
International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 25, September 2021 

24 

Securing Data in the Cloud using the SDC Algorithm 

Dennis Redeemer Korda 
Kwame Nkrumah University of 

Science and Technology, Kumasi 
Department of Computer Science 

 

Edward Danso Ansong, PhD 
Kwame Nkrumah University of 

Science and Technology, Kumasi 
Department of Computer Science 

 

Dickson Kodzo Mawuli 
Hodowu 

Kwame Nkrumah University of 
Science and Technology, Kumasi 
Department of Computer Science

 

 

ABSTRACT 

The past few years have seen much attention directed towards 

cloud computing where private and organizational usage has 

skyrocketed because of the flexibility it provides. Cloud 

computing may be exploited for a decrease in the limitations 

of conventional computing architectures in this way profiting 

an organization as far as a competitive advantage, space, time, 

power, cost and in any event, giving a disentangled business 

process. In as much as Cloud computing arises with a lot of 

benefits, the security challenges that it poses cannot be 

overestimated. The use of traditional encryption algorithms 

such as RSA, DGHV andGen10, to scramble the secluded 

data before transferring it to the cloud provider have been 

proposed to solve this security loophole. But, the customer 

ought to give the secret key tothe server to unscramble the 

data before performing the computations necessitated. This 

paper proposes a framework for a variant of the 

Homomorphic encryption known as SDC encryption 

algorithm which allows performing calculations on scrambled 

data without decoding. The performance metrics of the 

proposed framework was carried out using the big-Oh 

notation and an SDC encryption library in python and then 

tested for correctness. The results obtained from the proposed 

framework of the SDC encryption algorithm indicated 

satisfactory performances. Hence, with the utilization of the 

SDC encryption algorithm, the customer's data in cloud server 

is secure and this also allows computations onthis encoded 

data. These results provide inspiring evidence for securing 

data in clouds using the SDC encryption algorithm. 

General Terms 

Homomorphic Encryption Algorithm and Cloud Computing. 

Keywords 

Fully homomorphic encryption, partially homomorphic 

encryption, SDC encryption algorithm and big-Oh notation. 

1. INTRODUCTION 
Cloud computing happens to be the hottest research area in 

computer science. Theaforementioned empowers clients to get 

practically boundless computing force and it offerspotential 

advantages to these clients regarding quick accessibility, 

scalability and resourceallocation. 

Accordingly, a pragmatic, basic completely homomorphic 

encryption algorithm, utilizingjust basic modular arithmetic, is 

executed to guarantee the privacy-safeguarding in 

cloudstorage, such that encoded data might be worked on 

legitimately upon deprived of the influenceof the secrecy of 

the encryption frameworks so it can amazingly understand the 

necessity ofciphertext recovery and extra handling in cloud 

computing. This simple fully homomorphicencryption 

algorithm is called the SDC algorithm. 

2. PROBLEM STATEMENT 
Most cloud computing environments do not give protection 

from untrusted cloud administrators, which presents a 

difficulty for organizations and associations that need to store 

delicate, classified data, for example, clinical records, 

monetary records, or high-sway business information[1].The 

use of conventional encryption algorithms to encode remote 

data before uploading it to the cloud supplier has been the 

most broadly utilized procedure to connect the security gap in 

cloud computing environments. Nonetheless, the customer 

will need to make available the secret key for the server of the 

CSP in other to decode the data before performing the 

essential computations on the data. A variant of the 

Homomorphic encryption known as SDC allows performing 

calculations on scrambled data without decoding. Hence, with 

the utilization of the SDC encryption algorithm, the 

customer's data in cloud server is made secure and this also 

permits to implement essential calculations on this encoded 

data. 

3. RESEARCH OBJECTIVES 
The under-listed are the objectives of the research: 

i. To acquire a deep understanding of homomorphic 

encryption algorithms and their implementation 

frameworks 

ii. To propose an implementation framework for the 

SDC algorithm in cloud computing 

iii. To measure the correctness of SDC encryption 

algorithm 

3.1 RESEARCH QUESTIONS 
The questions that when answered will help achieve the 

objectives of this paper includes: 

i. What is the overview of homomorphic encryption 

algorithms? 

ii. What is the implementation framework of the SDC 

algorithm? 

iii. How is the correctness of the SDC encryption 

algorithm measured? 

4. HOMOMORPHIC ENCRYPTION 
Although homomorphic encryption algorithms have been in 

existence for almost half a century, it has received less 

attention for reasons being, as a result, its computational and 

storage overhead and also the probability of an operational 

fully homomorphic encryption algorithm inside a genuine 

world happened to be a huge query left unanswered. 

Nevertheless, in this present-day progress in fully 

homomorphic encryption algorithms has pulled in a great deal 

of attention into the area of cryptography[2][3][4]. The two 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 25, September 2021 

25 

major operations of homomorphic encryptions are addition 

and multiplication. For addition, 𝐸 𝑑1 + 𝑑2 =
𝐸 𝑑1 + 𝐸 𝑑2 ∀𝑑1,𝑑2 ∋ 𝑛 and for multiplication, 

𝐸 𝑑1 ∗ 𝑑2 = 𝐸 𝑑1 ∗ 𝐸 𝑑2 ∀𝑑1,𝑑2 ∋ 𝑛 where 

‘E’ corresponds to the encryption and ‘n’ correspond to the 

collection of all possible messages. 

4.1 SDC Cryptosystem 
The SDC encryption algorithm was fully described in [5], thus 

this section will only focus on the homomorphic 

characteristics and operations of this SDC encryption 

algorithm. According to [6], the SDC encryption algorithm 

encourages both addition and multiplication on ciphertexts 

and they presented a comprehensive verification for the 

correctness of the algorithm as shown below. 

Suppose 𝑚1, 𝑚2as dual messages, then the ciphertext of 

these messages as soon as encoding becomes𝑐1 = 𝑚1 +

𝑝 + 𝑟1 ∗ 𝑝 ∗ 𝑞 and 𝑐2 = 𝑚2 + 𝑝 + 𝑟2 ∗ 𝑝 ∗ 𝑞 

Additive Homomorphic Property 

From the ciphertexts 𝑐1 , 𝑐2above; 

𝑐 = 𝑐1 + 𝑐2 =  𝑚1 + 𝑚2 +  𝑟1 + 𝑟2 ∗ 𝑝 ∗ 𝑞
∗ 2𝑝 

𝑚 = 𝑐𝑚𝑜𝑑𝑝 =  𝑚1 + 𝑚2 

Thus, the algorithm has additively homomorphic property. 

Multiplicative Homomorphic Property 

Similarly, from the ciphertexts 𝑐1 , 𝑐2above; 

𝑐 = 𝑐1 ∗ 𝑐2 = 𝑚1 ∗ 𝑚2 +  𝑚1 + 𝑚2 + 𝑝 𝑝
+ 𝑟1 𝑝 + 𝑚2 + 𝑟2 𝑝𝑞 + 𝑟2(𝑝
+ 𝑚1)𝑝𝑞 

𝑚 = 𝑐𝑚𝑜𝑑𝑝 =  𝑚1 ∗ 𝑚2 

And thus, the algorithm also has multiplicative homomorphic 

property. 

4.2 Tools for Implementation 
The computation complexity associated with implementing 

any encryption algorithm will require a very powerful, 

flexible, open-source language which is not difficult to learn, 

easy to use, and possess a powerful library for data 

manipulation and analysis. Having this in mind, the 

availability of a library determined the implementation 

language.  

The main library used was the SDC_cryptography which was 

written with the python programming language. This library 

includes all SDC encryption algorithms necessary for this 

implementation, notably the key Generation function, 

Encryption function, Decryption function and the Evaluation 

function. This repository is available from PyPi at [sdc-

cryptography] and installed with the pip command in python. 

The Python Package Index (PyPi) is the sanctioned third-party 

software repository for python which contains modules 

accepted by the python community. The vast majority of the 

simulation was carried out on my personal machine running 

macOS High Sierra with a 2.3GHz Intel Core i7 processor and 

an 8g RAM, although additional resources were provided on 

my Desktop computer and even used for backups. It is worth 

noting that factors such as speed of the processor and size of 

the RAM play an important role in the performance of the 

algorithm. 

All of the code was executed on the personal machine using 

PyCharm Community 2019.3 edition. PyCharm is a very 

powerful IDE equipped with intelligent python editor, 

graphical debugger and test runner for allowing single-step 

debugging and even compiling code at runtime, navigation 

and refactoring, code inspections and more[7]. 

4.3 Proposed SDC Implementation Model 
In this proposed model, the Client first encodes the data 

utilizing the SDC encryption algorithm which supports 

homomorphic operations on ciphertexts. The encrypted data is 

then forwarded to the storage server across the Broker or 

Cloud Service Provider. The client then Requests the Broker 

to perform a specific operation F {Enc (d1, d2)} on the 

ciphertext. The Broker executes this operation on the 

ciphertext in the fifth stage without unsettling the original 

content and the results stored in the cloud again. The altered 

outcomes will be showed when the client decrypts the 

encrypted data with the secret key in the last step. 

The steps involved in the conceptual model shown in fig. 1 

are as follows; 

Step 1: Key Generation 

Step 2: Data Encryption, Enc(d1, d2) 

Step 3: Upload Data into the cloud 

Step 4: User Computations F(Enc(d1, d2)) 

The user’s computation may either be an Addition or 

multiplication or both. Thus, the computation becomes 

F(Enc(d1+d2)) or F(Enc(d1*d2)) depending on the request. 

Step 5: SDC Encryption F(Enc(d1, d2)) 

Step 6: (Enc(d1, d2)) returned  

Step 7: User Decrypts (Enc(d1, d2)) 

Step 8: Evaluation: (Enc(d1, d2)) 

4.4 Data in Transit Encryption 
As mentioned earlier, in securing data in transit, encrypted 

channels, for instance, Transport Layer Security (TLS) is 

utilized in conveying data throughout the cloud network to 

protect its confidentiality but these cryptographical encryption 

protocols though have been utilized for many years lack 

support for computations on encrypted data. IPsec is also an 

alternative transit encryption protocol utilized for securing 

VPN tunnels using notable algorithms like 3DES and AES but 

it is also in the vain lack computation for data moving from 

clients to web-facing service on the cloud and data transiting 

among devices inside the cloud or amid different Cloud 

Service Providers (CSPs). 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 25, September 2021 

26 

 

Fig 1: Detailed Conceptual Framework of SDC Encryption Algorithm 

5. PERFORMANCE MEASURES 
The purpose of this segment is to analyze the efficiency of the 

algorithm as well as its correctness. The measure of the 

efficiency of any algorithm is usually determined by the time 

complexity as well as the space complexity of the 

implemented algorithm. An analysis of the time needed in 

carrying out encryptions, decryptions and homomorphic 

evaluations of a unique size involves time complexity while 

an analysis of the computer memory needed involves the 

space complexity of the algorithm. To ascertain the 

correctness of the algorithm’s implementation, the decryption 

of an encrypted message to its original plaintext and 

performing homomorphic operations on an encrypted message 

before the decryption process is varied. 

The Θ-notation is key in leading programmers of algorithms 

in pursuit of efficient algorithms aimed at solving problems. 

In computing the time complexity of algorithms, the input 

sizes of both the encryption and decryption algorithms must 

first be analyzed[8]. The input sizes may either be binary 

integers with time complexity of Θ (n) or decimal digits with 

time complexity of Θ(log(n)) with exception of constant 

numbers having a time complexity of Θ (1) and assume n as 

the size of entered numbers. 

5.1 Big Θ Notation (Time Complexity)  

5.1.1 SDC Algorithm 
The Encryption Function: 

𝐶 = 𝑚 + 𝑝 + 𝑟. 𝑝. 𝑞 

⇒ 𝑇(𝐶) = 𝑇(𝑚) + 𝑇(𝑝) + 𝑇(𝑟. 𝑝. 𝑞) 

𝑇(𝐶) = Θ(𝑛) + Θ(𝑛) + Θ 𝑛2  

𝑇 𝐶 = Θ 𝑛2   𝑏𝑖𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

The Decryption Function: 

𝑚 =  𝑐 𝑚𝑜𝑑 𝑝  

⇒ 𝑇(𝑚) = 𝑇 𝑐 𝑚𝑜𝑑 𝑝  

𝑇(𝑚) = 𝑇 𝑐) . 𝑇( 𝑚𝑜𝑑 𝑝  

𝑇 𝑚 = Θ 𝑛) . Θ(𝑛  

𝑇 𝑚 = Θ 𝑛2   𝑏𝑖𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

5.1.2 DGHV Algorithm 
The Encryption Function: 

𝐶 = 𝑝. 𝑞 + 2𝑟 +  𝑚 

⇒ 𝑇 𝐶 = 𝑇 𝑝. 𝑞 + 𝑇 2𝑟 + 𝑇 𝑚  
𝑇 𝐶 = 𝑇 𝑝) . 𝑇(𝑞 + 𝑇 2) .  𝑇(𝑟 + 𝑇 𝑚  
𝑇 𝐶 = Θ 𝑛) . Θ(𝑛 + Θ 1) .  Θ(𝑛 + Θ 𝑛  
𝑇 𝐶 = Θ(𝑛2) + Θ(𝑛) + Θ 𝑛  
𝑇 𝐶 = Θ 𝑛2   𝑏𝑖𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
The Decryption Function: 

𝑚 =  𝑐 𝑚𝑜𝑑 𝑝  𝑚𝑜𝑑 2 

⇒ 𝑇(𝑚) = 𝑇( 𝑐 𝑚𝑜𝑑 𝑝  𝑚𝑜𝑑 2) 
𝑇 𝑚 = 𝑇 𝑐  . 𝑇 𝑚𝑜𝑑 𝑝  . 𝑇( 𝑚𝑜𝑑 2) 
𝑇 𝑚 = Θ 𝑛  . Θ 𝑛  .Θ(1) 
𝑇 𝑚 = Θ 𝑛2   𝑏𝑖𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

5.1.3 Gen10 Algorithm 
Suppose the size of the entered message is n, then; 

The Encryption Function: 

𝐶 = 𝑝. 𝑞 + 𝑚 

⇒ 𝑇 𝐶 = 𝑇 𝑝. 𝑞 + 𝑇 𝑚  
𝑇 𝐶 = 𝑇 𝑝) . 𝑇(𝑞 + 𝑇 𝑚  
𝑇 𝐶 = Θ 𝑛) . Θ(𝑛 + Θ 𝑛  
𝑇 𝐶 = Θ(𝑛2) + Θ 𝑛  



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 25, September 2021 

27 

𝑇 𝐶 = Θ 𝑛2   𝑏𝑖𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
The Decryption Function: 

𝑚 = 𝑐 𝑚𝑜𝑑 𝑝 

𝑇 𝑚 = Θ(𝑐 𝑚𝑜𝑑 𝑝) 
𝑇 𝑚 = Θ 𝑐) . Θ(𝑚𝑜𝑑 𝑝  
𝑇 𝑚 = Θ 𝑛) . Θ(𝑛  
𝑇 𝑚 = Θ 𝑛2   𝑏𝑖𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

5.2 Space Complexity 
It is obviously necessary to know if the algorithm will 

generate outputs in either microseconds, seconds, minutes, 

hours, days, weeks or even years so that the essential memory 

required for that execution process will be allocated. When 

the length of the message is the same as well as the 

parameters p, q, and r, the SDC encryption algorithm 

performs steadily better than the others[9]. Table 1 and Fig.2 

shows the performance of the SDC encryption algorithm with 

other algorithms. 

Table 1. Running Time of Gen10, DGHV and SDC 

algorithms 

Message 

Size 

Gen10(m

.s.)  
DGHV (m.s.) SDC (m.s.) 

11 bytes 906 1017 1079 

1.3k bytes 20717 1241719 1282967 

2.7k bytes 72800 6715047 4425798 

5.6k bytes 145600 13430094 8851596 

8.4k bytes 218400 20145141 13277394 

 

 

Fig 2: Running Time of Gen10, DGHV and SDC 

algorithms respectively 

5.3 Discussion 
The time complexities of the encryption and decryption 

functions of Gen10, DGHV and SDC algorithms are identical, 

which is Θ 𝑛2 .. The growth rate of these functions depends 

on the size of the message. 

Fig.3: A Graph of Time/Space Against Input Size 

Fig.3 illustrates a graph for six equations, each describes the 

running time for a particular algorithm. The two equations 

labelled 10n and 20n are graphed by straight lines, growth 

rates of such nature are called linear growth rates or running 

time. Thus, for a growth rate of cn (for c any positive 

constant), as the value of n grows, the running time of the 

algorithm grows in the same proportion. Doubling the value 

of n roughly doubles the running time. An algorithm whose 

running-time equation has a highest-order term containing a 

factor of n2 such as the Gen10, DGHV and SDC are said to 

have a quadratic growth rate. In Fig. 3, the line labelled 2n2 

represents a quadratic growth rate. The line labelled 2n 

represents an exponential growth rate. The line labelled n! is 

also growing exponentially. 

Also, from Fig. 3, the difference between an algorithm whose 

running time has a cost of T(n) = 10n and another with cost 

T(n) = 2n2 becomes tremendous as n grows. For instance, as n 

> 5, the algorithm with running time T(n) = 2n2 becomes 

much slower, irrespective of the fact that 10n has a greater 

constant factor than 2n2. Comparing the two curves marked 

20n and 2n2 shows that varying the constant factor for one of 

the equations only shifts the point at which the two curves 

intersect. Considering n > 10, the algorithm with cost T(n) = 

2n2 is slower than the algorithm with cost T(n) = 20n. This 

graph also shows that the equation T(n) = 5n log n grows 

somewhat more quickly than both T(n) = 10n and T(n) = 20n, 

but not nearly so quickly as the equation T(n) = 2n2. 

It is clear from Table 1 and Fig.2 that Gen10 requires less 

time than even the SDC encryption but in terms of security 

and ciphertext retrieval, it stands a zero chance with the SDC 

encryption algorithm. As mentioned earlier, ciphertext 

recovery algorithm for the DGHV ought to move the secret 

key to the server, and this appears to be horrendously shaky. 

While, the ciphertext recovery algorithm of Gen10 requests to 

tender q to the server yet uses c mod q, where q is an irregular 

number and c is the ciphertext, yet the plaintext spills out. 

Accordingly, [6] proposed algorithm solves the problem of 

ciphertext recovery well, deprived of plaintext spill out, in 

light of the fact that the procedure of decoding utilizes the 

secret key p so that the recovery procedure utilizes the whole 

number q, that is completely unique. 

6. RELATED REVIEW 
In early 2009, [2] put forward the initial plausible fully 

homomorphic encryption (FHE). Gentry’s algorithm was 

based on lattice cryptography and it supported addition and 

multiplication procedures mutually on ciphertexts. This 

addition and multiplication operations relate to AND (∧) and 

XOR (⊕) operations in Boolean algebra respectively. This is 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 25, September 2021 

28 

outstanding because it provided the basis for many functions 

to be derived from them [2]. For instance, ¬A can be derived 

from A ⊕ 1, and (¬A) ∧ (¬B) can also be derived from A ∨ 

B, and then transformed to (A ⊕ 1) ^ (B ⊕ 1). The common 

term for the construction of cryptographic primitives 

(encryption functions) that involve itself is known as lattice-

based cryptography and any basis of Rn the subgroup of every 

single linear combination with integer coefficients of the basis 

vectors forms a lattice. 

Gentry’s lattice-based cryptography comprises of numerous 

stages which start based on what was suggested to as 

somewhat homomorphic encryption (SWH) algorithm 

utilizing ideal lattices which are restricted to assessing low 

degree polynomials over scrambled data. This restriction to 

some extent is as a result of the noise in each ciphertext and as 

more computations (additions and or multiplications) are 

executed on the ciphertext, this noise grows until eventually, 

the noise brands the resultant ciphertext undecryptable. 

Afterwards, it jams the decryption process with the goal that it 

tends to be communicated as a small degree polynomial that is 

upheld by the algorithm. Then lastly, it uses a bootstrapping 

transformation, by means of an iterative self-implanting, to 

acquire a fully homomorphic algorithm [10]. 

Subsequently, a fully homomorphic encryption known as the 

DGHV algorithm, which improves upon the Gentry 

cryptosystem by showing that the Somewhat Homomorphic 

constituent of the ideal lattices can be supplanted with an 

easier homomorphic algorithm which utilizes integers instead 

[10]. This algorithm is, thus, theoretically uncomplicated as 

compared with the Gentry cryptosystem, in any case, has 

comparative qualities as for homomorphic tasks and 

effectiveness. A DGHV fully homomorphic public-key 

encryption algorithm consists of a number of sub algorithms. 

These incorporate the typical KeyGen, Encrypt, Decrypt, and 

an extra significant algorithm known as Evaluate. KeyGen, as 

usual, is a large odd integer (for instance p) which is chosen at 

random and the complexity of the algorithm depends on how 

easy it is to factorize this odd integer. In order to Encrypt (p, 

m) a bit of a message, the ciphertext is established as an 

integer with residue mod p and has a similar equivalence as 

the plaintext. Viz., set 

𝑐 = 𝑝𝑞 + 2𝑟 + 𝑚 

where the integers q and r are selected indiscriminately in 

some other recommended intervals, with the end goal that 2r 

is lesser than p/2 in absolute value. The r represents the noise 

which is adequately lesser than the private key p and therefore 

the Decrypt (p, c) outputs (c mod p) mod 2. The Evaluate the 

public key pk as input. This uncomplicated algorithm is 

together additive and multiplicative homomorphic with 

respect to low mathematical computations and one can also 

utilize bootstrapping and squashing to morph this algorithm 

into FHE [6] [11]. In the work of [10], he developed a 

framework for this algorithm that should be easy to use, not 

too dependent on the security measures taken by end-clients, 

have the option to handle any cryptographic operations within 

the trusted infrastructure, be able to send encoded data to the 

cloud and the public clouds where the encoded data is stored 

ought not to possess the capability to decode its contents. This 

proposed implementation structure is exemplified in fig.4. 

 

Fig.4: Framework Usage Scenario 

An improved homomorphic encryption algorithm known as, 

Gen10 algorithm was proposed in the publication of the 

Communications of the ACM [12], making a beeline for far-

reaching utilization of cloud computing, which was amazingly 

basic and of the structure 

𝑐 = 𝑝𝑞 + 𝑚 

The c represents the encrypted message (ciphertext), m 

represents the unencrypted message (plaintext), while p 

represents the key and q an arbitrary numeral [12]. This 

encryption procedure is, therefore, homomorphic in regard to 

addition, subtraction and multiplication. There exists a 

connection among c and m such that m is the remainder of c 

regarding modulus p, that is, 

𝑚 = 𝑐 𝑚𝑜𝑑 𝑝 

For this algorithm, the encryption is such that; KeyGen is an 

arbitrary P-bit odd integer p and to Encrypt (p, m) a bit, let M 

represent an arbitrary N-bit number such that 

𝑀 = 𝑚 𝑚𝑜𝑑 2 

So, the output of the ciphertext becomes 

𝑐 ← 𝑀 + 𝑝𝑞 

where q is an arbitrary Q-bit number. The Decrypt (p, c) 

Outputs c mod p, where (c mod p) is the integer C in (-p/2, 

p/2) such that p| (c – C). 

The Gentry cryptosystem, DGHV and Gen10 encourage 

the addition and multiplication upon encrypted data, 

nevertheless, neither of the three have made references on the 

cyphertext recovery algorithms. Therefore, [6] proposed a 

simple FHE known as the SDC algorithm, which is also based 

on the Gentry cryptographic encryption algorithm to 

safeguard data confidentiality in cloud environments. An 

illustration for this SDC algorithm is described below:  

The KeyGen(p): Where p is an arbitrary P-bit odd integer and 

to Encrypt (p, m) a message or bit {0,1} 

𝑐 = 𝑚 + 𝑝 + 𝑟𝑝𝑞 

where r is an arbitrary R-bit numeral and q is consistent of Q-

bit enormous whole integer and c the ciphertext. The Decrypt 

(p, c) Output (c mod p) and the Retrieval(c):  

Ri = (ci – cindex) mod q   

As soon as the customer wishes to retrieve message mindex, he 

encodes the keywords  

cindex = mindex + p + rpq   



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 25, September 2021 

29 

and transports cindex to the server. In receipt of cindex, the server 

inspects the ciphertexts, computing 

R = (ci - cindex) mod q    

once R = 0, ciphertext retrieval works, and Ci is the 

anticipated outcome [10]. 

In summary, the ciphertext recovery algorithm in the DGHV 

requires the movement of the secret key to the server, which 

appears to be horrendously shaky. While, the ciphertext 

recovery algorithm of Gentry's work named Gen10 and GSW 

requests to present q to the server in spite of that uses c mod 

q, where q is an irregular number and c the ciphertext, yet the 

plaintext spills out. Consequently, [6] proposed algorithm 

solves the problem of ciphertext recovery successfully, 

without plaintext spill out, in light of the fact that the 

procedure of decoding utilizes the secret key p although the 

recovery procedure utilizes the whole number q, that is 

completely unique. Consequently, fulfils both the interest for 

ciphertext recovery and information security. 

7. CONCLUSION, RECOMMENDATION 

AND FINDINGS 
The main points of evidence for this study are that 

homomorphic encryption enables clients to process 

confidential data on an untrusted device such as another 

person’s computer which is a server in the clouds and would 

like to guarantee the confidentiality of data, conventional 

approaches of encryption can only safeguard their data while 

it is in transit, however, not when the data is being processed. 

Homomorphic encryption, then again, can secure data 

beginning the time the data packets exit the computer until the 

time it finally makes its way back. The processes involved in 

the proposed conceptual framework of SDC Encryption 

Algorithm are Key Generation, Data Encryption, Enc (d1, d2), 

Upload Data into the cloud, User Computations F(Enc(d1, 

d2)), SDC Encryption F(Enc(d1, d2)), (Enc(d1, d2)) returned, 

User Decrypts (Enc(d1, d2)) and Evaluation: (Enc(d1, d2)) as 

illustrated in fig 5. 

 

Fig.5: Stream of SDC Encryption Algorithm 

The time complexities of the encryption and decryption 

functions of Gen10, DGHV and SDC algorithms are identical, 

which is Θ (n2). The growth rate of these functions depends 

on the size of the message. Doubling the value of n roughly 

doubles the running time as seen with functions of Gen10, 

DGHV and SDC algorithms. It is clear that Gen10 requires 

less time than even the SDC encryption but in terms of 

security and ciphertext retrieval, it stands a zero chance with 

the SDC encryption algorithm. The correctness of this 

algorithm depends on the time and space which is illustrated. 

The key contribution of this research is the proposal of the 

implementation framework for the SDC algorithm and the 

measure of the correctness of the SDC algorithm. 

The objectives of this research have become contributions to 

knowledge since they were successfully fulfilled. Knowledge 

is an ending process, hence in the future, the research will 

explore the possibility repackaging the SDC encryption 

algorithm as cloudlet application that can be called in a cloud 

simulator and also explore the prospect of encrypting data 

using SDC encryption algorithm with Transport Layer 

Security (TLS). 

8. REFERENCES 
[1] N. Lord, "DigitalGuardian," 11 September 2018. 

[Online]. Available: 

https://digitalguardian.com/blog/cryptography-cloud-

securing-cloud-data-encryption. [Accessed 5 November 

2019]. 

[2] C. Gentry, "Fully Homomorphic Encryption Using Ideal 

Lattices," ACM, pp. 169-178, 2009.  

[3] Z. Brakerski and V. Vaikuntanathan, "Fully 

homomorphic encryption from ring-lwe and security for 

key dependent messages," in Proceedings of the 31st 

Annual Conference on Advances in Cryptology, 

Berlin,Heidelberg: Springer-Verlag, 2011.  

[4] C. Gentry, S. Halevi and N. P. Smart, "Fully 

homomorphic encryption with polylog overhead," in 

Proceedings of the 31st Annual international conference 

on Theory and Applications of Cryptographic 

Techniques, Berlin, 2012.  

[5] D. R. Korda, "Securing Data in the Clouds Using SDC 

Encryption Algorithm," Department of Computer 

Science, KNUST, Kumasi, 2020. 

[6] J. Li, S. Song, S. Chen and X. Lu, "A Simple Fully 

Homomorphic Encryption Scheme Available In Cloud 

Computing," IEEE, pp. 214-217, 2012.  

[7] JetNeans, "PyCharm," PyCharm, 2020. [Online]. 

Available: https://www.jetbeans/pycharm/. [Accessed 13 

March 2020]. 

[8] A. M. Sagheer, "Elliptic Curves Cryptographic 

Techniques," in IEEE, 2012.  

[9] S. S. Hamad and A. M. Sagheer, "Design of Fully 

Homomorphic Encryption by Prime Modular Operation," 

Telfor Journal, vol. 10, no. 2, 2018.  

[10] I. Jabbar and S. Najim, "Using Fully Homomorphic 

Encryption to Secure Cloud Computing," Internet of 

Things and Cloud Computing, pp. 13-18, 2016.  

[11] D. K. M. Hodowu, D. R. Korda and E. D. Ansong, "An 

Enhancement of Data Security in Cloud Computing with 

an Implementation of a Two-Level Cryptographic 

Technique, using AES and ECC Algorithm," 

International Journal of Engineering Research & 

Technology, vol. 9, no. 9, 2020.  

[12] K. M. Mohanty, "Secure Data Storage on the Cloud 

using Homomorphic Encrypyion," National Institute of 

Technology, Rourkela, 2013. 

[13] C. Gentry, "Computing Arbitrary Functions of Encrypted 

Data.," Publications of ACM, vol. 53, no. 3, pp. 97-105, 

2010. 

IJCATM : www.ijcaonline.org 


