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ABSTRACT 

This study gears towards finding a new simple numerical 

algorithm to solve system of linear fractional integro-

differential equations. The technique involves the application 

of Caputo properties, the properties of Bernstein polynomials 

and least square collocation approach to reduce the problem to 

system of linear algebraic equations and then solved. To 

demonstrate the accuracy and applicability of the presented 

method some numerical examples are given. Numerical 

results show that the method is easy to implement and 

compares favorably with the exact results. The graphical 

solution of the method is displayed. 
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1. INTRODUCTION 
Fractional integro-differential equations has played a 

significant role in modelling of real world physical problems 

e.g  the modeling of earthquake, reducing the spread of virus, 

control the memory behaviour of electric socket and many 

others. Fractional calculus is a field dealing with integral and 

derivatives of arbitrary orders, and their applications in 

science, engineering and other fields. The idea is from the 

ordinary calculus.  According to  [1- 3], It was discovered by 

Leibniz in the year 1695 few years after he discovered 

ordinary calculus but later forgotten due to the complexity of 

the formula. Since most Fractional Integro-diffrential 

Equations (FIDEs) cannot be solved analytically, much 

attention has been devoted to search for approximate and 

numerical techniques to the solution of FIDEs. Recently, 

many methods have been developed by researchers for 

providing approximate solutions of FIDEs. [4] employed 

Lagurre polynomials as basis functions for the solution of 

fractional Solving Fredholm integro-differential equations 

while [5] employed Bernstein polynomials as basis functions 

to approximate the solution of FIDEs. References [6 - 8] 

applied collocation techniques for solving FIDEs using 

different basis functions. [9] applied Sumudu transform 

method and Hermite Spectral collocation method for solving 

FIDEs.  Author [10] introduced approximate solutions of 

Volterra-Fredholm integro-differential equations of fractional 

order. References [11 - 12] used Least - Squares method for 

the solution of FIDEs.  [13 - 15] introduced numerical 

solution of fractional singular integro-differential equations by 

using Taylor series expansion and Galerkin method and a fast 

numerical algorithm based on the second kind of Chebyshev 

polynomials. The author in [16] applied numerical solution of 

Fredholm-Volterra fractional integro-differential equation 

with nonlocal boundary conditions. Reference [17] employed 

Bernstein modified homotopy perturbation method for the 

Solution of  Volterra fractional integro-differential equations. 

The objective of this work is to introduce a new technique 

called least squares collocation Bernstein method with 

application of Caputo properties  that  provide less rigorous 

works in terms of computational cost with improved accuracy 

for finding an approximate solution to system of Linear 

fractional integro- differential equations. The general form of 

the class of problem considered in this work is given as: 

 𝐷𝛼𝑢𝑖 𝑥 = 𝑝𝑖(𝑥)𝑢𝑖 𝑥 + 𝑓𝑖 𝑥 +  𝑘𝑖 𝑥, 𝑡 ( 𝑢𝑟(𝑡))𝑛
𝑟=1 𝑑𝑡,

𝑥

0

𝑖 = 1,2, … , 𝑛, 𝑜 ≤ 𝑥, 𝑡 ≤ 1,                                                 (1)                                              

With the following supplementary conditions: 

 𝑢𝑖
 𝑗   𝑥0 = 𝑢𝑖𝑗   𝑖 = 0,1,2, … , 𝑚 − 1, 

𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈, 𝑁                                                    (2)                                                    

                                                                                          

Where  𝐷𝛼𝑢𝑖 𝑥   indicates the ∝ 𝑡ℎ Caputo fractional 

derivative of  𝑢𝑖 𝑥 ;  𝑝𝑖(𝑥), 𝑓𝑖 𝑥 ,  𝑘𝑖 𝑥, 𝑡 are given smooth 

functions,  𝑥  and 𝑡 are real variables varying [0, 1] and 𝑢𝑖 𝑥  
is the unknown function to be determined. 

2. SOME RELEVANT BASIC 

DEFINITIONS 

Definition 2.1: Riemann – Lowville fractional integral is 

defined as [18]: 

  𝐽𝛼𝑓 𝑥 =
1

Γ(α)
 

𝑓(𝑥)

(𝑥−𝑡)1−𝛼
𝑑𝑡, 𝛼 > 0, 𝑥 > 0,

𝑥

0
                      (3)                       

  𝐽𝛼   denotes the fractional integral of order ∝    

Definition 2.2: The Caputo Factional Derivative is 

defined as [18]: 

𝐷𝛼𝑓 𝑥 =
1

Γ(n−∝)
  𝑥 − 𝑠 𝑛−∝−1𝑓𝑚  𝑠 𝑑𝑠  
𝑥

0
                      (4)                            

Where 𝑚 is a positive integer with the property that  𝑛 − 1 <
∝< 𝑛 

For example if  0 <∝< 1 the caputo fractional derivative is 

 𝐷𝛼𝑓 𝑥 = 
1

Γ(1−∝)
  𝑥 − 𝑠 −∝𝑓1 𝑠 𝑑𝑠  
𝑥

0
           (5)                                                                                                       

Hence, we have the following properties: 

(1) 𝐽𝛼  𝐽𝑣 𝑓 = 𝑗𝛼+𝑣  𝑓, 𝛼, 𝑣 > 0, 𝑓 ∈ 𝐶𝜇 , 𝜇 > 0 

(2) 𝐽𝛼𝑥𝛾  = 
𝛤 𝜆+1 

𝛤 𝛼+𝛾+1 
𝑥𝛼+𝛾, 𝛼 > 0, 𝛾 > −1, 𝑥 > 0 

(3) 𝐽𝛼  𝐷𝛼 𝑓 𝑥 = 𝑓 𝑥 −  𝑓𝑘 0 
𝑥𝑘

𝑘!
𝑛−1
𝑘=0 ,         𝑥 >

0, 𝑛 − 1 < 𝛼 ≤ 𝑛 

(4) 𝐷𝛼  𝐽𝛼 𝑓 𝑥 = 𝑓 𝑥 ,    𝑥 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛, 
(5) 𝐷𝛼𝐶 = 0, 𝐶  is the constant, 
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(6)  
0,                                                𝛽 ∈ 𝑁0, 𝛽 <  𝛼 ,             

 𝐷𝛼𝑥𝛽 =
𝛤(𝛽+1)

𝛤(𝛽−𝛼+1)
𝑥𝛽−𝛼 ,         𝛽 ∈ 𝑁0, 𝛽 ≥  𝛼 ,   

                  

Where [𝛼] denoted the smallest integer greater than or equal 

to 𝛼  and  𝑁0 =  0,1.2, …   

Definition 2.3: Bernstein basis polynomials: A Bernstein 

polynomial [19] of degree   𝑁 is defined by     

   𝐵𝑖,𝑚  𝑥 =  𝑚
𝑖
  𝑥𝑖(1 − 𝑥)𝑚−𝑖      𝑖 = 0, 1. . . 𝑛,                  (6)                                                              

  where,  

    𝑚
𝑖
 =

𝑚!

𝑖!(𝑚−1)!
                                                                    (7)                                                                                                                               

  Often, for mathematical convenience, we set    𝐵𝑖,𝑚 𝑥  = 0   

 if  < 0  𝑜𝑟  𝑗 > 𝑚   

Definition 2.4: Bernstein polynomials: A linear 

combination Bernstein [19] basis polynomials 

 𝑢𝑖 𝑥 =  𝑎𝑗
𝑖𝑢𝑗  𝑥 

𝑚
𝑗                                                           (8)                                                                                                                              

the Bernstein polynomial of degree n where  𝑎𝑗 ,     𝑗 =

0,1,2, …… ..  are constants. 

3. DEMONSTRATION OF LEAST 

SQUARES COLLOCATION BERNSTEIN 

METHOD (LSCBM) 
 The Least Squares Collocation Bernstein Method is based on 

approximating the unknown function 𝑢𝑖 𝑥  in (1) by 

assuming an approximate solution of the form defined in (8). 

Consider equation (1) operating with 𝐽∝  on both sides as 

follows:     

    

 𝐽𝛼 [𝑢𝑖 𝑥 ] =

 𝐽𝛼  [𝑝𝑖(𝑥)𝑢𝑖 𝑥 + 𝑓𝑖 𝑥  +  𝑘𝑖 𝑥, 𝑡 ( 𝑢𝑣(𝑡))𝑛
𝑣=1 𝑑𝑡

𝑥

0
]     (9)                                            

𝑢𝑖 𝑥 =  𝑢𝑖
𝑘(0) 

𝑥𝑘

𝑘!
𝑛−1
𝑘=0 +  𝐽𝛼  [𝑝𝑖(𝑥)𝑢𝑖 𝑥 + 𝑓𝑖 𝑥  +

 𝑘𝑖 𝑥, 𝑡 ( 𝑢𝑟(𝑡))𝑛
𝑟=1 𝑑𝑡

𝑥

0
]                                                (10)                                                                

Substituting  8  into  (10) 

 𝑎𝑗
𝑖𝑢𝑗  𝑥 

𝑚
𝑗=0 =  𝑢𝑖

𝑘(0) 
𝑥𝑘

𝑘!
𝑚−1
𝑘=0 +   𝐽𝛼 [𝑝𝑖(𝑥)  𝑎𝑗

𝑖𝑢𝑗  𝑥 
𝑚
𝑗 +

𝑓𝑖 𝑥  +  𝑘𝑖 𝑥, 𝑡 ( [ 𝑎𝑗
𝑖𝑢𝑗  𝑡 

𝑚
𝑗=0 ])𝑛

𝑟=1 𝑑𝑡
𝑥

0
]                  (11)                    

Hence, the residual equation is obtained as                                                                                         

  𝑅(𝑎0
𝑖 , 𝑎1

𝑖 , … , 𝑎𝑚
𝑖)=    

 𝑎𝑗
𝑖𝑢𝑗  𝑥 

𝑚
𝑗=0 − { 𝑢𝑖

𝑘(0) 
𝑥𝑘

𝑘!
𝑚−1
𝑘=0 +

 𝐽𝛼  [𝑝𝑖(𝑥)  𝑎𝑗
𝑖𝑢𝑗  𝑥 

𝑚
𝑗=0 + 𝑓𝑖 𝑥  +

 𝑘𝑖 𝑥, 𝑡 ( [ 𝑎𝑗
𝑖𝑢𝑗  𝑡 

𝑚
𝑗=0 ])𝑛

𝑟=1 𝑑𝑡
𝑥

0
]}                               (12)                                                                                                             

Let   

   𝑆 𝑎0,𝑎1. . . , 𝑎𝑚 =  𝑅 𝑎0,𝑎1, …… , 𝑎𝑚  
2
𝑤 𝑥                (13)             

Where 𝑤(𝑥) is the positive weight function defined in the 

interval, [a, b]. In this work, 

 we take  𝑤 𝑥 = 1 for simplicity. Thus, 

𝑆 𝑎0
𝑖 , 𝑎1

𝑖 , … , 𝑎𝑚
𝑖 =   𝑎𝑗

𝑖𝑢𝑗  𝑥 
𝑚
𝑗=0 − { 𝑢𝑖

𝑘(0) 
𝑥𝑘

𝑘!
𝑚−1
𝑘=0 +

 𝐽∝[𝑝(𝑥)  𝑎𝑗
𝑖𝑢𝑗  𝑥 

𝑚
𝑗=0 + 𝑓𝑖 𝑥  +

 𝑘𝑖 𝑥, 𝑡 ( [ 𝑎𝑗
𝑖𝑢𝑗  𝑡 

𝑚
𝑗=0 ])𝑛

𝑟=1 𝑑𝑡
𝑥

0
]} 

2

                            (14)                                                                                                                                                                                                                                                         

In order to minimize equation  15 , we obtained the values of  

𝑎𝑗  (𝑗 ≥ 0) by finding the minimum value of  𝑆  as:                                                                                                                                                            

                     
𝜕𝑆𝑖

𝜕𝑎𝑗
𝑖

= 0, 𝑗 = 0,1,2 … , 𝑚                                (15)                                                                                                              

Applying (15) on (14), we have 

  𝑎𝑗
𝑖𝑢𝑗  𝑥 

𝑚
𝑗=0 − { 𝑢𝑖

𝑘(0) 
𝑥𝑘

𝑘!
𝑚−1
𝑘=0 +

 𝐽∝[𝑝(𝑥)  𝑎𝑗
𝑖𝑢𝑗  𝑥 

𝑚
𝑗=0 + 𝑓𝑖 𝑥  +

𝐽∝[ 𝑘𝑖 𝑥, 𝑡 ( [ 𝑎𝑗
𝑖𝑢𝑗  𝑡 

𝑚
𝑗=0 ])𝑛

𝑟=1 𝑑𝑡]
𝑥

0
  ×  𝑢𝑗  𝑥 −

𝐽∝[𝑝 𝑥 𝑢𝑗  𝑥 ] − 𝐽∝[ 𝑘𝑖 𝑥, 𝑡 ( [ 𝑢𝑗  𝑡 
𝑚
𝑗=0 ])𝑛

𝑟=1 𝑑𝑡]
𝑥

0
  (16)                                                                          

Thus,  (16) is then simplified for 𝑗 = 0,1, …𝑛 and collocated 

at equally spaced point 𝑥𝑖 = 𝑎 +
(𝑏−𝑎)𝑖

𝑚
 , (𝑖 = 1 1 𝑚) to 

obtain (𝑚 + 1) algebraic system of equations in (𝑚 + 1) 

unknown 𝑎𝑖
𝑗   which are then put in matrix form as follow: 

𝐴 =

 

 
 

𝑅𝑖 𝑥, 𝑎0
𝑖 ℎ0

𝑖   𝑅𝑖 𝑥, 𝑎1
𝑖 ℎ0

𝑖 ⋯𝑅𝑖 𝑥, 𝑎𝑚
𝑖 ℎ0

𝑖

𝑅𝑖 𝑥, 𝑎0
𝑖 ℎ1

𝑖   𝑅𝑖 𝑥, 𝑎1
𝑖 ℎ1

𝑖 ⋯       𝑅𝑖 𝑥, 𝑎𝑚
𝑖 ℎ1

𝑖

⋮                     ⋮            ⋱                   ⋮

𝑅𝑖 𝑥, 𝑎𝑚
𝑖 ℎ𝑚

𝑖   𝑅𝑖 𝑥, 𝑎𝑚
𝑖 ℎ𝑚

𝑖 …𝑅𝑖 𝑥, 𝑎𝑗
𝑖 ℎ𝑚

𝑖
 

 
 

,  (17) 

 

  𝐵 =

 

 
 
 

 𝐽∝𝑓𝑖 𝑥 +  𝑢𝑖
𝑘(0) 

𝑥𝑘

𝑘!
𝑛−1
𝑘=0  ℎ0

𝑖

 𝐽∝𝑓𝑖 𝑥 +  𝑢𝑖
𝑘(0)

𝑥𝑘

𝑘!
𝑛−1
𝑘=0  ℎ1

𝑖

⋮

 𝐽∝𝑓𝑖 𝑥 +  𝑢𝑖
𝑘(0)

𝑥𝑘

𝑘!
𝑛−1
𝑘=0  ℎ𝑚

𝑖
 

 
 
 

                        (18)                                                                                                                                                              

Where 

ℎ𝑗  
𝑖 =

𝑢𝑗  𝑥 − 𝐽∝[𝑝 𝑥 𝑢𝑗  𝑥 ] −

𝐽∝[ 𝑘𝑖 𝑥, 𝑡 ( [ 𝑢𝑗  𝑡 
𝑚
𝑗=0 ])𝑛

𝑟=1 𝑑𝑡]
𝑥

0
,   𝑗 = 0,1, … , 𝑚   (19)                                                                      

𝑅𝑖 𝑥, 𝑎𝑗
𝑖 =

 𝑎𝑗
𝑖𝑢𝑗  𝑥 

𝑚
𝑗=0 −{ 𝐽𝛼  [𝑝(𝑥)  𝑎𝑗

𝑖𝑢𝑗  𝑥 
𝑚
𝑗=0  +

𝐽∝[ 𝑘𝑖 𝑥, 𝑡 ( [ 𝑎𝑗
𝑖𝑢𝑗  𝑡 

𝑚
𝑗=0 ])𝑛

𝑟=1 𝑑𝑡]
𝑥

0
,                       (20)                      

 𝑗 = 0,1, … , 𝑚,   𝐼 = 1,2, … , 𝑛                    

The (m + 1) linear equations are then solved to obtain the 

unknown constants 𝑎𝑗  𝑗 = 0 1 𝑚 , which are then substituted 

back into the assumed approximate solution to give the 

required approximation solution. 

 

5. NUMERICAL EXAMPLES 
 In this section, the above technique is implemented on some 

problems. The problems are then solved via the Bernstein 

polynomials as basis functions. The problems are then solved 

to illustrate the computational cost accuracy and efficiency of 

the proposed method using Maple 18. 

Example 5.1: Consider the following fractional Integro-

differential [20] 

𝐷∝𝑢1 𝑥 = −
𝑥

6
+

3𝑥
1
3

Γ 
1

3
 

+  2𝑥𝑡 𝑢1 𝑡 + 𝑢2 𝑡  𝑑𝑡
1

0
,          (21)           

𝐷
2

3𝑢2 𝑥 = −
5𝑥3

6
+

9𝑥
4
3

2Γ 
1

3
 

+  𝑥3 𝑢1 𝑡 − 𝑢2 𝑡  𝑑𝑡
1

0
        (22)           

Subject to initial condition  𝑢1 0 = −1, 𝑢2 0 = 0 with the 

exact solution 𝑢1 𝑥 = 𝑥 − 1, 𝑢2 𝑥 = 𝑥2 

Applying above mothed on example 1, taking ∝=
3

4
 and 

𝑚 = 2. The following constants were obtained as: 𝑎0 =
−1.000000014, 𝑎1 = −0.4999999007, 𝑎2 = 0  

for equation (21) and 𝑎0 = 9.696724573 × 10−10 , 𝑎1 =
−4.132001054 × 10−90, 𝑎2 = 1.000000011for equation 

(22). Substituting the values back into the assumed 

approximate solution, we obtain the approximate solution as:  

𝑢1 𝑥 = −2.126 × 10−7𝑥2 + 1.0000000227𝑥 −
1.000000014,   
𝑢2 𝑥 = 1.000000020𝑥2 − 1.020334702 × 10−8𝑥 +
9.696724573 × 10−10 . Comparing the result obtained by 

[20] with the new method, it tends to be said that the proposed 

method performed more accurately since the table of error 

found is smaller than [20] and the graph of the approximate 

solution is the same as the graph of exact solution.     
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Figure 1: Showing the graph of approximation solution 

𝑢1 𝑥 and exact of example 1 

 

 
Figure 2: Showing the graph of approximation solution 

𝑢2 𝑥 and exact of example 1 

 

Example 5.2: Consider the following fractional Integro-

differential [20] 

𝐷∝𝑢1 𝑥 = −
1

20
−

𝑥

12
+

4𝑥
1
4(15−23𝑥2)

15Γ 
1

3
 

+  (𝑥 + 𝑡) 𝑢1 𝑡 +
1

0

𝑢2 𝑡  𝑑𝑡,                                                                            (23)                                                                        

𝐷∝𝑢2 𝑥 = −
5𝑥3

6
+

9𝑥
4
3

2Γ 
1

3
 

+  𝑥
1

2𝑡2 𝑢1 𝑡 − 𝑢2 𝑡  𝑑𝑡
1

0
    (24)     

Subject to initial condition 𝑢1 0 = 0, 𝑢2 0 = 0 with the 

exact solution𝑢1 𝑥 = 𝑥 − 𝑥3, 𝑢2 𝑥 = 𝑥2 − 𝑥. 

Solving Example 2, following the same procedure above, we 

take ∝=
3

4
 and 𝑚 = 3. The following constants were obtained 

as: 𝑎0 = 9.030799779 × 10−9, 𝑎1 = 0.3333335125 

, 𝑎2 = 0.6666672478, 𝑎3 = 0 for equation (23) and 𝑎0 =
0, 𝑎1 = −0.3333333432, 𝑎2 = −0.3333333621, 𝑎3 = 0 for 

equation (24). Substituting the values back into the assumed 

approximate solution, the  approximate solution is obtained 

as:  

𝑢1 𝑥 = −1.000001214𝑥3 + 6.95 × 10−7𝑥2 +
1.000000511𝑥 + 9.0307997,   
𝑢2 𝑥 = 5.6 × 10−10𝑥3 + 0.9999999𝑥2 − 1.000000030𝑡  . 

.Comparing the result obtained by [20] with the new method, 

it tends to be said that the proposed method performed more 

accurately since the table of error found is smaller than [20] 

and the graph of the approximate solution is the same as the 

graph of exact solution     

  

 
Figure 3: Showing the graph of approximation solution 

𝑢1 𝑥 and exact of example 2 

 

 
Figure 4: Showing the graph of approximation solution 

𝑢2 𝑥 and exact of example 2 

 

Example 5.3: Consider the following fractional Integro-

differential [20] 

𝐷
4

5𝑢1 𝑥 =
83𝑥

80
+

𝑥

12
+

25𝑥
6
5(11+15𝑥)

33Γ 
1

5
 

+  2𝑥𝑡 𝑢1 𝑡 +
1

0

𝑢2 𝑡  𝑑𝑡,                                                                            (25)                                                                        

𝐷
3
4𝑢2 𝑥 = −

5𝑥3

6
+

9𝑥
4
3

2Γ  
1
3 

+  (𝑥 + 𝑡) 𝑢1 𝑡 − 𝑢2 𝑡  𝑑𝑡
1

0

.  

                                                                                            (26)                                                                                      

Subject to initial condition  𝑢1 0 = 0, 𝑢2 0 = 0 with the 

exact solution 𝑢1 𝑥 = 𝑥3 − 𝑥2, 𝑢2 𝑥 =
15

8
𝑥2. Similarly 

solving Example 3, following the same procedure above, we 

take ∝=
3

4
 and 𝑚 = 2. The following constants were obtained 

as: 𝑎0 = 0, 𝑎1 = 0 , 𝑎2 = 0.3333333306, 𝑎3 = 0 for 

equation (25) and 𝑎0 = 0, 𝑎1 = 0, 𝑎2 = 0.6249996843, 𝑎3 =
1.8749993560 for equation (26). Substituting the values back 
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into the assumed approximate solution, the approximate 

solution is obtained  as:  

𝑢1 𝑥 = 0.9999999918𝑥3 − 0.9999999918𝑥3,   
𝑢2 𝑥 = 3.03 × 10−7𝑥3 + 1.87499053𝑥2.Comparing the 

result obtained by [20] with the new method, it tends to be 

said that the proposed method performed more accurately 

since the table of error found is smaller than [20] and the 

graph of the approximate solution is the same as the graph of 

exact solution     

 

 
Figure 5: Showing the graph of approximation solution 

𝑢1 𝑥 and exact of example 3 

 

 
Figure 6: Showing the graph of approximation solution 

𝑢2 𝑥 and exact of example 3 

 

7. TABLE OF RESULTS 
Table 1. Comparison of the absolute errors for Example 1 

x LSCBM 𝒖𝟏 𝒙  ADM [20] 

0.0 𝟏. 𝟒𝟎𝟎 × 𝟏𝟎−𝟖 𝟕. 𝟕𝟕𝟔 × 𝟏𝟎−𝟓 

0.2 𝟐. 𝟐𝟗𝟎 × 𝟏𝟎−𝟖 𝟐. 𝟒𝟔𝟖 × 𝟏𝟎−𝟒 

0.4 𝟒. 𝟐𝟕𝟖 × 𝟏𝟎−𝟖 𝟕. 𝟖𝟑𝟖 × 𝟏𝟎−𝟒 

0.6 𝟒. 𝟓𝟔𝟔 × 𝟏𝟎−𝟖 𝟏. 𝟓𝟒𝟎 × 𝟏𝟎−𝟑 

0.8 𝟑. 𝟏𝟓𝟒 × 𝟏𝟎−𝟖 𝟐. 𝟒𝟖𝟖 × 𝟏𝟎−𝟑 

1.0 𝟒. 𝟎𝟎𝟎 × 𝟏𝟎−𝟖 𝟑. 𝟔𝟎𝟗 × 𝟏𝟎−𝟑 

 

 

Table 2. Comparison of the absolute errors for Example 1 

 

X LSCBM 𝒖𝟐 𝒙  ADM [20] 

0.0 𝟗. 𝟔𝟗𝟕 × 𝟏𝟎−𝟏𝟎 𝟕. 𝟖𝟓𝟒 × 𝟏𝟎−𝟖 

0.2 𝟐. 𝟕𝟏𝟎 × 𝟏𝟎−𝟏𝟎 𝟒. 𝟒𝟏𝟑 × 𝟏𝟎−𝟓 

0.4 𝟖. 𝟖𝟑𝟑 × 𝟏𝟎−𝟏𝟏 𝟏𝟐𝟔𝟕 × 𝟏𝟎−𝟓 

0.6 𝟐. 𝟎𝟒𝟖 × 𝟏𝟎−𝟗 𝟔. 𝟔𝟎𝟒 × 𝟏𝟎−𝟓 

0.8 𝟓. 𝟔𝟎𝟕 × 𝟏𝟎−𝟗 𝟏. 𝟔𝟎𝟗 × 𝟏𝟎−𝟒 

1.0 𝟏. 𝟎𝟕𝟕 × 𝟏𝟎−𝟖 𝟑. 𝟔𝟒𝟕 × 𝟏𝟎−𝟒 

 

Table 3. Comparison of the absolute errors for Example 2 

 

x LSCBM 𝒖𝟏 𝒙  ADM [20] 

0.0 𝟗. 𝟎𝟑𝟏 × 𝟏𝟎−𝟗 𝟎. 𝟎𝟎𝟎 × 𝟏𝟎+𝟏𝟎 

0.2 𝟏. 𝟐𝟗𝟑 × 𝟏𝟎−𝟕 𝟑. 𝟑𝟖𝟏 × 𝟏𝟎−𝟑 

0.4 𝟐. 𝟒𝟔𝟗 × 𝟏𝟎−𝟕 𝟔. 𝟓𝟏𝟎 × 𝟏𝟎−𝟑 

0.6 𝟑. 𝟎𝟑𝟔 × 𝟏𝟎−𝟕 𝟗. 𝟗𝟒𝟐 × 𝟏𝟎−𝟑 

0.8 𝟐. 𝟒𝟏𝟏 × 𝟏𝟎−𝟕 𝟏. 𝟑𝟕𝟐 × 𝟏𝟎−𝟐 

1.0 𝟏. 𝟎𝟑𝟏 × 𝟏𝟎−𝟗 𝟏. 𝟕𝟖𝟔 × 𝟏𝟎−𝟐 

 

Table 4. Comparison of the absolute errors for Example 2 

 

x LSCBM 𝒖𝟐 𝒙  ADM [20] 

0.0 𝟎. 𝟎𝟎𝟎 × 𝟏𝟎+𝟏𝟎 𝟎. 𝟎𝟎𝟎 × 𝟏𝟎+𝟏𝟎 

0.2 𝟔. 𝟔𝟑𝟐 × 𝟏𝟎−𝟗 𝟒. 𝟕𝟓𝟑 × 𝟏𝟎−𝟒 

0.4 𝟏. 𝟐𝟕𝟒 × 𝟏𝟎−𝟖 𝟏. 𝟏𝟑𝟎 × 𝟏𝟎−𝟑 

0.6 𝟏. 𝟓𝟔𝟐 × 𝟏𝟎−𝟖 𝟏. 𝟖𝟕𝟔 × 𝟏𝟎−𝟑 

0.8 𝟏. 𝟐𝟔𝟏 × 𝟏𝟎−𝟖 𝟐. 𝟔𝟖𝟗 × 𝟏𝟎−𝟑 

1.0 𝟏. 𝟎𝟎𝟎 × 𝟏𝟎−𝟗 𝟑. 𝟓𝟑𝟒 × 𝟏𝟎−𝟑 

 

Table 5. Comparison of the absolute errors for Example 3 

 

x LSCBM 𝒖𝟏 𝒙  ADM [20] 

0.0 𝟎. 𝟎𝟎𝟎 × 𝟏𝟎+𝟏𝟎 𝟎. 𝟎𝟎𝟎 × 𝟏𝟎+𝟏𝟎 

0.2 𝟐. 𝟔𝟐𝟒 × 𝟏𝟎−𝟏𝟎 𝟔. 𝟖𝟓𝟐 × 𝟏𝟎−𝟒 

0.4 𝟕. 𝟖𝟕𝟐 × 𝟏𝟎−𝟏𝟎 𝟐. 𝟑𝟖𝟔 × 𝟏𝟎−𝟑 

0.6 𝟏. 𝟏𝟖𝟏 × 𝟏𝟎−𝟗 𝟒. 𝟗𝟓𝟎 × 𝟏𝟎−𝟑 

0.8 𝟏. 𝟎𝟓𝟎 × 𝟏𝟎−𝟗 𝟖. 𝟑𝟎𝟗 × 𝟏𝟎−𝟑 

1.0 𝟎. 𝟎𝟎𝟎 × 𝟏𝟎+𝟏𝟎 𝟏. 𝟐𝟒𝟏 × 𝟏𝟎−𝟐 

 

Table 6. Comparison of the absolute errors for Example 3 

 

x LSCBM 𝒖𝟐 𝒙  ADM [20] 

0.0 𝟎. 𝟎𝟎𝟎 × 𝟏𝟎+𝟏𝟎 𝟎. 𝟎𝟎𝟎 × 𝟏𝟎+𝟏𝟎 

0.2 𝟑. 𝟓𝟒𝟔 × 𝟏𝟎−𝟖 𝟐. 𝟒𝟎𝟎 × 𝟏𝟎−𝟑 

0.4 𝟏. 𝟑𝟐𝟏 × 𝟏𝟎−𝟕 𝟑. 𝟑𝟎𝟕 × 𝟏𝟎−𝟑 

0.6 𝟐. 𝟕𝟓𝟓 × 𝟏𝟎−𝟕 𝟓. 𝟑𝟑𝟏 × 𝟏𝟎−𝟑 

0.8 𝟒. 𝟓𝟎𝟗 × 𝟏𝟎−𝟕 𝟕. 𝟔𝟔𝟐 × 𝟏𝟎−𝟑 

1.0 𝟔. 𝟒𝟒𝟎 × 𝟏𝟎−𝟕 𝟏. 𝟎𝟐𝟗 × 𝟏𝟎−𝟐 

 

6. CONCLUSION 
In this study, Bernstein polynomials, least square collocation 

together with Caputo properties are used to find the solution 

of system of linear fractional integro- differential equations. 

There is a high rate of convergence of the approximate 

solutions to the exact solutions. Specifically, the performance 

of the proposed method was compared with existing results in 

the literature and are found to be more efficient in the terms of 

accuracy. It is also observed that the number of iterations 

needed in solving the problems using the proposed method is 

few and with lower values of M (the degree of the 

approximant). 
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