO, RIW-PSO, LDIW-PSO, 
ChIW-PSO, CRIW-PSO, LogDIW-PSO, and e-DIW-PSO. 
Those benchmarks are chosen because its combination can be 
used to validated various kinds of PSO. The scenario of 
experiment involves different setting of parameters. Some 
parameter values in this research                 
   ,        ,            and           , where 

       
 
The benchmark functions can be classified into two groups 

namely unimodal and multimodal functions [15]. The 
benchmark functions that used in this research are Sphere 
Function (F1), Rastrigin Function (F2), Griewank Function (F3), 
Schaffer Function (F5), Ackley Function (F5), and Rosenbrock 
Function (F6) as shown in Table 1. The purpose of this 
experiment is to compare LogDIWPSO with the other five PSO 
variants. The six benchmark functions use dimension of 30 
except Chaffer function which use dimension of 2. The number 

of maximum iteration is 1500 with swarm size is 20. The 
experiment is done 30 times. The goal of this experiment is to 
prove that LogDIWPSO is more efficient compared with the 
other PSO variants.  

 

Sphere Function 
Figure 1 shows the comparison of mean value of best fitness 
against the number of iteration. The mean value of Best Fitness, 

Worst Fitness, Mean and Deviation Standard of Sphere function 
for seven inertia weight based PSO variants is shown in Table 1. 
Although the CRIWPSO and LogDIWPSO show a fast 
convergence in the early search stage, they are a little behind the 
other five inertia weights after approximately 200 iterations. The 
final solution of LogDIWPSO and the other six inertia weights 
after approximately 800 iterations is similar. 
Figure 3 shows the comparison of mean value of best fitness 

against the number of iteration. The mean value of Best Fitness, 
Worst Fitness, Mean and Deviation Standard of Griewank 

function of seven inertia weight based PSO variants is shown in 
Table 1. Although the CRIW-PSO and LogDIW-PSO show a 
fast convergence in the early search stage, they are a little behind 
the other five inertia weights after approximately 150 iterations. 
The final solution of LogDIW-PSO, CRIW-PSO and CIW-PSO 

after approximately 800 iterations is similar. 

 

Table 1. The Six Benchmark functions 

 

Name Expression and Condition 

Sphere function          
  

   , n=30 

  ∈                    , 

                    

Rastrigin 
function 

          
                 

 
   , 

n=30 
  ∈                    , 

                    

Griewank 
function 

      
 

    
   

       
 

  
    

   
 
   , 

n=30 
  ∈                    , 

                    

Schaffer’s 
function             

          
    

  

            
    

   
  

   
   , 

n=30, 
   ∈                    , 

                    
 

Ackley function 
                  

 

 
   

  
     

    , n=30 

  ∈                 , 

                    

Rosenbrock 

function 
                    

        
   
   

1)2, n=30 

  ∈                    , 

                    

 

Griewank Function 

 
Fig. 1: Comparison between the best fitness values of Sphere 

function to the number of iteration 
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Table 2. Comparison of best fitness, worst fitness, and mean and deviation standard value of seven PSO variants based on 

inertia weight on six benchmark functions 

 

Inertia 

Weight PSO 

Performance 

Index 

Inertia Weight PSO 

Sphere Rastrigin Griewank Schaffer's Ackley Rosenbrock 

CDIWPSO 

Best Fitness 1,0370E-23 2,7859E+01 3,3307E-16 0,0000E+00 1,6462E+00 7,7156E+01 

Mean Fitness 6,0860E-25 1,8274E+01 3,3307E-17 0,0000E+00 5,4874E-02 2,5185E+01 

Deviation Standard 1,9291E-24 4,0266E+00 8,8194E-17 0,0000E+00 3,0056E-01 1,7703E+01 

Worst Fitness 1,8547E-29 1,2934E+01 0,0000E+00 0,0000E+00 4,4409E-15 2,1481E+00 

RIWPSO 

Best Fitness 2,4387E-01 1,0039E+02 1,2511E-02 9,2174E-02 5,5774E-01 1,3520E+02 

Mean Fitness 1,3807E-01 6,5914E+01 5,2350E-03 1,6327E-02 3,7202E-01 6,2797E+01 

Deviation Standard 5,3489E-02 1,4330E+01 2,6764E-03 1,5767E-02 1,1259E-01 2,8596E+01 

Worst Fitness 3,3440E-02 3,4124E+01 2,2706E-03 7,6228E-03 1,7466E-01 3,5634E+01 

LDIWPSO 

Best Fitness 7,2414E-09 8,5566E+01 2,1474E-02 3,8952E-02 4,2572E-05 8,0315E+01 

Mean Fitness 4,6305E-10 5,0444E+01 9,6232E-04 1,5866E-02 5,9092E-06 2,6547E+01 

Deviation Standard 1,4926E-09 1,2455E+01 4,1023E-03 8,7258E-03 9,3318E-06 1,0402E+01 

Worst Fitness 1,2239E-12 3,3829E+01 1,4433E-14 5,4916E-03 4,2102E-07 1,7396E+01 

CIWPSO 

Best Fitness 9,7898E-02 7,6712E+01 7,4310E-03 2,5962E-02 6,5311E-02 8,5450E+01 

Mean Fitness 3,4953E-02 3,9595E+01 5,7337E-04 1,2784E-02 3,2867E-02 3,2734E+01 

Deviation Standard 2,1221E-02 1,1424E+01 1,8626E-03 6,3775E-03 1,1635E-02 1,5812E+01 

Worst Fitness 5,0652E-03 2,4192E+01 1,8920E-05 2,2256E-03 1,4385E-02 2,3945E+01 

CRIWPSO 

Best Fitness 6,0332E-14 7,9596E+01 1,1467E-01 3,5814E-02 2,2210E+00 8,1771E+01 

Mean Fitness 3,7870E-15 4,9449E+01 3,8222E-03 1,6363E-02 6,8442E-01 2,9496E+01 

Deviation Standard 1,1332E-14 1,5403E+01 2,0935E-02 7,7067E-03 7,6111E-01 1,6906E+01 

Worst Fitness 9,5795E-19 2,0894E+01 0,0000E+00 6,5614E-03 7,7251E-10 1,7603E+01 

LogDIWPSO 

Best Fitness 6,4000E-14 3,0844E+01 2,0317E-14 2,2256E-03 2,0133E+00 7,9851E+01 

Mean Fitness 4,3969E-15 2,2950E+01 1,9355E-15 1,1145E-04 3,9915E-01 1,1533E+01 

Deviation Standard 1,4829E-14 3,2732E+00 3,7561E-15 4,4838E-04 7,4211E-01 2,5302E+01 

Worst Fitness 4,1195E-19 1,6914E+01 0,0000E+00 0,0000E+00 2,5788E-06 6,6449E-03 

 

 

Rastigrin Function 
 
Figure 2 shows the comparison of mean value of best fitness 
against the number of iteration. The mean value of Best Fitness, 
Worst Fitness, Mean and Deviation Standard of Rastrigin 
function of seven inertia weight based PSO variants is shown in 
Table 1. Although the CRIW-PSO and LogDIW-PSO show a 

fast convergence in the early search stage, they are a little behind 
the other five inertia weights after approximately 500 iterations. 
The final solution of LogDIW-PSO, CRIW-PSO and CIW-PSO 
after approximately 700 iterations is similar. 

 

 

 
Fig. 2: Comparison between the best fitness values of 

Rastrigin function to the number of iteration 
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Fig. 3: Comparison between the best fitness values of 

Griewank to against the number of iteration. 

 

Schaffer Function 
Figure 4 shows the comparison of mean value of best fitness 
against the number of iteration. The mean value of Best Fitness, 

Worst Fitness, Mean and Deviation Standard of Schaffer 
function of seven inertia weight based PSO variants is shown in 
Table 1. Although the CRIW-PSO and LogDIW-PSO show a 
fast convergence in the early search stage, they are a little behind 
the other five inertia weight after approximately 150 iterations. 
The final solution of LogDIW-PSO and CRIW-PSO after 
approximately 400 iterations is similar. 
 

 

 
Fig. 4: Comparison between the best fitness values of 

Schaffer function to the number of iteration. 

 

Ackley Function 
Figure 5 shows the comparison of mean value of best fitness 
against the number of iteration. The mean value of Best Fitness, 
Worst Fitness, Mean and Deviation Standard of Ackley function 
of seven inertia weight based PSO variants is shown in Table 1. 
Although the CRIWPSO and LogDIWPSO show a fast 
convergence in the early search stage, they are a little behind the 
other five inertia weights after approximately 180 iterations. The 

final solution of LogDIWPSO, CDIW and CRIWPSO for 
approximately 1000 iterations is similar. 

 
Fig. 5: Comparison between the best fitness value of Ackley 

function to the number of iteration. 

 

Rosenbrock Function  
Figure 6 shows the comparison of mean value of best fitness 
against the number of iteration. The mean value of Best Fitness, 
Worst Fitness, Mean and Deviation Standard of Rosenbrock 
function of seven inertia weight based PSO variants is shown in 
Table 1. Although the CRIW-PSO and LogDIW-PSO show a 
fast convergence in the early search stage, they are a little behind 

the other five inertia weights after more than 300 iterations. The 
final solution of LogDIW-PSO, LDIW and CRIW-PSO after 
more than 900 iterations is similar.  
 

 
Fig. 6: Comparison between the best fitness value of 

Rosenbrock function to the number of iteration. 

 
From the result of experiments that have been carried out using 
the benchmark function, it can be seen that the convergence of 
LogDIWPSO algorithm is better than other PSO variants. This 
can be seen in Fig.2 – Fig.6. 
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6. CONCLUSION 

In this study, a strategy of inertia weight is proposed using a 
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logarithmic decreasing inertia weight (LogDIW). In this paper 
the use of a decreasing inertia wegiht strategy in several varian 
of PSO also describe. The experimental results show that the 
strategy using LogDIW on PSO convergence is better than other 
linear strategy during early stages of the search process. In 

various optimization problems tested on commonly used 
benchmark functions, this strategy has better performance than 
other linear inertia weight strategies. 

The proposed algorithm LogDIW PSO can be applied to image 
processing such as image segmentation. The image can be a 
grayscale or color image.  
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