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ABSTRACT

One of the most important features to help facilitate reliable design
in a programming language is memory management design. There
are two wide-spread approaches: manual and automatic memory
management, known as garbage collection (GC). Recently, a third
approach which is ownership design has been fully adapted in
new modern programming languages such as Rust and Swift. Rust
uses ownership to eliminate high degree memory problems such
as memory leak, dangling pointer, and use after free. Rust follows
deterministic syntax-driven memory management depending on
static ownership rules implemented and enforced by the rustc
compiler. Swift also implements ownership concept in automatic
reference counting (ARC). Though the ownership concept is
adapted in Swift, it is not a memory-safe language because of
the possibility of strong reference cycles. In this paper, we will
illustrate the fundamental of ownership and the consequences of
memory safety guarantees and issues related to Rust and Swift. We
also conducted an experiment to compare the elapsed time binary
tree allocation and deallocation in five programming languages C,
C++, Java, Swift and Rust.
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1. INTRODUCTION

There are several programming languages designed with different
capabilities and features that make programmers focusing more on
reliability of coding [} 12 8, 24} 126]. Some programmers select
a programming language that supports automatic management of
memory resources instead of taking the risk of manual management
but others prefer to use the conventional programming languages
that depend on manual management of memory resources such as
C and C++ that have been used for decades.

Memory management - the allocation and deallocation of dynamic
memory during the execution of a program - is one of the most
important aspects of programming languages. The most serious

Abdulwahab Aljubairy
Computer Science Department
Umm Al-Qura University
Al-leith, Saudi Arabia

Ahoud Alhazmi

Computer Science Department
Umm Al-Qura University
Al-leith, Saudi Arabia

memory issues such as memory leak, use after free are common
on manual memory management even though high performance
and low-level control are satisfied. On the other hand, automatic
memory management known as garbage collection eliminates
a number of memory issues but still has visible overhead at
run-time. The third approach of memory management known as
ownership supported partially in a conventional programming
language such as C++ by using std :: unique_ptr and fully in
new modern programming languages such as Rust and Swift.
Ownership in modern programming languages has significant
points in overcoming a number of memory issues deterministically.

The two modern programming languages that support ownership
memory management approach are Rust and Swift. The former
- a system programming language - is a strongly statically typed
language where types are checked at compile time [4]. Rust
compiler - rustc - eliminates a number of memory issues and
satisfies deterministic memory management without garbage
collection. The compiler has strict rules of checking related to the
ownership approach. Rust eliminates data races and has low-level
control of resources comparable to C and C++ but it has a steep
learning curve and new programmers will have to adopt new
cognitive programming skills to get successful compiled source
codes by strongly taking into consideration the ownership strict
rules. The latter is a compiled general-purpose programming
language that supports the concept of ownership to manage its
dynamic reference types by using Automatic Reference Counting
- ARC. Swift developers emphasize that Swift is enjoyable,
expressive, and safe language but novice programmers need to be
aware of strong reference cycle in order to avoid memory leak
which is the main issue of ARC [15].

This paper aims to focus on the fundamentals and the efficiency
of the ownership concept in modern programming languages
Rust and Swift. We conduct an experiment to compare and
evaluate the performance of Rust and Swift with other conventional
programming languages: C, C++ and Java. We select a task
requiring a frequent allocation and deallocation such as binary
tree data structure to measure the elapsed time of dynamic
allocation and deallocation. The performance of binary tree shows
a remarkable significant comparison between conventional and
modern programming languages: (i) allocation in Rust is noticeably



faster than Swift, but Swift is faster than Rust in deallocation even
with a large number of nodes, (ii) Java has a better performance
with a restricted number of nodes, whereas Swift is capable of
working with a large number of nodes even though both languages
incur runtime costs, and (iii) modern programming languages
compare favorably in a large number of nodes to the conventional
programming languages C, C++ and Java. The remaining sections
in this paper are organized with the following orders: section
2 discusses some of the related works, section 3 explains the
fundamentals and memory safety of ownership approach in Rust
and Swift, section 4 presents the conducted experiment and section
5 concludes the paper.

2. RELATED WORKS

There are a number of studies focused on comparing programming
languages with different criteria [24, [25]. In programming
languages, memory management has two common fundamental
approaches: manual and automatic memory management. The
first approach which is manual or explicit memory management
requires programmers to allocate and free memory manually such
as a programmer who uses the C language. The second approach
is automatic memory management which emerged in order to
overcome the issues of the first type approach [28]]. In automatic
memory management, a programmer who uses programming
languages such as Java, C#, and Caml is not obliged to manage the
memory manually because these languages offer the capability of
managing the memory automatically via garbage collection.

Undoubtedly, the benefits of automatic memory management are
indisputable but the costs are high in runtime and space efficiency
[24, 29]. The authors of [23] emphasized that object-oriented
programming significantly increases dynamic memory usage,
thereby causing overhead in terms of memory, performance,
and power. Due to various reasons, there are only a handful of
documented bad experiences of object-oriented technology.

Nowadays, there are several new programming languages designed
to improve the weaknesses of the previous programming languages.
In this research, two recent languages Rust and Swift have been
studied. The former was developed by Mozilla [22] and it was
designed to overcome two obstacles in the previous languages to
offer programmers both high-level safety and low-level control
[19]. Swift was developed and introduced at Apple Worldwide
Developers Conference (WWDC) in 2014. [11]]. In comparison
to Rust, this language is easier and more flexible to use for new
programmers. In particular, Swift is designed to be faster and safer
than Objective-C [30] that inspired it.

Comparing Rust with other languages, the research [20]] discusses
the benefits of Rust. They found Rust promising both better
performance and safety in comparison to C-like languages. Also,
their results show Rust’s safety features do not create significant
barriers to implementing a high-performance collector. In terms of
Rust’s safety, the authors of [[18] demonstrated how Rust utilizes
the ownership-based type system. However, this core type system
uses libraries that internally use unsafe features. Furthermore, the
authors of [3] investigate the strengths of Rust in comparison with
conventional languages such as C. They found Rust has the ability
to implement powerful security and reliability mechanisms like
Software fault isolation (SFI), Information flow control (IFC), and
Automatic checkpointing more efficiently than any conventional
language. However, that is not a sufficient reason to enforce using
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Rust and abandon other languages such as C. The efficiency and
performance of the current languages like C encourage the use of
these languages|[S].

Regarding conventional languages weaknesses like lack of memory
safety and integrated support for concurrency, these languages
force developers to deal with memory and thread safety[6]. There
are attempts for solving these problems by designing some methods
in languages. For example, the authors of [7] present a static type
system called Real-Time Specification for Java (RTSJ) in order to
ensure memory safety. Their work was the first work that combined
the benefits of region types and ownership types. However, in
this research, we do not focus on studying one language and how
researchers try to solve its weakness.

3. OWNERSHIP: RUST AND SWIFT

Rust - system programming language - is a strong type compiled
language. It is designed to eliminate a number of memory issues
and problems such as dangling pointers, buffer overflows, null
pointers, segmentation faults, and data races statically at compile
time. Rust not only has a high safety because of its strong type
system but also has a low level control of resources comparable
to C and C++. Rust satisfies deterministic memory management
without garbage collection by using rustc compiler that has strict
rules of checking the ownership. The compiler affects the following
aspects: ownership, mutability, borrowing, lifetime and scope. The
strict rules of ownership in rustc enforce the following: (i) each
variable in Rust has only one owner at a time, and (ii) a variable
will be deallocated when the owner goes out of the scope. Even
though the concept of ownership is not unique in programming
languages, the feature when a variable lifetime end goes out of
scope is unique to Rust. However; Rust has steep learning cost as
reported in Rust documentation [[10]. A community survey in 2017
revealed that 25% of the people who tried Rust and dropped it felt
the language was “too intimidating"; in other words, it is too hard
and complicated to learn the language [31].

Swift - general-purpose programming language - is a strong
type compiled language. It supports the concept of ownership to
manage its dynamic reference types by using automatic reference
counting-ARC. In Swift, programmers do not have to think about
retain and release operations that are required in manual retain
release -MRR- supported in Objective-C [12| [13]. ARC compiler
will manage the lifetime of objects by inserting appropriate
memory management method calls to perform object destruction
automatically once the object is no more needed. When an object
is created and assigned to a property, constant, or variable, the
integer associated with the object will be increased by the number
of properties, constants, or variables that hold a reference to
the object. This integer associated with the object is called the
reference count and the object will be reclaimed when its reference
count reaches zero [21]. As reported by Apple developers, Swift is
a safe, fast, and interactive programming language [15]] but writing
a safe code mostly means avoiding memory leaks in Swift.

3.1 Rust Fundamentals

To start programming in Rust, new programmers need to know the
Rust fundamentals such as ownership and borrowing. The concept
of ownership is simple, but it affects all aspects of Rust.
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(b) Ownership: move semantic

let mut a = vec![1,2,3];
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(One or more immutable & reference at a time)
(Cannot use a during m and vy lifetime)

(Borrowing - Immutable reference)

(d) Borrowing - Immutable reference

Fig. 1: Borrowing - Mutable and Immutable references

Ownership & Scope: rustc compiler enforces the following
ownership rules: (i) each variable binding has a single owner at
any time, and (ii) a variable is dropped when the owner goes out of
scope. Rust also uses static, or equivalently, lexical scoping which
defines a range of program source code where an item such as a
variable is valid.

Borrowing & Borrow Checker: passing a variable binding in
Rust needs to be borrowed with two special types of references
that depends on read-write lock pattern: (i) immutable reference
type &1' for only reading data and (ii) mutable reference type
&mutT for writing data as shown in Figure (Id), and Figure
respectively.

In terms of borrow checker, borrowing rules are strictly enforced at
compile time, and allow only (i) one or more immutable references
to a resource, or (ii) exactly one mutable reference at a time with
taking into consideration that borrow mutable reference requires
the owner to be mutable.

Lifetime: a lifetime is a construct the borrow checker of rustc uses
to ensure that all borrows are valid. A variable’s lifetime begins
when it is created and ends when it is destroyed. The borrow
checker uses symbolic names representing lifetimes to determine
how long a particular reference should be valid.

Smart Pointers: Rust supports several smart pointers with different
implementations and guarantees. The following are the pointers
that used in the conducted experiment:

—Box < T > is the simplest smart pointer that uniquely owns a
piece of heap-allocated data that will be deallocated when it goes
out of scope.

—Rc < T > is a single-threaded reference-counting pointer that
supports multiple owners. The reference-counting pointer will
be deallocated when the reference count reaches zero, and its
internal data is immutable. If a cycle of references is created by
using RefCell<T>, the memory will be leaked [9]].

—Weak < T > is similar to reference-counting pointer, it is a
non-owning and non-borrowed reference counted smart pointer
and it is useful for cyclic data structures.

—RefCell < T > are shareable mutable containers. It provides
a mutable memory location with dynamically checked borrow
rules by using borrow() and borrow_mut() functions; however, it
does not move data in and out of the cell.

3.2 Swift Fundamentals

To program safe code in Swift, new programmers need to know
how ownership memory management approach is adapted in Swift
by understanding the following fundamentals.



Optional Types: is an enumeration with two cases: nil or
value. Optional.none is equivalent to the nil literal, and
Optional.some(T) stores a T value. Swift supports the operation
of optional chaining symbolized by (?) which accepts nil value.
To forcefully access optional types, the operation (!) is required.
Optional values will be used extensively when lifetime qualifiers
are needed.

Classes: provide reference types that required to be handled
by ARC. Even though there are significant similarities between
classes and structures but structures are value types. Swift provides
two special methods: init() and deinit(). The former does not
return value and uses for initial value of properties, and the
latter is provided to execute a custom code before an instance
destruction[[16} [17].

Strong Reference: is a reference between a class instance to
a property, constant, or variable. In fact, a strong reference cycle
may occur when two class instances hold a strong reference to
each other, such that each instance keeps the other alive. To avoid
strong reference cycle that causes memory leak, a lifetime qualifier
such as weak or unowned references must be used.

Automatic Reference Counting - ARC: compiler will manage the
lifetime of objects by inserting appropriate memory management
method calls to perform object destruction automatically once the
object is no more needed. Reference counting is the mechanism
that has been used in Objective-C and is so supported by Apple,
and ARC is the official standard adopted in Swift. Ownership and
lifetime concepts are strongly required to manage this automatic
handling. In fact, when an object is owned by a property, constant,
or variable, that object will be alive as long as the object is
needed. When an object is created and assigned to a property,
constant, or variable, the integer that is associated with the
object will be increased by the number of properties, constants,
or variables that hold a reference to the object. This integer
associated with the object is called the reference count and the
object will be reclaimed when its reference count reaches zero [21].

Lifetime Qualifiers: will be used to avoid memory leak which
is the main memory issue comes from strong reference cycle.
There are three scenarios that can summarize the solution of
strong reference cycle in Swift [14]. The first lifetime qualifier is
- Weak - lifetime. It can be used in a relationship that describes
two independent lifetimes which could be described as association
relationship. The weak reference will not keep a strong reference
on the class instance it refers and it will not stop ARC from
reclaiming the reference. ARC automatically sets a weak reference
to nil when the instance that it refers to is deallocated, and weak
references are always declared as variables of optional type, rather
than constants in order to change the value to nil at runtime.
The second qualifier is - Unowned - lifetime. It can be used in a
relationship that describes two dependent lifetimes as aggregation
relationship. In fact, unowned reference type where should be used
when another instance has the same lifetime or longer lifetime.
Unowned reference is expected also to have a value during the
object’s lifetime because it should not be defined as an optional
type; in other words, unowned reference should be used when it
always refers to an instance that has not been deallocated.

It must also be noted that a runtime error will be executed when
unowned reference refers to an instance that has been deallocated.
The third type of relationship defines strong dependent relationship
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as composition relationship that describes in Swift by combining
unowned reference and unwrapped optional property satisfying the
guarantee that both properties have values instead of being nil. The
third type of relationship defines not only how Swift developers had
overcome strong reference cycle, but also how objects relationship
is composed. Swift programmers need to be aware of memory
management and class objects relationship. Even though Swift
supports ARC to implicitly destruct objects in a deterministic way,
the programmer still has the responsibility to provide a reliable
design.

3.3 Safety Guarantees: Rust and Swift

The concept of ownership is presented in both Rust and Swift, but
Rust ownership system is wider and more solid than Swift. Rust
provides a challenging rustc compiler that eliminates a number
of common errors at compile time. The following are basic errors
will be countered particularly by new programmers in Rust:

error[E0384]: re-assignment of immutable variable ‘x’, which
explicitly required to declare the state of mutability because all
variable binding is immutable by default in Rust.

fn main() {
let x = 2018;
x += 1; // error
println!("x = {}", x);

error[E0382]: use of moved value:‘x‘, occurs when a dynamic
data size reassigned to new binding which is known as move
ownership and results one of Rust ownership violations which is
aliasing.

fn main() {
let x = vec![1,2,3];
let y = x;
println!("x[0] = {}", x[0]); // error

error[E0597]: ‘x‘ does not live long enough, will be caused if a
reference lives longer than the resource it refers to.

fn main() {

let y &i32;

let x = b5;

y = &x;
println!("{} ", y);

error[E0597]: ‘i* does not live long enough, will be caused if a
resource points to invalid resource. The variable r will live longer
than i, but after i is deallocated, r would be dangling.

fn main () {
let r;
{



let i = 1;
// i does mnot live long enough
r = &i;

// i dropped while still borrowed
println! ("{}", r);
}

Rust has fixed and dynamic size types. As shown in Figure (Ta)
and Figure (Ib). Dynamic size binding such as vector - allocated
on heap - uses move semantic in order to keep only one owner
as a reference to the dynamic memory resource. In Rust, there
is a difference between move semantic approach which is used
with dynamic size binding, and copy type approach which is used
with fixed size binding. Rust also follows strict rules in borrowing
known as borrow checker which depends on read-write lock
pattern as illustrated in Figure (Id) and Figure (Ic). A majority
of memory management issues are prevented by rustc compiler
statically at compile time but strong reference cycle may be caused
when RefCell < T > used with RC < T > as shown in
Appendix [AT]and illustrated in Figure ).

To create strong reference cycle in Rust, novice programmers
need to know how to use smart pointers and how to mutate the
content with RefCell < T > that put novice programmers in
challenge to learn Rust. Unlike Rust, Swift novice programmers
will create strong reference cycle easily with less effort of notice
as shown in Appendix Swift developers claim that Swift is
a safe language but Swift has memory issues and programmers
are responsible to avoid them. Swift does not support all memory
safety guarantees even though Swift is a strongly typed language.
In fact, dangling pointers, memory leak, use after free are serious
memory issues that still exist in Swift as strong reference cycle
will be caused easily by novice programmers without using the
appropriate lifetime qualifiers. Besides ownership and lifetime
qualifiers, Swift needs programmers to be precise about optional
types. Swift supports mutability in a naive, simple way providing
constants, variable or optional types. Even though mutability in
Swift will contribute to declaring objects lifetimes, it does not
prevent undesirable behavior. Swift has rules to combine these
types with lifetime qualifiers; for example, an unowned reference
needs to have a valid value and declaring an unowned reference as
optional type will not be accepted by the compiler. In addition, the
mutability of types by using let and var is still designed in a naive
way.

4. THE EXPERIMENT

In this section, we describe how to use Rust and Swift fundamentals
to build an experiment that measures the performance of dynamic
allocation and deallocation by selecting a task requiring frequent
allocation and deallocation. In the conducted experiment, unsafe
Rust pointers have not been used and the risk of strong reference
cycle has been avoided. The experiment will be evaluated with
mature programming languages such as C, C++ and Java. Two
approaches were selected for measuring the performance of
the algorithms using a simple data structure Binary Tree. The
first approach was insertion — number of — nodes. The second
approach focused on measuring the binary search node replacement
by recreating an existing node in order to satisfy deallocation
purposes in all five selected languages. Two initial primary tasks-
generating permutation numbers - and shuffle the numbers with
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the Fisher-Yates algorithm performed to prepare a random number
of nodes. The purpose of the experiment was not any strict
benchmarking, but an illustration of the efficiency of the respective
memory management approaches.

4.1 Experimental Setting

In order to compare the performance of different memory
management designs, three well-known programming languages:
C, C++ (manual memory management), Java (automatic memory
management), Rust (Ownership memory management),
Swift (automatic reference counting) were selected. The
following environment and platform operating system used
for measurements: macOS Sierra version 10.12.6 with processor:
2.9 GHz Intel Core i5.

We used the following compilers for the selected languages:
javac 1.8.0-161 for Java, Clang 802.0.42 with LLVM as
back-end for C and C++, rustc 1.23.0 for Rust, and swift
3.1 for Swift. For elapsed time measurement, we used the
following functions: mach_absolute_time() works in OSx,(C, C++,
Swift).System.nanoTime() works in Java, and std::time::Instant
works in Rust. All-time results are unified in milliseconds (ms)
and the average time is computed of 28 runs for 10-million nodes.
Based on the experiment results for 50-million and 100-million
nodes, number of runs reduced to 5 attempts. In Table (3) and Table
@), only five attempts showed out of 28 attempts for measuring
10-million nodes of allocation and deallocation.

4.2 Experiment Implementation

The experimenﬂ implemented by two algorithms insert and
replace a node for heap-allocation and deallocation respectively.
The measurement for allocation includes three stages: inserting
10-million random numbers then gradually increases the number
of allocations to 50-million and 100-million nodes. Like allocation,
deallocation is forced by replacing an existing node with a new one.
We measured the deallocation with 10-million, 50-million and 100
million random numbers.

4.2.1 Allocation. The process of allocation in all five selected
languages will be a pointer-reference- to a heap resource. Satisfying
allocation on dynamic memory location in C and C++ addressed
by using malloc and new functions respectively. On the other
hand, Java and Swift allocation approach are satisfied by using
object classes while Boxr < T > smart pointer was used in Rust.
with smart pointer, optional values supported by Option < T >
module was used because null value is not supported in Rust for
memory safety reasons.

4.2.2 Deallocation. The process of deallocation in the selected
languages will be handled with three different perspectives. In
conventional programming languages: C and C++, we have to
deallocate a memory resource manually by free or delete
functions while in Java the old nodes will be collected by the
garbage collection which is implicit non-deterministic memory
management; in other words, when the garbage collator starts
working is unknown. In Rust, Box < T > smart pointer will be
deallocated when it goes out of scope as well as when no owner
points to a resource. Swift deallocation will be handled by ARC

Ihttps://github.com/E-Alhazmi/Memory-Management-via-0Own
ership-Concept-Rust-and-Swift-Experimental-Study
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Fig. 2: Rust- Strong Reference Cycle

that a node will be deallocated when reference counter of a resource
reaches zero.

4.3 Experimental Results

The experiment started by observing the elapsed time of inserting
10M nodes Table (I) presents the average performance of 28
runs. The number of insertions increased to 50M nodes then to
100M nodes. The performance of inserting 100M nodes showed
in Table (T) has been completed successfully in Rust and Swift
whereas other programming languages had significant problems
in completing the task that make the attempts reduced to 5 times.
In deallocation, Table @ shows the average replacement of 10M,
50M and 100M random numbers. There was a significant delay in
replacing 50M nodes in C++. In replacing 100M nodes, significant
problems showed in traditional programming languages (C, C++,
and Java).

Table 1. : Average elapsed time for allocation

Table 2. : Average elapsed time for deallocation

Language 10M (s) 50M (m) 100M (m)
Swift 38.86 3.63 7.26
Rust 48.92 5.39 12.11
Java 14.79 3.17 NA

C 36.97 50.12 NA
C++ 45.14 NA NA

Language 10M (s) 50M (m) 100M (m)
Swift 114.67 10.97 23.38
Rust 25.13 2.73 6.36
Java 8.59 1.36 NA

C 19.93 16.84 NA
C++ 20.54 67.83 NA

All time unified with millisecond and converted to (s) second or (m) minutes and (NA)

means not applicable.

All time unified with millisecond and converted to (s) second or (m) minutes and (NA)
means not applicable.

4.4 Experimental Evaluation

The experiment shows significant results in both performance
comparison and coding challenges. The experiment evaluation
is divided into two sections: allocation and deallocation results.
Conventional programming languages show a remarkable number
of issues and restrictions related to memory management, while
the recent programming languages — Rust and Swift — were able
to manage a number of these issues, partially in Swift and fully
in Rust, with the ability to handle large numbers of allocation and
deallocation.

4.4.1 Allocation. The overhead in Swift is visible in allocation.
Even though Java program has much better performance than
Swift program, Java is a non-deterministic language and when
the garbage collector will engage is not possible to be known. In
modern programming languages, Rust is faster to accomplish the
task than Swift. Figure (3a) shows the results of inserting 10M
nodes along with a line graph indicating the time in milliseconds.

In 50-million random number allocation, several errors and
issues were observed in manual memory management. For
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Table 3. : Insert- millisecond elapsed time

10-million allocation
Language T1 T2 T3 T4 T5
Swift 116439.16 122828.51 129004.66 117719.71 115762.35
Rust 25409.03 25271.72 25255.32 25192.32 24599.76
Java 8508.74 8628.33 8508.84 8703.05 8512.28
C 18387.34 14469.50 16754.22 20527.44 15607.92
C++ 15931.9 15600.1 59991.9 15031.5 21243.9
50-million allocation
Swift 658737.42 641049.96 634246.88 631413.36 639557.98
Rust 163998.48 170169.23 167847.49 167994.33 166003.74
Java 81814.69 88284.90 83220.19 81848.39 88617.43
100-million allocation
Swift 1383925.91 1383426.25 1447623.83 1443952.84 1355973.74
Rust 381866.52 379781.32 375887.08 386155.64 384570.86
Table 4. : Replace- millisecond elapsed time
10-million deallocation
Language T1 T2 T3 T4 T5
Swift 41781.96 43838.74 47114.82 42137.09 38541.27
Rust 45312.51 49641.21 49537.81 49791.45 48122.95
Java 14829.36 14839.01 14606.18 14595.03 15023.66
C 33682.84 27697.70 26497.83 27769.41 28382.32
C++ 29153.3 24099.2 24697.9 36855.8 33514.4
50-million deallocation
Swift 218031.83 199452.94 212042.12 205188.67 219376.88
Rust 323532.76 325573.52 321051.45 321864.08 324273.76
Java 190440.67 213775.20 191849.18 174916.81 208183.29
100-million deallocation
Swift 460675.31 420665.13 425775.80 433138.88 440672.59
Rust 710868.28 736143.10 72394491 730938.40 733761.40
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example, C language gave “Segmentation fault:11” run-time error
approximately eight times out of ten attempts. One successful
attempt shows approximately 17 minutes to insert the desired
number of nodes whereas Swift and Rust need about 11 minutes
and 3 minutes respectively. In fact, Rust allocation is much
more significant than Swift in this part. Java still shows better
performance which is approximately less than 2 minutes. On the
other hand, C++ average result shows sharply slow performance
in inserting 50 million about 68 minutes which is more than an
hour. Figure [@a) shows the results of inserting 50M nodes in three
different languages (Swift, Java and Rust) along with a line graph
indicating the time in millisecond.

The influence of increasing the volume of the dynamic allocation
by increasing numbers to 100-million numbers was obvious.
Allocated this number of nodes became difficult to measure in
C and C++. In addition, Java produced the error “Exception in
thread "main" java.lang.OutOfMemoryError: Java heap space”.
We succeeded only in the measurement for Swift and Rust. In 5
attempts, Swift performance average time allocation needed about
23 minutes, while Rust needed about 6 minutes; in other words,
allocation in Rust is approximately four times faster than Swift.

4.4.2 Deallocation. Java shows the best performance among
the other four selected languages whereas Rust has the slowest
performance of deallocating as showed in Figure (3b). It should
be noted that Java is a non-deterministic language and when
the garbage collector will engage is not possible to be known.
Swift is performing faster than Rust and close to C performance
while C++ is slower than C and Swift as well as Java. Manual
memory management shows a noticeable gap between minimum
and maximum results whereas Swift, Rust, and Java are more
stabilized.

In deallocating 50-million random numbers, C++ performance
is unspecified as the programs would not terminate correctly.
Indeed, C and C++ show a sharp delay in — replace algorithm —
when the number of nodes is increased. C has been completed in
about 50 minutes. Swift and Java show approximately the same
performance about 4 minutes and 3 minutes respectively. Swift
shows slightly better performance than Rust. Rust needs about 5
minutes, while Swift needs about 4 minutes to replace 50 million
nodes randomly. The line graph in Figure @b) shows the result of
replacing 50-million nodes in Swift, Java, and Rust.

In 100-million random number deallocation, the conventional
programming languages Java, C, and C++ did not complete the
experiment for the same reasons as when inserting 100 million
nodes. The average performance of 28 times of — replace algorithm
completes the task with approximately 7 minutes in Swift and 12
minutes in Rust.

5. CONCLUSION

This paper introduces the ownership memory management
approach adopted by modern programming languages and
compares it with conventional approaches known as manual and
automatic memory management. We summarized the fundamentals
of ownership, memory safety, and issues related to Rust and
Swift. We proposed an experiment to compare the elapsed time of
binary tree nodes allocation and deallocation in five programming
languages (C, C++, Java, Rust, and Swift). The experiment has
remarkable success in handling a large number of nodes in
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ownership design. Rust and Swift have fewer run-time errors
comparing to mature programming languages such as C, C++,
and Java. The experiment not only shows the performance of the
selected languages but also evaluates the ownership memory safety
in Rust and Swift. Rust ownership design is more solid than Swift
in terms of preventing memory issues such as a dangling pointer,
memory leakage, and use after free statically at compile-time with
zero or negligible run-time costs; on the other hand, Rust has steep
learning cost as system programming for novice programmers.
Comparing elapsed performance programs written in five different
programming languages deserve to be taken seriously as a valuable
contribution for comparison of the various language designs.
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Appendices

A. STRONG REFERENCE CYCLE
A.1 Rust

use std::cell::RefCell;
use std::rc::{Rc, Weak};
use std::fmt::Display;
#[derive (Debug)]

struct Node {

value: i32,
parent: RefCell<Option<Rc<Node>>>,
next: RefCell<Option<Rc<Node>>>,

}

impl Drop for Node {
fn drop (&mut self) {
println! ("Dropping!
self.value);

}

Node value {}",

}
fn main() {
let L1 = Rc::new(Node {value: 1,
parent: RefCell::new(None),
RefCell::new(None) ,});
let L2 = Rc::new(Node {value: 5,
parent: RefCell::new(None), next:
RefCell::new(Some(Rc::clone (&L1))),
B
//Stack overflow L2 points to L1 parent
*L1.parent.borrow_mut () =
Some (Rc::clone (&L2));

next:

A2 Swift

class Phone {
var number UInt

var customer Customer?= nil
init (n:UInt) {
number = n
print ("\ (number) has been
created!")

}
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deinit {

}

print ("Phone \(number) deleted!")

class Customer {

var name
var phone:

init(n:

name

print ("Customer \(name) has been

String
Phone? = nil

String) {

= n

created!")

}

deinit {

}

print ("Customer \(name) deleted!")

customerl!.phone
phonel!.customer
customerl =

phonel

nil

nil;

phonel
customerl
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