Regular Generalized \mathcal{G}^{ω} —Closed Sets in Grill Topological Spaces

Amin Saif Department of Mathematics Faculty of Sciences Taiz University, Taiz, Yemen Ahmed M. Al-Audhahi Department of Mathematics Faculty of Education and Sciences Sheba Region University, Marib, Yemen Khaled M. Al-Hamadi Department of Mathematics Faculty of Sciences University of Aden, Aden, Yemen

ABSTRACT

In this paper we study the generalization and regularity properties of \mathcal{G}^{ω} -closed sets in grill topological spaces by developing the concept of \mathcal{G}^{ω} -closed set and giving the notion of regular generalized \mathcal{G}^{ω} -closed set.

General Terms

AMS classification, Primary 54A05, 54A10

Keywords

Open set, Generalized closed set, Grill topological spaces

1. INTRODUCTION

For closed sets in topological spaces, Levine [6], studied the generalization property by giving the notion of generalized closed sets. Next Palaniappan and Rao [7] studied the regularity property by giving the notion of regular generalized closed sets. For ω -closed sets in topological spaces which introduced by Hdeib [5]. Al-Zoubi [2] introduced the generalization property by giving the notion of generalized ω -closed sets. Next Al-Omari and Noorani [1] studied the regularity property by giving the notion of regular generalized ω -closed sets.

In grill topological spaces, under the notion of ω -closed sets, [9] Saif, et al., introduced the notion \mathcal{G}^{ω} -closed sets and studied the generalization property of \mathcal{G}^{ω} -closed set by giving the notion of generalized \mathcal{G}^{ω} -closed sets.

In this paper, Section 3 develops the notion of generalized \mathcal{G}^{ω} -closed sets. In Section 4, we introduce regularity property of \mathcal{G}^{ω} -closed sets in grill topological spaces by giving the notion of regular generalized \mathcal{G}^{ω} -closed set.

2. PRELIMINARIES

For any topological space (X, τ) and $A \subseteq X$, we mear by Cl(A) and Int(A) the closure operator A and the interior operator of A, respectively.

LEMMA 1. [4] For every open U in a topological space X and every $A \subseteq X$,

$$Cl(U \cap A) = Cl(U \cap Cl(A)).$$

THEOREM 2. [4] For a topological space (X, τ) ,

(1)
$$Cl(X - A) = X - Int(A)$$
 for all $A \subseteq X$.

(2) Int(X - A) = X - Cl(A) for all $A \subseteq X$.

For a topological space (X, τ) and $E \subseteq X$, the relativization topology of τ to E is denoted by $\tau|_E$ and defined by:

 $\tau|_E = \{ G \cap E : G \text{ is an open set in} X \}.$

We say the pair $(E, \tau|_E)$ is a subspace of (X, τ) . Let $(E, \tau|_E)$ be a subspace of a topological space (X, τ) . For a subset A of E, the $\tau|_E$ -closure operator of A is a set defined as the intersection of all closed subsets of E containing A and denoted by $Cl|_E(A)$. The $\tau|_E$ -interior operator of A is a set defined as the union of all open subsets of E contained in A and denoted by $Int|_E(A)$.

THEOREM 3. [4] Let $(E, \tau|_E)$ be a subspace of a topological space (X, τ) . For a subset A of E:

- (1) A is a closed in E if and only if $A = F \cap E$ for some closed set F in X.
- (2) $Cl|_E(A) = Cl(A) \cap E.$
- (3) $Int(A) \subseteq Int|_E(A)$.

A subset A of a topological space (X, τ) is called regular open set [4] if A = Int(Cl(A)). The compliment of regular open set is called regular closed set.

THEOREM 4. [10] Let Y be an open subset of a topological space (X, τ) . If A is regular open set in $(Y, \tau|_Y)$ then $A = G \cap Y$ for some a regular open set G in X.

DEFINITION 5. [5] A subset A of a space X is called ω -open set if for each $x \in A$, there is an open set U_x containing x such that $U_x - A$ is a countable set. The complement of ω -open set is called ω -closed set.

By $Cl_{\omega}(A)$ and $Int_{\omega}(A)$ we mean the ω -closure set and the ω -interior set of A in topological space (X, τ) , respectively.

DEFINITION 6. A subset A of a topological space (X, τ) is called:

- (1) generalized closed set (briefly, g-closed) [6] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an open in X.
- (2) generalized ω -closed set (briefly, $g\omega$ -closed) [2] if $Cl_{\omega}(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$.
- (3) regular generalized closed set (briefly rg-closed) [7] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- (4) regular generalized ω -closed set (briefly $rg\omega$ -closed) [1] if $Cl_{\omega}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .

A collection \mathcal{G} of subsets of a topological spaces (X, τ) is said to be a grill [3] on X if \mathcal{G} satisfies the following conditions:

- (1) $\emptyset \notin \mathcal{G};$
- (2) $A \in \mathcal{G}$ and $A \subseteq B$ implies that $B \in \mathcal{G}$;
- (3) $A, B \subseteq X$ and $A \cup B \in \mathcal{G}$ implies that $A \in \mathcal{G}$ or $B \in \mathcal{G}$.

For a grill \mathcal{G} on a topological space X, an operator from the power set P(X) of X to P(X) was defined in [8] the following manner : For any $A \in P(X)$,

 $\Phi(A) = \{ x \in X : U \cap A \in \mathcal{G}, \text{ for each open neighborhood} U \text{ of } x \}.$

Then the operator $\Psi : P(X) \to P(X)$, given by: $\Psi(A) = A \cup \Phi(A)$, for $A \in P(X)$, was also shown in [8] to be a Kuratowski closure operator, defining a unique topology $\tau_{\mathcal{G}}$ on X such that $\tau \subseteq \tau_{\mathcal{G}}$. This topology defined by

$$\tau_{\mathcal{G}} = \{ U \subseteq X : (X - U) = X - U \},\$$

where $\tau \subseteq \tau_{\mathcal{G}}$ and for any $A \subseteq X$, $\Psi(A) = {}_{\mathcal{G}}Cl(A)$ such that ${}_{\mathcal{G}}Cl(A)$ denotes the set of all closure points of A in topological space $(X, \tau_{\mathcal{G}})$. The set of all interior points of A in topological space $(X, \tau_{\mathcal{G}})$ denoted by ${}_{\mathcal{G}}Int(A)$.

If (X, τ) is a topological space and \mathcal{G} is a grill on X then the triple (X, τ, \mathcal{G}) will be called a grill topological space.

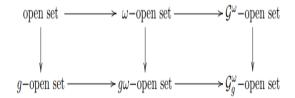
DEFINITION 7. [9] A subset A of a grill topological space (X, τ, \mathcal{G}) is called \mathcal{G}^{ω} -open set if $A \subseteq Cl(Int_{\omega}(\Psi(A)))$ in grill topological space (X, τ, \mathcal{G}) . The compliment of \mathcal{G}^{ω} -open set is called \mathcal{G}^{ω} -closed set.

By $_{\mathcal{G}^{\omega}}Cl(A)$ and $_{\mathcal{G}^{\omega}}Int(A)$ we mean the \mathcal{G}^{ω} -closure set and the \mathcal{G}^{ω} -interior set of A in topological space (X, τ) , respectively.

DEFINITION 8. [9] A subset A of a grill topological space (X, τ, \mathcal{G}) is called generalized \mathcal{G}^{ω} -closed set (simply \mathcal{G}_{g}^{ω} -closed) if $_{\mathcal{G}^{\omega}}Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an open subset of (X, τ, \mathcal{G}) . The complement of \mathcal{G}_{g}^{ω} -closed set is called generalized \mathcal{G}^{ω} -open set (simply \mathcal{G}_{g}^{ω} -open set).

THEOREM 9. [9] A subset A of a grill topological space (X, τ, \mathcal{G}) is \mathcal{G}_g^{ω} -open set if and only if $F \subseteq_{\mathcal{G}^{\omega}} Int(A)$ whenever $F \subseteq A$ and F is closed subset of (X, τ, \mathcal{G}) .

Recall [9] that we have the following graph:



3. ON \mathcal{G}_G^{ω} -CLOSED SETS

THEOREM 10. If A is \mathcal{G}_g^{ω} -closed set in a grill topological space (X, τ, \mathcal{G}) and B is a closed set in X then $A \cap B$ is \mathcal{G}_g^{ω} -closed set.

PROOF. Let $A \in \mathcal{G}_g^{\omega}C(X,\tau,\mathcal{G})$ and B be closed set in (X,τ,\mathcal{G}) . Let U be an open set in (X,τ) such that $A \cap B \subseteq U$. Since B is closed set. Then $A \subseteq U \cup (X - B) \in \tau$. Since $A \in \mathcal{G}_g^{\omega}C(X,\tau,\mathcal{G})$ and $A \subseteq U \cup (X - B) \in \tau$ then $_{g^{\omega}}Cl(A) \subseteq U \cup (X - B)$. Since $_{g^{\omega}}Cl(A \cap B) \subseteq _{g^{\omega}}Cl(A) \cap _{g^{\omega}}Cl(B)$ and $_{g^{\omega}}Cl(A) \cap _{g^{\omega}}Cl(B) \subseteq _{g^{\omega}}Cl(A) \cap Cl(B)$. Then $_{g^{\omega}}Cl(A \cap B) \subseteq _{g^{\omega}}Cl(A \cap B$

$$g_{\omega}Cl(A \cap B) \subseteq g_{\omega}Cl(A) \cap Cl(B) = g_{\omega}Cl(A) \cap B \subseteq [U \cup (X - B)] \cap \subseteq U \cap B \subseteq U.$$

Hence $A \cap B \in \mathcal{G}_{g}^{\omega}C(X, \tau, \mathcal{G})$. \Box

THEOREM 11. Let Y be an open subspace of a grill topological space (X, τ, \mathcal{G}) and $A \subseteq Y$. If A is \mathcal{G}_g^{ω} -closed subset in X then A is \mathcal{G}_g^{ω} -closed set in Y.

PROOF. Let O be an open subset in Y such that $A \subseteq O$. Then $O = U \cap Y$ for some open set U in X and so $A \subseteq U$. Since A is \mathcal{G}_q^{ω} -closed subset of X, then $_{\mathcal{G}^{\omega}}Cl(A) \subseteq U$. By Theorem (3),

$$\mathcal{G}_{\omega} Cl|_{Y}(A) = \mathcal{G}_{\omega} Cl(A) \cap Y \subseteq U \cap Y = O.$$

Hence A is \mathcal{G}_g^{ω} -closed set in Y. \Box

THEOREM 12. Let Y be an open subspace of a grill topological space (X, τ, \mathcal{G}) and $A \subseteq Y$. If A is \mathcal{G}_{g}^{ω} -closed subset in Y and Y is \mathcal{G}_{g}^{ω} -closed in X then A is \mathcal{G}_{g}^{ω} -closed set in X.

PROOF. Let U be an open subset in X such that $A \subseteq U$. Then $A \subseteq U \cap Y$ and $U \cap Y$ an is open set in Y. Since A is \mathcal{G}_g^{ω} -closed subset in Y, then $_{\mathcal{G}^{\omega}} Cl|_Y(A) \subseteq U \cap Y$. Since Y is an open set in X and it is \mathcal{G}_g^{ω} -closed in X then By Theorem (3),

$$g_{\omega}Cl(A) = g_{\omega}Cl(A \cap Y) \subseteq g_{\omega}Cl(A) \cap g_{\omega}Cl(Y) = g_{\omega}Cl(A) \cap Y$$
$$= g_{\omega}Cl|_{Y}(A) \subseteq U \cap Y \subseteq U.$$

Hence A is \mathcal{G}_q^{ω} -closed set in X. \Box

THEOREM 13. Let A be \mathcal{G}^{ω} -generalized closed in a grill topological space (X, τ, \mathcal{G}) . If $B \subseteq X$ such that $A \subseteq B \subseteq _{\mathcal{G}^{\omega}} Cl(A)$, then $B \in \mathcal{G}_{g}^{\omega} C(X, \tau)$.

PROOF. Let $U \in \tau$ such that $B \subseteq U$. Then $A \subseteq B \subseteq U$. Since $A \in \mathcal{G}_g^{\omega}C(X,\tau)$, $_{g\omega}Cl(A) \subseteq _{g\omega}Cl(B) \subseteq _{g\omega}Cl(_{g\omega}Cl(A)) = _{g\omega}Cl(A) \subseteq U$. Hence $B \in \mathcal{G}_g^{\omega}C(X,\tau)$. \Box

To show that a intersection of two \mathcal{G}_g^{ω} -closed sets in grill topological space (X, τ, \mathcal{G}) need not be \mathcal{G}_g^{ω} -closed set we consider the following example.

EXAMPLE 1. Let (\Re, τ, G) be a grill topological space on the set of real numbers \Re with

$$\tau = \{\emptyset, \Re, \Re - (0, 1)\}$$

and $\mathcal{G} = P(\Re) - \{\emptyset\}$. The sets $A_0 = \Re - (0, \frac{1}{2}]$ and $A_1 = \Re - [\frac{1}{2}, 1)$ are \mathcal{G}_g^{ω} -closed sets but $A_0 \cap A_1 = \Re - (0, 1)$ is not \mathcal{G}_g^{ω} -closed set. Since $_{\mathcal{G}^{\omega}} Cl(A_0 \cap A_1) = _{\mathcal{G}^{\omega}} Cl(\Re - (0, 1)) = \Re$ is not subset or equal of $\Re - (0, 1)$.

To show that a union of two \mathcal{G}_g^{ω} -closed sets in grill topological space (X, τ, \mathcal{G}) need not be \mathcal{G}_g^{ω} -closed set we consider the following example.

EXAMPLE 2. In Example(1). The sets $A_0 = \Re - [0, 1)$ and $A_1 = \Re - (0, 1]$ are \mathcal{G}_g^{ω} -closed sets but $A_0 \cup A_1 = \Re - (0, 1)$ is not \mathcal{G}_g^{ω} -closed set. because $\Re - (0, 1)$ is an open set and $\Re - (0, 1) \subseteq \Re - (0, 1)$ but $_{\mathcal{G}^{\omega}} Cl(A_0 \cup A_1) = _{\mathcal{G}^{\omega}} Cl(\Re - (0, 1)) = \Re$ is not subset or equal of $\Re - (0, 1)$.

4. $\mathcal{G}_{RG}^{\omega}$ -CLOSED SETS

DEFINITION 14. A subset A of a grill topological space (X, τ, \mathcal{G}) is called regular generalized \mathcal{G}^{ω} -closed set (simply $\mathcal{G}_{rg}^{\omega}$ -closed) if $_{\mathcal{G}^{\omega}}Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open subset of (X, τ, \mathcal{G}) . The compliment of $\mathcal{G}_{rg}^{\omega}$ -closed set is called regular generalized \mathcal{G}^{ω} -open set (simply $\mathcal{G}_{rg}^{\omega}$ -open).

In any grill topological space (X, τ, \mathcal{G}) we denote of all regular generalized \mathcal{G}^{ω} -closed subset by $\mathcal{G}^{\omega}_{rg}C(X, \tau, \mathcal{G})$ and denote of all regular generalized \mathcal{G}^{ω} -open subset by $\mathcal{G}^{\omega}_{rg}O(X, \tau, \mathcal{G})$. Observe in any grill topological space (X, τ, \mathcal{G}) with a countable set X that $\mathcal{G}^{\omega}_{rg}C(X, \tau, \mathcal{G}) = \mathcal{G}^{\omega}_{rg}O(X, \tau, \mathcal{G}) = P(X)$.

EXAMPLE 3. Let (\Re, τ, \mathcal{G}) be a grill topological space on the set of real numbers \Re with $\tau = \{\emptyset, \Re, \{1, 2\}\}$ and $\mathcal{G} = P(\Re) - \{\emptyset\}$. Any subset of \Re is a both $\mathcal{G}_{rg}^{\omega}$ -closed set and $\mathcal{G}_{rg}^{\omega}$ -open set.

EXAMPLE 4. Any subset of a grill topological space (X, τ, G) with a countable set X is a both $\mathcal{G}_{rg}^{\omega}$ -closed set and $\mathcal{G}_{rg}^{\omega}$ -open set.

THEOREM 15. Every \mathcal{G}_{g}^{ω} -closed set is $\mathcal{G}_{rg}^{\omega}$ -closed set.

PROOF. Let A be a \mathcal{G}_g^{ω} -closed subset of a grill topological space (X, τ, \mathcal{G}) and $A \subseteq U$, where U is any regular open set in X. Since A is \mathcal{G}_g^{ω} -closed set and U is an open set then

$$A = {}_{\mathcal{G}^{\omega}} Cl(A) \subseteq U.$$

That is, A is $\mathcal{G}_{rg}^{\omega}$ -closed set. \Box

The converse of above theorem no need to be true.

EXAMPLE 5. Let (\Re, τ, \mathcal{G}) be a grill topological space on the set of real numbers \Re with $\tau = \{\emptyset, \Re, (1, 2)\}$ and $\mathcal{G} = P(\Re) - \{\emptyset\}$. The set (1, 2) is $\mathcal{G}_{rg}^{\omega}$ -closed set and not \mathcal{G}_{g}^{ω} -closed.

THEOREM 16. Every $rg\omega$ -closed set is $\mathcal{G}_{rg}^{\omega}$ -closed set.

PROOF. Let A be a $rg\omega$ -closed subset of grill topological space (X, τ, \mathcal{G}) and $A \subseteq U$, where U is any regular open set in X. Since A is a $rg\omega$ -closed set, then

$$A = Cl_{\omega}(A) \subseteq U.$$

Since $_{\mathcal{G}^{\omega}}Cl(A) \subseteq Cl_{\omega}(A)$, then A is $\mathcal{G}^{\omega}_{rg}$ -closed set. \Box

The converse of above theorem no need to be true.

EXAMPLE 6. Let (\Re, τ, \mathcal{G}) be a grill topological space on the set of real numbers \Re with $\tau = \{\emptyset, \Re, (0, 1), [2, 3], (0, 1) \cup [2, 3]\}$ and $\mathcal{G} = P(\Re) - \{\emptyset\}$. Take $A = (\frac{1}{3}, \frac{1}{2})$. Since $\Re - (\frac{1}{3}, \frac{1}{2})$ is \mathcal{G}^{ω} -open set then A is $\mathcal{G}_{rg}^{\omega}$ -closed set but it is not $rg\omega$ -closed set because (0, 1) is regular-open set and $(\frac{1}{3}, \frac{1}{2}) \subseteq (0, 1)$ but $Cl_{\omega}(A) = \Re - [2, 3]$ is not subset or equal of (0, 1).

The following figure is an enlargement of figure from [1], figure(2) and theorems above we have the following figure:

THEOREM 17. A subset A of grill topological space (X, τ, G) is \mathcal{G}_{rg}^{-} -open set if and only if $F \subseteq_{\mathcal{G}^{\omega}} Int(A)$ whenever F is regular closed set in X and $F \subseteq A$.

PROOF. Let A be a $\mathcal{G}_{rg}^{\omega}$ -open subset of X and let F be regular closed subset of X such that $F \subseteq A$. Then X - A is $\mathcal{G}_{rg}^{\omega}$ -closed set and $X - A \subseteq X - F$. Since X - A is $\mathcal{G}_{rg}^{\omega}$ -closed set, then

$$X - \mathcal{G}\omega \operatorname{Int}(A) = \mathcal{G}\omega \operatorname{Cl}(X - A) \subseteq X - F.$$

That is, $F \subseteq {}_{\mathcal{G}^{\omega}} Int(A)$.

Conversely, let U be any regular open subset such that $X - A \subseteq U$. Then we have $X - U \subseteq A$. That is,

$$X - g\omega Int(A) = g\omega Cl(X - A) \subseteq U$$

Therefore X - A is $\mathcal{G}_{rg}^{\omega}$ -closed set. \Box

THEOREM 18. Let A be a $\mathcal{G}_{rg}^{\omega}$ -closed subset of a grill topological space (X, τ, \mathcal{G}) . Then $_{\mathcal{G}^{\omega}} Cl(A) - A$ does not contain any nonempty regular closed set.

PROOF. Let F be a regular closed subset of grill topological space (X, τ, \mathcal{G}) such that $F \subseteq {}_{\mathcal{G}^{\omega}}Cl(A) - A$. Then $F \subseteq X - A$ and hence $A \subseteq X - F$. Since A is $\mathcal{G}_{rg}^{\omega}$ -closed set and X - F is regular open subset of (X, τ, \mathcal{G}) , ${}_{\mathcal{G}^{\omega}}Cl(A) \subseteq X - F$ and so $F \subseteq X - {}_{\mathcal{G}^{\omega}}Cl(A)$. Therefore $F \subseteq {}_{\mathcal{G}^{\omega}}Cl(A) \cap (X - {}_{\mathcal{G}^{\omega}}Cl(A)) = \emptyset$. \Box

THEOREM 19. Let A be a $\mathcal{G}_{rg}^{\omega}$ -closed subset of grill topological space (X, τ, \mathcal{G}) . If $B \subseteq X$ such that $A \subseteq B \subseteq {}_{\mathcal{G}^{\omega}}Cl(A)$, then B is $\mathcal{G}_{rg}^{\omega}$ -closed set.

PROOF. Let B be a subset of grill topological space (X, τ, \mathcal{G}) and let A be a \mathcal{G}_{rg}^{r} -open subset such that $_{\mathcal{G}^{\omega}}Int(A) \subseteq B \subseteq A$. Then B is $\mathcal{G}_{rg}^{\omega}$ -open set. \Box

THEOREM 20. Let A be a $\mathcal{G}_{rg}^{\omega}$ -closed set in grill topological space (X, τ, \mathcal{G}) . Then $A = {}_{\mathcal{G}^{\omega}} Cl({}_{\mathcal{G}^{\omega}} Int(A))$ if and only if ${}_{\mathcal{G}^{\omega}} Cl({}_{\mathcal{G}^{\omega}} Int(A)) - A$ is regular closed set.

PROOF. If $A = {}_{\mathcal{G}^{\omega}} Cl({}_{\mathcal{G}^{\omega}} Int(A))$, then ${}_{\mathcal{G}^{\omega}} Cl({}_{\mathcal{G}^{\omega}} Int(A)) - A = \emptyset$ and hence ${}_{\mathcal{G}^{\omega}} Cl({}_{\mathcal{G}^{\omega}} Int(A)) - A$ is regular closed.

Conversely, let $_{\mathcal{G}^{\omega}}Cl(_{\mathcal{G}^{\omega}}Int(A)) - A$ be regular closed, since $_{\mathcal{G}^{\omega}}Cl(A) - A$ contains the regular closed set $_{\mathcal{G}_{\omega}}Cl(_{\mathcal{G}^{\omega}}IntA)) - A$. By Theorem(18), $_{\mathcal{G}^{\omega}}Cl(_{\mathcal{G}^{\omega}}Int(A)) - A = \emptyset$ and hence $A = _{\mathcal{G}^{\omega}}Cl(_{\mathcal{G}^{\omega}}Int(A))$.

THEOREM 21. If A be a $\mathcal{G}_{rg}^{\omega}$ -closed subset of (X, τ, \mathcal{G}) , then $_{\mathcal{G}^{\omega}}Cl(A) - A$ is $\mathcal{G}_{rg}^{\omega}$ -open set.

PROOF. Let A be a $\mathcal{G}_{rg}^{\omega}$ -closed subset of (X, τ) and let F be a regular closed subset such that $F \subseteq {}_{\mathcal{G}^{\omega}} Cl(A) - A$. By Theorem(18), $F = \emptyset$ and thus $F \subseteq {}_{\mathcal{G}^{\omega}} Int({}_{\mathcal{G}^{\omega}} Cl(A))$. By Theorem 4.8, ${}_{\mathcal{G}^{\omega}} Cl(A) - A$ is $\mathcal{G}_{rg}^{\omega}$ -open set. \Box

To show that a intersection of two $\mathcal{G}_{rg}^{\omega}$ -closed sets in grill topological space (X, τ, \mathcal{G}) need not be $\mathcal{G}_{rg}^{\omega}$ -closed set we consider the following example. EXAMPLE 7. Let (\Re, τ, G) be a grill topological space on the set of real numbers \Re with

$$\tau = \{ \emptyset, \Re, \Re - (0, 1], \{\frac{1}{2}\}, (Re - (0, 1]) \cup \{\frac{1}{2}\}, \Re - (0, 1), (\Re - (0, 1)) \cup \{\frac{1}{2}\} \}$$

and $\mathcal{G} = P(\Re) - \{\emptyset\}$. The sets $A = \Re - (0, \frac{1}{2}]$ and $B = \Re - [\frac{1}{2}, 1]$ are $\mathcal{G}_{rg}^{\omega}$ -closed sets but $A \cap B = \Re - (0, 1]$ is not $\mathcal{G}_{rg}^{\omega}$ -closed set. Since $\Re - (0, 1)$ is regular-open set, $\Re - (0, 1] \subseteq \Re - (0, 1)$ and $_{\mathcal{G}^{\omega}} Cl(A \cap B) = _{\mathcal{G}^{\omega}} Cl(\Re - (0, 1]) = \Re - \{\frac{1}{2}\}$ is not subset or equal of $\Re - (0, 1)$.

To show that a union of two $\mathcal{G}^{\omega}_{rg}$ -closed sets in grill topological space (X, τ, \mathcal{G}) need not be $\mathcal{G}^{\omega}_{rg}$ -closed set we consider the following example.

EXAMPLE 8. In Example(7). The sets $A = \Re - [0, 1]$ and $B = \Re - (0, 1] \cup \{2\}$ are $\mathcal{G}_{rg}^{\omega}$ -closed sets but $A \cup B = \Re - (0, 1]$ is not $\mathcal{G}_{rg}^{\omega}$ -closed set. Since $\Re - (0, 1)$ is regular-open set, $\Re - (0, 1] \subseteq \Re - (0, 1)$ and $_{\mathcal{G}^{\omega}} Cl(A \cup B) = _{\mathcal{G}^{\omega}} Cl(\Re - (0, 1]) = \Re - \{\frac{1}{2}\}$ is not subset or equal of $\Re - (0, 1)$.

5. CONCLUSION

The notion of $\mathcal{G}^{\omega}_{rg}$ -closed sets is developing to the notion of \mathcal{G}^{ω}_{g} -closed sets in grill topological spaces and this notion of $\mathcal{G}^{\omega}_{rg}$ -closed sets is developing to the notion of $rg\omega$ -closed sets in topological spaces. The fundamental notions in topological spaces such as the continuity, connectedness, compactness and separation axioms also may be introduced and investigated by using the class $\mathcal{G}^{\omega}_{rg}$ -closed set and also by using the class \mathcal{G}^{ω}_{g} -closed set in grill topological spaces.

6. REFERENCES

- [1] A. Al-Omari and S. Noorani, Regular Generalized ω -closed sets, Int. J. Math. and Math. Sciences, ID 16292, (2007), 1-11.
- [2] K. Al-Zoubi, On generalized ω -closed sets, International Journal of Mathematics and Mathematical Sciences, 13, (2005), 2011-2021.
- [3] G. Choquet, Sur les notions de filtre et grille, Comptes Rendus Acad. Sci. Paris, 224, (1947), 171-173.
- [4] F. Helen, Introduction to General Topology, Boston: University of Massachusetts, (1968).
- [5] H. Z. Hdeib, w-closed mappings, Revista Colombiana de Matematicas, 16, (1982), 65-78.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2), (1970), 89?96.
- [7] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Mathematical Journal, 33, (1993), 211-219.
- [8] B. Roy and M. Mukherjee, On a typical topology induced by a grill, Soochow J. Math, 33, (2007), 771-786.
- [9] A. Saif, M. Al-Hawmi and B. Al-refaei, On \mathcal{G}^{ω} -open sets in grill topological spaces, Journal of Advance in Mathematics and Computer Science, 35(6), (2020), 132-143.
- [10] S. Willard, General Topology: Addison-Wesely, Reading, Mass, USA, (1970).