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ABSTRACT 

Today, all the major metropolises of the world suffer from 

serious problems of congestion and saturation of road 

infrastructures. Within this context, one of the main 

challenges is the creation of appropriate Machine Learning 

algorithms for the optimization of the traffic lights systems. 

The objective is to minimize the total journey time of the 

vehicles that are present in a certain part of a city. In this 

article, we propose a new toolbox and a framework that brings 

Tensorflow features to Simulation of Urban Mobility 

(SUMO). Our work aims to facilitate the use of the SUMO 

simulator with Tensorflow, for road traffic management. With 

this tool, researchers will be able to easily test their different 

models quickly. Instead of spending several days studying the 

SUMO API, and setting up data mapping procedures, 

researchers will be able to get results in minutes with our tool. 

A Web generator let researchers set simulation scenarios, and 

they can implement their model with the toolbox, based on 

neural networks and Deep Q Learning. The toolbox exports 

many metrics, and can compare multiple policies, and 

different hyper parameters to optimize models. The 

experimental results obtained show that such an approach 

makes it possible to obtain significant gains. 
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1. INTRODUCTION 
Nowadays, the road infrastructure is under pressure. This is 

mainly due to the increase in the number of private vehicles, 

and the difficulty of creating new infrastructure or upgrading 

existing one. Optimizing the use of road infrastructure is 

therefore becoming a major issue [1]. 

However, it is difficult to implement a manual solution, as a 

large number of scenarios must be considered. It is also 

necessary to consider the case of special vehicles, accidents, 

weather conditions, etc. Current traffic management systems 

are based on predefined rules, and usually require human 

intervention to work optimally [2]. 

Our goal is to democratize the implementation of artificial 

intelligence-based solutions to solve this problem. With the 

advent of smart cities, and the democratization of object 

recognition and tracking tools, it is possible to implement 

intelligent solutions based on artificial intelligence, which can 

be deployed on a large scale. 

Researchers have at their disposal several simulation tools, 

such as SUMO (Simulation of Urban Mobility), which allow 

to create very detailed simulations [3]. They also have very 

powerful tools, such as Tensorflow, which allows to create 

models based on deep learning and reinforcement learning. 

However, it is difficult to master these tools, and the learning 

curve is usually long. 

Our work consists in proposing a solution that integrates the 

power of both SUMO and Tensorflow. With this, researchers 

will be able to focus mainly on models. We propose a set of 

tools and a framework, which allows to test a model in a few 

minutes, and to take advantage of the power of SUMO and 

Tensorflow immediately. 

Our paper is organized as follows: Section 2 presents the 

background of intelligent traffic management. Section 3 

details the design of our tool, and its different components. 

And finally, section 4 presents a use case provided with the 

tool, and the results that the tool can provide. 

2. BACKGROUND 

2.1 IA and Smart cities 
Today, cities should face several challenges, such as 

population growth, energy consumption, environment 

preservation, life quality life improvement for citizens, etc.  

These challenges require the implementation of new 

techniques and solutions. In the begin of this century, the role 

of Information and Communication Technologies (ICT) to 

improve transportation in smart cities has been shown. In this 

section , we will discuss the role of Artificial Intelligence (IA) 

in smart cities. Indeed, with the emergence of Big Data, 

Internet of Things (IoTs) and 5G, AI can propose innovative 

and optimal policies to solve smart city problems. 

Techniques such as machine learning, deep learning, and 

reinforcement learning consider the specificities of each city 

in order to implement effective management solutions and 

policies. In this section, we will present several aspects of AI 

and their potential in smart cities [4]. 

2.2 Machine Learning 
Machine Learning      provides algorithms that automatically 

learn from past experiences. This field of research has seen 

many advances in recent years [5]. These advances are 

achieved due to new algorithms and the availability of online 

data. Machine learning regained popularity, thanks to the 

results obtained in the field of image recognition. 

Subsequently, scientists have felt the potential of machine 

learning and it’s used in other problems such as natural 

language processing, speech recognition, traffic prediction, 

fraud detection, etc. Its strength comes from the fact that it is 

sometimes more efficient to solve problems using learning, 

rather than to implement solutions manually. 
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In smart cities, machine learning has a very important role. 

Thanks to the learning and data provided by IoTs, machine 

learning can effectively manage many problems related to 

transportation [6], environment, and health for example. The 

following sections will detail some machine learning 

techniques, and how they can be used in smart cities. 

2.3 Deep Learning 
When we talk about machine learning, the most used 

technique in the literature is neural networks. An artificial 

neural network is a model that takes over the functioning of 

the human nervous system. It consists of a series of connected 

artificial neurons, and they detect hidden relationships 

between input data to make decisions. As with the human 

brain, a neural network must go through a learning phase to be 

able to classify or detect the desired patterns [7,8]. 

An artificial neural network is limited in its ability to process 

raw data, such as images or signals. For several years, the 

implementation of a neural network required a certain 

expertise and knowledge about the field of application, to 

extract the characteristics to be given as input to the neural 

network. These characteristics are then manipulated by the 

neural network to classify or detect a pattern. Deep-Learning 

allows to get rid of this constraint. By associating several 

neural networks, we obtain models complex enough to 

directly process raw data. On the other hand, the learning 

phase becomes more complex, and this has limited the use of 

this technique in the past. The evolution of computing 

resources over the last two decades, and the availability of 

raw data have made deep-learning possible, especially in the 

field of image recognition [9]. 

In smart-cities, raw data is generally available, such as images 

from surveillance cameras, energy consumption, weather, 

events calendar, geographical data, etc. The use of this data 

therefore requires complex models to determine the hidden 

connections between them, in order to optimize the city's 

limited resources. 

Recent work on traffic management uses an image-like 

representation of the data [10]. This representation allows the 

use of CNN-based models. Our tool supports this data format 

as well. Researchers will therefore be able to quickly use 

CNN models without wasting time setting up data mapping 

procedures. 

2.4 Reinforcement learning 
Reinforcement learning is a type of model, different from 

neural networks. It is particularly effective in problems where 

a series of decisions must be made. An algorithm based on 

reinforcement learning learns how to reach a defined objective 

in a complex environment. In recent years, reinforcement 

learning has proven its effectiveness. Algorithms, such as 

AlphaGo, succeeded to surpassing human performance in 

complex games such as Go. After Go, reinforcement learning 

algorithms moved on to video games. Now, several 

algorithms      mastered Atari games, without a prior 

knowledge base. They learned by themselves, playing 

thousands of times, to progress in games like Space Invader or 

Pong. 

This type of problem cannot be solved effectively with deep 

learning networks alone. It is not possible to build a 

knowledge base that indicates for each given situation the 

right action to take. In this type of problem, it is important to 

consider past experiences in order to make decisions that 

bring the algorithm closer to its goal. 

In Intelligent Transportation Systems (ITS), there are several 

problems that are suitable for reinforcement learning, such as 

automated traffic light management. Several research works 

[11,12] have demonstrated the effectiveness of reinforcement 

learning for traffic light management. This is an area that is 

still relevant today. In this paper, we will present a simulation 

tool based on reinforcement learning to optimize traffic light 

management. 

2.5 DQN and extensions 
Our simulation tool supports Deep Q Learning [13], which is 

a variant of Q Learning. Q Learning is a Reinforcement 

Learning technique. It allows an agent to know the right 

action to take under certain circumstances. To establish the 

relationship between the actions to take and the environment, 

a Q Learning model requires a discovery phase. During this 

step, an agent observes his environment and takes actions. For 

each action, he gets a reward. The objective is to maximize 

the received reward. He therefore establishes a relationship 

between each state of his environment and the possible 

actions to maximize the reward. When the environment is 

complex, and with a very large number of states, it becomes      

impossible to link each state to an action. A neural network is 

then used to link actions to the state of the environment. This 

is called Deep Q Learning (DQN). 

In recent years, several improvements have been made to 

DQN algorithms. In order to consider past experiences and 

remove the correlation between different transitions, a DQN 

model uses a memory in which it stores its previous 

experiences. This memory is called Experience Replay. In the 

learning phase, the agent randomly takes a batch of past 

experiences, and uses it as input at each iteration. 

The DQN is widely used to solve ITS problems. It is used for 

example to implement traffic light management agents. An 

agent then observes the state of an intersection, and the DQN 

model allows him to choose the state of the traffic lights in 

order to optimize the travel time of the vehicles [14]. 

2.6 Simulation tools 
Simulation tools play an important role in improving solutions 

for ITS. Since the year 2000, several research laboratories 

have been working on simulators. The Institute of 

Transportation Research (IVF) at the German Aerospace 

Centre (DLR) have been working on one of the most widely 

used simulators in research: SUMO [15]. SUMO is the 

acronym for: Simulation of Urban MObility. It is an open-

source simulator, which aims to make research results more 

comparable and facilitate the testing of new models used for 

traffic management. It offers several functionalities, such as 

traffic generation, road infrastructure modeling, import of real 

road network, etc. 

It is widely used in several research areas, including vehicle-

to-vehicle communication, evaluation of surveillance systems, 

dynamic routing and navigation, and traffic light management 

[16]. This paper will deal mainly with the latter issue. Indeed, 

for the implementation of a DQN model, it is necessary to 

model the environment in which the agent will evolve, and to 

calculate the reward obtained for each action performed. 

These 2 elements are essential for the training phase of a 

DQN model. Hence our use of SUMO in our approach. It is 

true that SUMO is not as efficient to evaluate traffic for real 

life intersections. But its speed, the freedom it offers for 

modeling intersections, its support for many vehicle types, 

and especially its TraCI API make it an excellent tool for 

testing new traffic management algorithms. 
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3. THE TOOLBOX 
Our work aims to facilitate the use of the SUMO simulator 

with Tensorflow, for road traffic management. With this tool, 

researchers will be able to easily test their different models 

quickly. Instead of spending several days studying the SUMO 

API, and setting up data mapping procedures, researchers will 

be able to get results in minutes with our tool. 

Our tool consists of several software components. Each 

component offers essential functionalities to perform traffic 

simulations with DQN models. The figure 1 below presents 

the global architecture of our tool. It gathers almost all the 

components.  

Our tool is based on the Traci API of SUMO, which allows to 

control a SUMO simulation via an API. It is therefore 

possible to retrieve all the data of the simulation at a given 

time. For the model part, our tool supports the Tensorflow TF-

Agents. At first, only DQN agents are supported in our tool. 

 

 

 
Fig 1: Global Architecture 

The following section will detail each component separately. 

3.1 PyEnv Environment 
To use Tensorflow agents, you need to have an environment, 

coded in python, that implements a certain logic. The 

Tensorflow documentation indicates that a valid Tensorflow 

environment must implement mainly 4 functions: 

“action_spec”, “observation_spec”, “_reset”, “_step”. 

“action_spec” must return the specification of the action 

vector and “observation_spec” must return the specification of 

the observation vector. In the current version, Tensorflow 

requires the action vector to be a scalar. Therefore, a 

projection between supported actions of the traffic manager 

and integers must be implemented. For the observation, we 

propose a 3-dimensional tensor, which will contain the 

following information: position of the vehicles, speed of the 

vehicles and current status of the controlled intersection traffic 

lights. 

The “_reset” function will reset the simulation’s state. It is 

generally used to start a new epoch. It returns a state which 

represents the zero time of the simulation. Finally, the “_step” 

function takes an action as argument and returns the new state 

of the simulation and the reward obtained following the 

chosen action. 

For our tool, we used a reward formula that reduces the 

average travel time of vehicles, inspired by this work [17]. 

Below is the exact formula used: 

rt =
1

N
  

ti
T
 

N

i=1

 

Where T is the average acceptable travel time. 

To control SUMO, we use the Traci API. It allows to get all 

the information related to the simulation: vehicles, traffic 

lights, roads, etc. It also allows to control the progress of the 

simulation, second by second.We set up a Python 

Environment that implements these functions, and that 

controls the simulation, using the Traci API. The environment 

exposes several parameters such as: the duration of an 

episode, graphical or console mode, SUMO’s port, etc. 
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Fig 2: Class Diagram 

The tool supports two data representation formats: Image-like 

mode and Array mode. We have therefore implemented two 

data mapping processes, one for each representation. From a 

data model point of view, the tool uses a model based on 

several entities. They are detailed on the Figure 2.The Edge, 

Lane, and Vehicle entities represent the same SUMO entities, 

with fewer attributes. The Junction entities represent an 

intersection in the road network. 

3.2 Managing Networks 
Netedit is a powerful tool included in SUMO package, which 

allows to create networks, in an intuitive way. It also allows to 

generate vehicles, with departure and destination routes. This 

information is used by SUMO to create the simulation. 

We have included in our tool a set of ready-to-use networks. 

To simplify the modeling, we have set up vehicles with a unit 

size (each vehicle measures one-unit length). This is very 

useful for the image-like representation. It allows us to 

assume that a vehicle is in one cell at a given time. 

 

Fig 3: Simple Network type "Cross". 

 

Fig 4: Network with Adjacent, type T 

In this version, we propose 16 network models. They are 
generated according to 4 criteria: 

 Intersection type: Cross Intersection, T-Intersection 

 Network Complexity: With or without adjacent 
intersections 

 Lane count: one or two lanes per edge. 

 Edge length: 20 or 40 units 

The traffic generated for each network ensures a maximum 
duration of one hour for the simulation. This provides the 
necessary time to test strategies that span over time. The 
figure 3 and 4 shows examples of networks supported by our 
tool. 

3.3 Supported actions 
Generally, the traffic lights of an intersection have standard 
sequences. For example, for a Cross Intersection, with 4 
traffic lights, we can have one of these examples: 

 red-greed-red-green, green-red-green-red 

 red-red-green-red, green-red-red-red, red-green-red-
green 

To give more flexibility, our tool supports all possible states. 
It allows the models to innovate and explore all possibilities. 
The learning phase will retain the actions that give the most 
reward to the agent. 

Our generator allows to define the possible actions, depending 
on the type of intersection. In the case of a network with 
several intersections, only one action set will be used for all 
the intersections, for simplicity reasons. 

During our testing we found that models can sometimes make 
very quick changes to the network traffic lights. After 
reflection, we decided to limit this, as it is not practical in real 
life conditions. To implement this limitation, we allow agents 
to control the simulation only once every 5 seconds. This 
parameter is exposed, so it can be modified if needed. 

3.4 Tensorflow Agent 
Our tool offers a ready-to-use agent, which is based on a DQN 
Agent from Tensorflow. It is compatible with any Q Network. 
We provide a default implementation, which uses a simple Q 
Network. It is possible to give a custom Q Network quite 
easily.To test a model with the tool, you need to provide the Q 
Network that represents the model to be tested. The defined Q 
Network will receive as input the data received from the 
environment. It is therefore recommended to use the 
“observation_spec” function of the environment to obtain the 
specifications of the input layer. The output of the Q network 
must return the action to perform. The “action_spec” function 
of the environment allows to obtain the specifications that the 
network must respect in output.The agent exposes a set of 
hyper parameters. It therefore gives total freedom when 
implementing the model. Among the available parameters we 
find: num_iterations, initial_collect_steps, 
collect_steps_per_iteration, replay_buffer_max_length, 
batch_size, learning_rate, etc.All these parameters are 
documented in the README.md file of the generated project. 

 In addition to the Q Network, it is possible to define an 
Optimizer and a Loss Function. By default, the tool uses an 
AdamOptimizer as optimizer and Element Wise Squared Loss 
as Loss Function. The tool leaves the freedom to modify these 
options when declaring the agent. 

The agent uses a Replay Buffer for the learning phase. All the 
parameters of the Replay Buffer are included in the agent’s 
hyper parameters. The use of the Replay Buffer was added 
because of the very good results obtained by the community 
when it was added. At each iteration, the agent collects a set 
of data from the environment and adds them to the Replay 
Buffer. Subsequently, the agent uses a batch of data from the 
Buffer to update the Q Network weights 
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Algorithm 1: Training Algorithm 

Two environments are used by the agent: a training 
environment and an evaluation environment. The agent 
automatically pilots the two environments during the training 
and evaluation phases. At each epoch, the agent resets the two 
environments. 

 The tool offers functions for saving and loading policies. The 
agent implements these features. It is therefore possible to 
save a policy by calling a simple function. Loading an 
existing policy is also easy, the agent can use an existing 
policy on a given environment by calling a simple function. 
The algorithm used by the agent for the training phase is 
detailed in Algorithm 1. 

3.5 Comparing Policies 
When developing a model, it is imperative to compare the 

results with other models. Our tool offers two pre-

implemented models to facilitate the evaluation of a 

model.The first model implemented is based on the "Fixed-

Time" policy. It is the most used model in the field today. It is 

therefore imperative for any new model to give better results 

than the "Fixed-Time" policy [18]. Our tool proposes to use 

the "Fixed-Time" policy on an environment identical to the 

one used to train or evaluate the new model. The tool returns 

the average of the reward obtained for each epoch, in the form 

of a CSV file. It is therefore possible to draw comparison 

curves between the two models. 

The second model implemented is a random policy. It allows 

to see if the tested model gives better results than a random 

algorithm. This policy can be used with all possible actions. 

The policy will choose at each time interval, a random action 

to perform. The result is retrieved in CSV format, identical to 

the one generated by the tool during the training phase of the 

model to study.It is of course possible to test policies that are 

already documented in the literature. However, they must be 

implemented. One of the goals of our tool is to facilitate the 

comparison between models in the future. When researchers 

use our tool to test and prepare a new road traffic management 

model, they can publish the source code of their model or 

generate the policy. Other researchers can then retrieve their 

work and compare it with new models. 

3.6 Web Generator 
To simplify the use of our tool, we have set up a web 
interface. The web interface allows you to configure your 
simulation, and to download a project ready to use. It is 
possible to set up the project, according to the following 
options: (1) Network Complexity: With or without adjacent 

intersections, (2) Intersection type: Cross Intersection, T-
Intersection, (3) Lane count: one or two lanes per edge, (4) 
Edge length: 20 or 40 unit, (5) Data Representation: Image-
Like or Array, (6) Supported Actions 

 We have decided to limit the number of options available in 
the interface to not complicate its use. Other options can be 
configured directly on the project, especially the hyper 
parameters.The generated project contains a README.md 
file detailing the different options that are not configurable in 
the UI. All parameters are provided with default options that 
allow to start safely the implementation of a model.On the 
technical side, the web interface is based on NodeJS for the 
Backend part, and on VueJS for the FrontEnd part. The choice 
of NodeJS is justified by its ability to easily manage a large 
number of requests, and for its asynchronous processing of IO 
operations [19]. Indeed, the web tool uses algorithms and pre-
formatted files to generate the project template, hence the 
importance of efficiency in terms of asynchronous IO 
processing of requests. 

For authentication, we started with an authentication with 

Google and Github to simplify. Users will then authenticate 

directly via an external provider, without having to enter a 

new password. The Figure 5 below details the technical 

architecture of the web part. 

 

Fig 5: Web Generator Architecture. 

3.7 Project Structure 
The web interface generates a ready-to-use Python project. 

We have designed the project structure to be as simple as 

possible to use. The Figure 6 below shows the structure of the 

generated project. 

The Figure 6 below shows the structure of the generated 
project. 

 

Fig 6: Project Structure. 

Below is the role of the most important elements: 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 27, September 2021 

15 

a. Output_data: This folder contains the CSV files 

generated during the training of a model. It also contains 

the data generated by the pre-implemented policies 

(random and fixed-time policies). The file name is 

prefixed with a string to indicate whether it is a file 

generated for a model or for a pre-implemented policy. 

The file name ends with the creation date. For each run, 

the tool generates two files. A first output CSV file 

contains the following data for each episode: Vehicles 

Count, Cumulative Travel Time, AVG Travel Time, Max 

Travel Time. The second file contains the Cumulative 

Reward for each epoch. 

b. Network_files: This folder contains the different files 

related to the SUMO network. There are mainly 4 types 

of XML files (network, routes, settings, config). In 

addition, there are 2 JSON files: a mapping file, and a 

file of actions configured for the model. The mapping 

file is used to interpret the SUMO network data 

correctly, and the actions file is used to define the 

possible states of the agent's intersection lights. 

c. Logs: This folder contains the different log files 

generated during the execution of the training or 

evaluation scripts. The names of the files follow the same 

logic as the files in the output_data folder. 

d. Saved_policies : This folder is used to store policies. It 

contains subfolders. Each sub-folder represents a policy. 

The folder name is prefixed by the creation date. In 

addition to the files related to the policy, the sub-folder 

contains a JSON file with all the hyper parameters used, 

to find them easily later.  

e. Lib: This folder contains the different python scripts that 

we have set up to implement the logic of the tool. For 

example, there are the files of the PyEnv environment 

and those of the DQN agent.  

f. Model.py : This is the file where the model will be 

defined. The researchers will use this file to define the Q 

Network they will use. The different hyper parameters 

will be defined at this level too. 

g. Train.py : This is the file that must be launched to start 

the learning phase of the model. 

h. Eval.py : This is the file you have to launch to load an 

existing policy. 

i. Fixed_time_policy.py: This is the file that launches the 

model based on the fixed_time policy. 

j. Random_policy.py: This is the file that runs the template 

based on the random policy. 

k. Pipfile: The pip environment file. It contains all the 

necessary dependencies for the project. 

l. README.md: The project documentation file. It 

indicates how to install the different dependencies of the 

project, and how to use the different scripts provided in 

the template. It also details the different hyper parameters 

available. 

4. EXPERIMENTAL SETUP 
In this section, we will use the tool to test a model. As 

mentioned in the previous section, the tool comes with a 

simple model to get started. We will use this model to 

illustrate the use of the tool, and the features it offers. 

4.1 A Simple Network with two lanes 
The first step is to get a new copy of the project. We will use 
the web interface to configure the tool with the data below:    
(1) Network Complexity: Without adjacent intersections, (2) 
Intersection type: Cross Intersection, (3) Lane count: two 
lanes per edge, (4) Edge length: 40 units, (5) Data 
Representation: Array, (6) Supported Actions: GRGR – 
RGRG. 

The Figure 7 below shows the configuration used. 

 

Fig 7: Generator UI Form. 

4.2 The generated project 
Our thanks to the experts who have contributed towards 

development of the template.The project generated by the web 

interface is ready to use. It contains the data of the selected 

network, and it uses the intersection lights with the actions 

defined in the web interface. bWe find the structure of the 

project, as presented previously. The README.md file gives 

all the details to start the project and presents all the project 

hyper parameters. 

 To initialize the python environment, you have to install 
python and pipenv. Once this is done, all the dependencies 
will be installed thanks to the pipenv file. The installation of 
the dependencies is done via the command below, as specified 
in the README file:pipenv install. To use the scripts 
provided with the tool, you have to start a shell with 
pipenv:pipenv shell. We can now start using the tool. To 
make sure that everything is OK, we are going to launch the 
random_policy.py script. 

4.3 Use a simple Q Network 
To setup a model, you have to modify the file model.py. It 

allows to modify the different hyper parameters, and to 

propose a model on Q Network. It is possible to propose a 

model with several floors, and composed of fully-connected 

networks, CNN, etc.The project is delivered with a model 

based on a simple Q Network, composed of a single layer. We 

will use it as a model in this article to illustrate the capabilities 

of the tool. The Figure 8 illustrates the architecture of the 

model used.The hyper parameters included in the template 

can be used directly for the first tests. The hyper parameters 

used are detailed in algorithm 2 above. 
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Fig 8: Simple Network Architecture 

 

Algorithm 2:Hyperparameters. 

4.4 Start training 
The train.py script allows to start the training of the model 

configured in the model.py file. The script initializes two 

environments, a training environment, and a testing (or 

evaluation) environment. 

By default, the script is configured to run in console mode. It 

is possible to configure this behavior. The parameter to 

modify is 'enable_gui'. If it is enabled, SUMO will run in GUI 

mode, so two windows will appear, one for each environment. 

The selected network is displayed, and the training starts. We 

can directly visualize the actions of the agent on the 

simulation, as well as the generated traffic. The Figure 9 

below shows the training and testing environments, during the 

training phase. 

 

Fig 9:Running simulation 

4.5 Exported data 
Once the training is finished, the tool generates a set of output 

files. There is a log file in the logs folder, which allows you to 

inspect the simulation data afterwards. The output_data folder 

contains the simulation results as CSV files. This makes it 

much easier to compare and evaluate the data. 

It is possible to test several values of a hyper parameter, and 

graphically visualize the impact on the simulation results. It is 

possible to use any library or tool that allows to draw curves 

to visualize the results. For our model, we obtain the results 

showed in figures 10-12. 

 

Fig 10: Reward for simple model 

 

Fig 11:  Cumulative Travel Time for simple model. 
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Fig 12: Max Travel Time for simple model. 

4.6 Compare Policies / Load Policies 
To compare the results of several policies or models, we use 

the different data files generated during the training of a 

model. It is possible to use a pre-trained model. To do so, you 

have to use the eval.py script, with the policy to be loaded as a 

parameter. The execution generates new data files, which can 

be compared with another model. 

During their work, the researchers compare their new model 

with the fixed-time method, which is the most used today. To 

facilitate the work, our tool offers a script that allows to use 

the fixed-time policy on the network configured for the 

project. So we obtain a new data file, which we can compare 

with those obtained with the model under study. To run the 

fixed-time policy, you have to use the script 

fixed_time_policy.py. 

It is sometimes interesting to compare the results with a 

random policy to check the efficiency of the studied model. 

Here again the tool proposes a random-policy which will 

control the network configured for the project, and will use 

the configured actions, permuting them in a random way. The 

same hyperparameters of the model will be applied for this 

policy. To start the random-policy, you need to run the 

random_policy.py script. After execution, we get data files 

related to this simulation, and we can compare them with 

other data. 

 For the model we study in this section, we obtain the 
following results, comparing it with a random policy and a 
fixed-time policy. 

 

Fig 13: Compare reward between simple model, fixed time 

mode, and random model. 

5. CONCLUSION 
In this paper, we have presented a set of tools and a 
framework that allow to easily use the capabilities of 
Tensorflow with the SUMO simulator. 

 Our work allows researchers to focus on the realization of 
their models, ignoring the complexity of SUMO and 
Tensorflow.  

 The tool allows to configure a simulation scenario via a web 
interface, which generates a traffic management python 
project, based on Tensorflow and SUMO. The project is ready 
to use. Researchers can directly fill in a model that will be 
used as Q-Network by our tool. The tool can run several 
simulations, and retrieve different data to analyze, such as 
reward, average travel time, maximum travel time, etc. It is 
possible to modify the hyper parameters of the simulation, and 
to compare them or to compare the models between them to 
obtain a conclusion. 

 In the future, we would like to add support for other types of 
intersections, and to increase the number of options available 
in the current simulation criteria. We plan to add support for 
traffic anomalies. Finally, as we worked with coordinated 
agent, we will add support for coordinated agents in this 
toolbox. 
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