
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 27, September 2021

10

Design and Evaluation of a New Machine Learning

Toolbox for Optimal Traffic Light Control with SUMO and

Tensorflow

Reda Mali
LTI Laboratory, National School of Applied

Sciences, Chouaib Doukkali University
El Jadida, Morocco

Mohammed Bousmah
LTI Laboratory, National School of Applied

Sciences, Chouaib Doukkali University
El Jadida, Morocco

ABSTRACT

Today, all the major metropolises of the world suffer from

serious problems of congestion and saturation of road

infrastructures. Within this context, one of the main

challenges is the creation of appropriate Machine Learning

algorithms for the optimization of the traffic lights systems.

The objective is to minimize the total journey time of the

vehicles that are present in a certain part of a city. In this

article, we propose a new toolbox and a framework that brings

Tensorflow features to Simulation of Urban Mobility

(SUMO). Our work aims to facilitate the use of the SUMO

simulator with Tensorflow, for road traffic management. With

this tool, researchers will be able to easily test their different

models quickly. Instead of spending several days studying the

SUMO API, and setting up data mapping procedures,

researchers will be able to get results in minutes with our tool.

A Web generator let researchers set simulation scenarios, and

they can implement their model with the toolbox, based on

neural networks and Deep Q Learning. The toolbox exports

many metrics, and can compare multiple policies, and

different hyper parameters to optimize models. The

experimental results obtained show that such an approach

makes it possible to obtain significant gains.

Keywords

Traffic Light Control; Machine Learning; Simulation Tool;

Deep Q Learning.

1. INTRODUCTION
Nowadays, the road infrastructure is under pressure. This is

mainly due to the increase in the number of private vehicles,

and the difficulty of creating new infrastructure or upgrading

existing one. Optimizing the use of road infrastructure is

therefore becoming a major issue [1].

However, it is difficult to implement a manual solution, as a

large number of scenarios must be considered. It is also

necessary to consider the case of special vehicles, accidents,

weather conditions, etc. Current traffic management systems

are based on predefined rules, and usually require human

intervention to work optimally [2].

Our goal is to democratize the implementation of artificial

intelligence-based solutions to solve this problem. With the

advent of smart cities, and the democratization of object

recognition and tracking tools, it is possible to implement

intelligent solutions based on artificial intelligence, which can

be deployed on a large scale.

Researchers have at their disposal several simulation tools,

such as SUMO (Simulation of Urban Mobility), which allow

to create very detailed simulations [3]. They also have very

powerful tools, such as Tensorflow, which allows to create

models based on deep learning and reinforcement learning.

However, it is difficult to master these tools, and the learning

curve is usually long.

Our work consists in proposing a solution that integrates the

power of both SUMO and Tensorflow. With this, researchers

will be able to focus mainly on models. We propose a set of

tools and a framework, which allows to test a model in a few

minutes, and to take advantage of the power of SUMO and

Tensorflow immediately.

Our paper is organized as follows: Section 2 presents the

background of intelligent traffic management. Section 3

details the design of our tool, and its different components.

And finally, section 4 presents a use case provided with the

tool, and the results that the tool can provide.

2. BACKGROUND

2.1 IA and Smart cities
Today, cities should face several challenges, such as

population growth, energy consumption, environment

preservation, life quality life improvement for citizens, etc.

These challenges require the implementation of new

techniques and solutions. In the begin of this century, the role

of Information and Communication Technologies (ICT) to

improve transportation in smart cities has been shown. In this

section , we will discuss the role of Artificial Intelligence (IA)

in smart cities. Indeed, with the emergence of Big Data,

Internet of Things (IoTs) and 5G, AI can propose innovative

and optimal policies to solve smart city problems.

Techniques such as machine learning, deep learning, and

reinforcement learning consider the specificities of each city

in order to implement effective management solutions and

policies. In this section, we will present several aspects of AI

and their potential in smart cities [4].

2.2 Machine Learning
Machine Learning provides algorithms that automatically

learn from past experiences. This field of research has seen

many advances in recent years [5]. These advances are

achieved due to new algorithms and the availability of online

data. Machine learning regained popularity, thanks to the

results obtained in the field of image recognition.

Subsequently, scientists have felt the potential of machine

learning and it’s used in other problems such as natural

language processing, speech recognition, traffic prediction,

fraud detection, etc. Its strength comes from the fact that it is

sometimes more efficient to solve problems using learning,

rather than to implement solutions manually.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 27, September 2021

11

In smart cities, machine learning has a very important role.

Thanks to the learning and data provided by IoTs, machine

learning can effectively manage many problems related to

transportation [6], environment, and health for example. The

following sections will detail some machine learning

techniques, and how they can be used in smart cities.

2.3 Deep Learning
When we talk about machine learning, the most used

technique in the literature is neural networks. An artificial

neural network is a model that takes over the functioning of

the human nervous system. It consists of a series of connected

artificial neurons, and they detect hidden relationships

between input data to make decisions. As with the human

brain, a neural network must go through a learning phase to be

able to classify or detect the desired patterns [7,8].

An artificial neural network is limited in its ability to process

raw data, such as images or signals. For several years, the

implementation of a neural network required a certain

expertise and knowledge about the field of application, to

extract the characteristics to be given as input to the neural

network. These characteristics are then manipulated by the

neural network to classify or detect a pattern. Deep-Learning

allows to get rid of this constraint. By associating several

neural networks, we obtain models complex enough to

directly process raw data. On the other hand, the learning

phase becomes more complex, and this has limited the use of

this technique in the past. The evolution of computing

resources over the last two decades, and the availability of

raw data have made deep-learning possible, especially in the

field of image recognition [9].

In smart-cities, raw data is generally available, such as images

from surveillance cameras, energy consumption, weather,

events calendar, geographical data, etc. The use of this data

therefore requires complex models to determine the hidden

connections between them, in order to optimize the city's

limited resources.

Recent work on traffic management uses an image-like

representation of the data [10]. This representation allows the

use of CNN-based models. Our tool supports this data format

as well. Researchers will therefore be able to quickly use

CNN models without wasting time setting up data mapping

procedures.

2.4 Reinforcement learning
Reinforcement learning is a type of model, different from

neural networks. It is particularly effective in problems where

a series of decisions must be made. An algorithm based on

reinforcement learning learns how to reach a defined objective

in a complex environment. In recent years, reinforcement

learning has proven its effectiveness. Algorithms, such as

AlphaGo, succeeded to surpassing human performance in

complex games such as Go. After Go, reinforcement learning

algorithms moved on to video games. Now, several

algorithms mastered Atari games, without a prior

knowledge base. They learned by themselves, playing

thousands of times, to progress in games like Space Invader or

Pong.

This type of problem cannot be solved effectively with deep

learning networks alone. It is not possible to build a

knowledge base that indicates for each given situation the

right action to take. In this type of problem, it is important to

consider past experiences in order to make decisions that

bring the algorithm closer to its goal.

In Intelligent Transportation Systems (ITS), there are several

problems that are suitable for reinforcement learning, such as

automated traffic light management. Several research works

[11,12] have demonstrated the effectiveness of reinforcement

learning for traffic light management. This is an area that is

still relevant today. In this paper, we will present a simulation

tool based on reinforcement learning to optimize traffic light

management.

2.5 DQN and extensions
Our simulation tool supports Deep Q Learning [13], which is

a variant of Q Learning. Q Learning is a Reinforcement

Learning technique. It allows an agent to know the right

action to take under certain circumstances. To establish the

relationship between the actions to take and the environment,

a Q Learning model requires a discovery phase. During this

step, an agent observes his environment and takes actions. For

each action, he gets a reward. The objective is to maximize

the received reward. He therefore establishes a relationship

between each state of his environment and the possible

actions to maximize the reward. When the environment is

complex, and with a very large number of states, it becomes

impossible to link each state to an action. A neural network is

then used to link actions to the state of the environment. This

is called Deep Q Learning (DQN).

In recent years, several improvements have been made to

DQN algorithms. In order to consider past experiences and

remove the correlation between different transitions, a DQN

model uses a memory in which it stores its previous

experiences. This memory is called Experience Replay. In the

learning phase, the agent randomly takes a batch of past

experiences, and uses it as input at each iteration.

The DQN is widely used to solve ITS problems. It is used for

example to implement traffic light management agents. An

agent then observes the state of an intersection, and the DQN

model allows him to choose the state of the traffic lights in

order to optimize the travel time of the vehicles [14].

2.6 Simulation tools
Simulation tools play an important role in improving solutions

for ITS. Since the year 2000, several research laboratories

have been working on simulators. The Institute of

Transportation Research (IVF) at the German Aerospace

Centre (DLR) have been working on one of the most widely

used simulators in research: SUMO [15]. SUMO is the

acronym for: Simulation of Urban MObility. It is an open-

source simulator, which aims to make research results more

comparable and facilitate the testing of new models used for

traffic management. It offers several functionalities, such as

traffic generation, road infrastructure modeling, import of real

road network, etc.

It is widely used in several research areas, including vehicle-

to-vehicle communication, evaluation of surveillance systems,

dynamic routing and navigation, and traffic light management

[16]. This paper will deal mainly with the latter issue. Indeed,

for the implementation of a DQN model, it is necessary to

model the environment in which the agent will evolve, and to

calculate the reward obtained for each action performed.

These 2 elements are essential for the training phase of a

DQN model. Hence our use of SUMO in our approach. It is

true that SUMO is not as efficient to evaluate traffic for real

life intersections. But its speed, the freedom it offers for

modeling intersections, its support for many vehicle types,

and especially its TraCI API make it an excellent tool for

testing new traffic management algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 27, September 2021

12

3. THE TOOLBOX
Our work aims to facilitate the use of the SUMO simulator

with Tensorflow, for road traffic management. With this tool,

researchers will be able to easily test their different models

quickly. Instead of spending several days studying the SUMO

API, and setting up data mapping procedures, researchers will

be able to get results in minutes with our tool.

Our tool consists of several software components. Each

component offers essential functionalities to perform traffic

simulations with DQN models. The figure 1 below presents

the global architecture of our tool. It gathers almost all the

components.

Our tool is based on the Traci API of SUMO, which allows to

control a SUMO simulation via an API. It is therefore

possible to retrieve all the data of the simulation at a given

time. For the model part, our tool supports the Tensorflow TF-

Agents. At first, only DQN agents are supported in our tool.

Fig 1: Global Architecture

The following section will detail each component separately.

3.1 PyEnv Environment
To use Tensorflow agents, you need to have an environment,

coded in python, that implements a certain logic. The

Tensorflow documentation indicates that a valid Tensorflow

environment must implement mainly 4 functions:

“action_spec”, “observation_spec”, “_reset”, “_step”.

“action_spec” must return the specification of the action

vector and “observation_spec” must return the specification of

the observation vector. In the current version, Tensorflow

requires the action vector to be a scalar. Therefore, a

projection between supported actions of the traffic manager

and integers must be implemented. For the observation, we

propose a 3-dimensional tensor, which will contain the

following information: position of the vehicles, speed of the

vehicles and current status of the controlled intersection traffic

lights.

The “_reset” function will reset the simulation’s state. It is

generally used to start a new epoch. It returns a state which

represents the zero time of the simulation. Finally, the “_step”

function takes an action as argument and returns the new state

of the simulation and the reward obtained following the

chosen action.

For our tool, we used a reward formula that reduces the

average travel time of vehicles, inspired by this work [17].

Below is the exact formula used:

rt =
1

N

ti
T

N

i=1

Where T is the average acceptable travel time.

To control SUMO, we use the Traci API. It allows to get all

the information related to the simulation: vehicles, traffic

lights, roads, etc. It also allows to control the progress of the

simulation, second by second.We set up a Python

Environment that implements these functions, and that

controls the simulation, using the Traci API. The environment

exposes several parameters such as: the duration of an

episode, graphical or console mode, SUMO’s port, etc.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 27, September 2021

13

Fig 2: Class Diagram

The tool supports two data representation formats: Image-like

mode and Array mode. We have therefore implemented two

data mapping processes, one for each representation. From a

data model point of view, the tool uses a model based on

several entities. They are detailed on the Figure 2.The Edge,

Lane, and Vehicle entities represent the same SUMO entities,

with fewer attributes. The Junction entities represent an

intersection in the road network.

3.2 Managing Networks
Netedit is a powerful tool included in SUMO package, which

allows to create networks, in an intuitive way. It also allows to

generate vehicles, with departure and destination routes. This

information is used by SUMO to create the simulation.

We have included in our tool a set of ready-to-use networks.

To simplify the modeling, we have set up vehicles with a unit

size (each vehicle measures one-unit length). This is very

useful for the image-like representation. It allows us to

assume that a vehicle is in one cell at a given time.

Fig 3: Simple Network type "Cross".

Fig 4: Network with Adjacent, type T

In this version, we propose 16 network models. They are
generated according to 4 criteria:

 Intersection type: Cross Intersection, T-Intersection

 Network Complexity: With or without adjacent
intersections

 Lane count: one or two lanes per edge.

 Edge length: 20 or 40 units

The traffic generated for each network ensures a maximum
duration of one hour for the simulation. This provides the
necessary time to test strategies that span over time. The
figure 3 and 4 shows examples of networks supported by our
tool.

3.3 Supported actions
Generally, the traffic lights of an intersection have standard
sequences. For example, for a Cross Intersection, with 4
traffic lights, we can have one of these examples:

 red-greed-red-green, green-red-green-red

 red-red-green-red, green-red-red-red, red-green-red-
green

To give more flexibility, our tool supports all possible states.
It allows the models to innovate and explore all possibilities.
The learning phase will retain the actions that give the most
reward to the agent.

Our generator allows to define the possible actions, depending
on the type of intersection. In the case of a network with
several intersections, only one action set will be used for all
the intersections, for simplicity reasons.

During our testing we found that models can sometimes make
very quick changes to the network traffic lights. After
reflection, we decided to limit this, as it is not practical in real
life conditions. To implement this limitation, we allow agents
to control the simulation only once every 5 seconds. This
parameter is exposed, so it can be modified if needed.

3.4 Tensorflow Agent
Our tool offers a ready-to-use agent, which is based on a DQN
Agent from Tensorflow. It is compatible with any Q Network.
We provide a default implementation, which uses a simple Q
Network. It is possible to give a custom Q Network quite
easily.To test a model with the tool, you need to provide the Q
Network that represents the model to be tested. The defined Q
Network will receive as input the data received from the
environment. It is therefore recommended to use the
“observation_spec” function of the environment to obtain the
specifications of the input layer. The output of the Q network
must return the action to perform. The “action_spec” function
of the environment allows to obtain the specifications that the
network must respect in output.The agent exposes a set of
hyper parameters. It therefore gives total freedom when
implementing the model. Among the available parameters we
find: num_iterations, initial_collect_steps,
collect_steps_per_iteration, replay_buffer_max_length,
batch_size, learning_rate, etc.All these parameters are
documented in the README.md file of the generated project.

 In addition to the Q Network, it is possible to define an
Optimizer and a Loss Function. By default, the tool uses an
AdamOptimizer as optimizer and Element Wise Squared Loss
as Loss Function. The tool leaves the freedom to modify these
options when declaring the agent.

The agent uses a Replay Buffer for the learning phase. All the
parameters of the Replay Buffer are included in the agent’s
hyper parameters. The use of the Replay Buffer was added
because of the very good results obtained by the community
when it was added. At each iteration, the agent collects a set
of data from the environment and adds them to the Replay
Buffer. Subsequently, the agent uses a batch of data from the
Buffer to update the Q Network weights

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 27, September 2021

14

Algorithm 1: Training Algorithm

Two environments are used by the agent: a training
environment and an evaluation environment. The agent
automatically pilots the two environments during the training
and evaluation phases. At each epoch, the agent resets the two
environments.

 The tool offers functions for saving and loading policies. The
agent implements these features. It is therefore possible to
save a policy by calling a simple function. Loading an
existing policy is also easy, the agent can use an existing
policy on a given environment by calling a simple function.
The algorithm used by the agent for the training phase is
detailed in Algorithm 1.

3.5 Comparing Policies
When developing a model, it is imperative to compare the

results with other models. Our tool offers two pre-

implemented models to facilitate the evaluation of a

model.The first model implemented is based on the "Fixed-

Time" policy. It is the most used model in the field today. It is

therefore imperative for any new model to give better results

than the "Fixed-Time" policy [18]. Our tool proposes to use

the "Fixed-Time" policy on an environment identical to the

one used to train or evaluate the new model. The tool returns

the average of the reward obtained for each epoch, in the form

of a CSV file. It is therefore possible to draw comparison

curves between the two models.

The second model implemented is a random policy. It allows

to see if the tested model gives better results than a random

algorithm. This policy can be used with all possible actions.

The policy will choose at each time interval, a random action

to perform. The result is retrieved in CSV format, identical to

the one generated by the tool during the training phase of the

model to study.It is of course possible to test policies that are

already documented in the literature. However, they must be

implemented. One of the goals of our tool is to facilitate the

comparison between models in the future. When researchers

use our tool to test and prepare a new road traffic management

model, they can publish the source code of their model or

generate the policy. Other researchers can then retrieve their

work and compare it with new models.

3.6 Web Generator
To simplify the use of our tool, we have set up a web
interface. The web interface allows you to configure your
simulation, and to download a project ready to use. It is
possible to set up the project, according to the following
options: (1) Network Complexity: With or without adjacent

intersections, (2) Intersection type: Cross Intersection, T-
Intersection, (3) Lane count: one or two lanes per edge, (4)
Edge length: 20 or 40 unit, (5) Data Representation: Image-
Like or Array, (6) Supported Actions

 We have decided to limit the number of options available in
the interface to not complicate its use. Other options can be
configured directly on the project, especially the hyper
parameters.The generated project contains a README.md
file detailing the different options that are not configurable in
the UI. All parameters are provided with default options that
allow to start safely the implementation of a model.On the
technical side, the web interface is based on NodeJS for the
Backend part, and on VueJS for the FrontEnd part. The choice
of NodeJS is justified by its ability to easily manage a large
number of requests, and for its asynchronous processing of IO
operations [19]. Indeed, the web tool uses algorithms and pre-
formatted files to generate the project template, hence the
importance of efficiency in terms of asynchronous IO
processing of requests.

For authentication, we started with an authentication with

Google and Github to simplify. Users will then authenticate

directly via an external provider, without having to enter a

new password. The Figure 5 below details the technical

architecture of the web part.

Fig 5: Web Generator Architecture.

3.7 Project Structure
The web interface generates a ready-to-use Python project.

We have designed the project structure to be as simple as

possible to use. The Figure 6 below shows the structure of the

generated project.

The Figure 6 below shows the structure of the generated
project.

Fig 6: Project Structure.

Below is the role of the most important elements:

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 27, September 2021

15

a. Output_data: This folder contains the CSV files

generated during the training of a model. It also contains

the data generated by the pre-implemented policies

(random and fixed-time policies). The file name is

prefixed with a string to indicate whether it is a file

generated for a model or for a pre-implemented policy.

The file name ends with the creation date. For each run,

the tool generates two files. A first output CSV file

contains the following data for each episode: Vehicles

Count, Cumulative Travel Time, AVG Travel Time, Max

Travel Time. The second file contains the Cumulative

Reward for each epoch.

b. Network_files: This folder contains the different files

related to the SUMO network. There are mainly 4 types

of XML files (network, routes, settings, config). In

addition, there are 2 JSON files: a mapping file, and a

file of actions configured for the model. The mapping

file is used to interpret the SUMO network data

correctly, and the actions file is used to define the

possible states of the agent's intersection lights.

c. Logs: This folder contains the different log files

generated during the execution of the training or

evaluation scripts. The names of the files follow the same

logic as the files in the output_data folder.

d. Saved_policies : This folder is used to store policies. It

contains subfolders. Each sub-folder represents a policy.

The folder name is prefixed by the creation date. In

addition to the files related to the policy, the sub-folder

contains a JSON file with all the hyper parameters used,

to find them easily later.

e. Lib: This folder contains the different python scripts that

we have set up to implement the logic of the tool. For

example, there are the files of the PyEnv environment

and those of the DQN agent.

f. Model.py : This is the file where the model will be

defined. The researchers will use this file to define the Q

Network they will use. The different hyper parameters

will be defined at this level too.

g. Train.py : This is the file that must be launched to start

the learning phase of the model.

h. Eval.py : This is the file you have to launch to load an

existing policy.

i. Fixed_time_policy.py: This is the file that launches the

model based on the fixed_time policy.

j. Random_policy.py: This is the file that runs the template

based on the random policy.

k. Pipfile: The pip environment file. It contains all the

necessary dependencies for the project.

l. README.md: The project documentation file. It

indicates how to install the different dependencies of the

project, and how to use the different scripts provided in

the template. It also details the different hyper parameters

available.

4. EXPERIMENTAL SETUP
In this section, we will use the tool to test a model. As

mentioned in the previous section, the tool comes with a

simple model to get started. We will use this model to

illustrate the use of the tool, and the features it offers.

4.1 A Simple Network with two lanes
The first step is to get a new copy of the project. We will use
the web interface to configure the tool with the data below:
(1) Network Complexity: Without adjacent intersections, (2)
Intersection type: Cross Intersection, (3) Lane count: two
lanes per edge, (4) Edge length: 40 units, (5) Data
Representation: Array, (6) Supported Actions: GRGR –
RGRG.

The Figure 7 below shows the configuration used.

Fig 7: Generator UI Form.

4.2 The generated project
Our thanks to the experts who have contributed towards

development of the template.The project generated by the web

interface is ready to use. It contains the data of the selected

network, and it uses the intersection lights with the actions

defined in the web interface. bWe find the structure of the

project, as presented previously. The README.md file gives

all the details to start the project and presents all the project

hyper parameters.

 To initialize the python environment, you have to install
python and pipenv. Once this is done, all the dependencies
will be installed thanks to the pipenv file. The installation of
the dependencies is done via the command below, as specified
in the README file:pipenv install. To use the scripts
provided with the tool, you have to start a shell with
pipenv:pipenv shell. We can now start using the tool. To
make sure that everything is OK, we are going to launch the
random_policy.py script.

4.3 Use a simple Q Network
To setup a model, you have to modify the file model.py. It

allows to modify the different hyper parameters, and to

propose a model on Q Network. It is possible to propose a

model with several floors, and composed of fully-connected

networks, CNN, etc.The project is delivered with a model

based on a simple Q Network, composed of a single layer. We

will use it as a model in this article to illustrate the capabilities

of the tool. The Figure 8 illustrates the architecture of the

model used.The hyper parameters included in the template

can be used directly for the first tests. The hyper parameters

used are detailed in algorithm 2 above.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 27, September 2021

16

Fig 8: Simple Network Architecture

Algorithm 2:Hyperparameters.

4.4 Start training
The train.py script allows to start the training of the model

configured in the model.py file. The script initializes two

environments, a training environment, and a testing (or

evaluation) environment.

By default, the script is configured to run in console mode. It

is possible to configure this behavior. The parameter to

modify is 'enable_gui'. If it is enabled, SUMO will run in GUI

mode, so two windows will appear, one for each environment.

The selected network is displayed, and the training starts. We

can directly visualize the actions of the agent on the

simulation, as well as the generated traffic. The Figure 9

below shows the training and testing environments, during the

training phase.

Fig 9:Running simulation

4.5 Exported data
Once the training is finished, the tool generates a set of output

files. There is a log file in the logs folder, which allows you to

inspect the simulation data afterwards. The output_data folder

contains the simulation results as CSV files. This makes it

much easier to compare and evaluate the data.

It is possible to test several values of a hyper parameter, and

graphically visualize the impact on the simulation results. It is

possible to use any library or tool that allows to draw curves

to visualize the results. For our model, we obtain the results

showed in figures 10-12.

Fig 10: Reward for simple model

Fig 11: Cumulative Travel Time for simple model.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 27, September 2021

17

Fig 12: Max Travel Time for simple model.

4.6 Compare Policies / Load Policies
To compare the results of several policies or models, we use

the different data files generated during the training of a

model. It is possible to use a pre-trained model. To do so, you

have to use the eval.py script, with the policy to be loaded as a

parameter. The execution generates new data files, which can

be compared with another model.

During their work, the researchers compare their new model

with the fixed-time method, which is the most used today. To

facilitate the work, our tool offers a script that allows to use

the fixed-time policy on the network configured for the

project. So we obtain a new data file, which we can compare

with those obtained with the model under study. To run the

fixed-time policy, you have to use the script

fixed_time_policy.py.

It is sometimes interesting to compare the results with a

random policy to check the efficiency of the studied model.

Here again the tool proposes a random-policy which will

control the network configured for the project, and will use

the configured actions, permuting them in a random way. The

same hyperparameters of the model will be applied for this

policy. To start the random-policy, you need to run the

random_policy.py script. After execution, we get data files

related to this simulation, and we can compare them with

other data.

 For the model we study in this section, we obtain the
following results, comparing it with a random policy and a
fixed-time policy.

Fig 13: Compare reward between simple model, fixed time

mode, and random model.

5. CONCLUSION
In this paper, we have presented a set of tools and a
framework that allow to easily use the capabilities of
Tensorflow with the SUMO simulator.

 Our work allows researchers to focus on the realization of
their models, ignoring the complexity of SUMO and
Tensorflow.

 The tool allows to configure a simulation scenario via a web
interface, which generates a traffic management python
project, based on Tensorflow and SUMO. The project is ready
to use. Researchers can directly fill in a model that will be
used as Q-Network by our tool. The tool can run several
simulations, and retrieve different data to analyze, such as
reward, average travel time, maximum travel time, etc. It is
possible to modify the hyper parameters of the simulation, and
to compare them or to compare the models between them to
obtain a conclusion.

 In the future, we would like to add support for other types of
intersections, and to increase the number of options available
in the current simulation criteria. We plan to add support for
traffic anomalies. Finally, as we worked with coordinated
agent, we will add support for coordinated agents in this
toolbox.

6. REFERENCES

[1] Lijun Wei, Heshan Du, Quratul-ain Mahesar, Kareem Al

Ammari, Derek R. Magee, Barry Clarke, Vania

Dimitrova, David Gunn, David Entwisle, Helen Reeves,

Anthony G. Cohn,“A decision support system for urban

infrastructure inter-asset management employing domain

ontologies and qualitative uncertainty-based reasoning”,

Expert Systems with Applications, Volume 158, 2020,

113461,ISSN0957-4174.

[2] Talha Oktay, Erdenay Yoğurtçuoğlu, Ramazan Nejdet

Sarıkaya, Ali Recep Karaca, Mehmet Fırat Kömürcü,

Ahmet Sayar,“Multimodel anomaly detection on spatio-

temporal logistic datastream with open anomaly

detection architecture “, Expert Systems with

Applications,2021,115755,ISSN0957-4174,

[3] Jang Seung-Ju, “Design of Traffic Flow Simulation

System to Minimize Intersection Waiting Time”

International Journal of Advanced Computer Science and

Applications(IJACSA), 9(5), 2018

[4] Qi Chen, Wei Wang, Kaizhu Huang, Suparna De, Frans

Coenen, “Multi-modal generative adversarial networks

for traffic event detection in smart cities”, Expert

Systems with Applications, Volume 177, 2021,114939,

ISSN0957-4174,

[5] Jafar Alzubi, Nayyar Anand, Kumar Akshi, “Machine

Learning from Theory to Algorithms: An Overview,”

2018 J. Phys.: Conf. Ser. 1142 012012.

[6] Johanna Ylipulli, Aale Luusua, “Smart cities with a

Nordic twist? Public sector digitalization in Finnish data-

rich cities”, Telematics and Informatics,Volume 55,

2020,101457,ISSN0736-5853,

[7] Schmidhuber J., "Deep Learning in Neural Networks: An

Overview". Neural Networks. 61: 85–117(2015).

arXiv:1404.7828. doi:10.1016/j.neunet.2014.09.003.

PMID 25462637. S2CID 11715509.

[8] Bengio Yoshua, LeCun, Yann, Hinton Geoffrey (2015).

"Deep Learning". Nature. 521 (7553): 436–444.

Bibcode:2015Natur.521..436L. doi:10.1038/nature14539.

PMID 26017442. S2CID 3074096.

[9] Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., &

Aram, F. “State of the art survey of deep learning and

machine learning models for smart cities and urban

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 27, September 2021

18

sustainability”. In International Conference on Global

Research and Education (pp. 228-238), 2019, September,

Springer, Cham.

[10] Jie Xie, Kai Hu, Guofa Li, Ya Guo, “CNN-based driving

maneuver classification using multi-sliding window

fusion,” Expert Systems with Applications, Volume

169,2021,114442, ISSN 0957-4174,

[11] Liang, X.; Du, X.; Wang, G.; Han, Z. “A Deep

Reinforcement Learning Network for Traffic Light Cycle

Control.”, IEEE Trans. Veh. Technol.2019,68, 1243–

1253.

[12] Shabestary, S.M.A.; Abdulhai, B. “Deep Learning vs.

Discrete Reinforcement Learning for Adaptive

TrafficSignal Control”. In Proceedings of the 2018 21st

International Conference on Intelligent

TransportationSystems (ITSC), Maui, HI, USA, 4–7

November 2018; pp. 286–293.

[13] Jianqing Fan, Zhaoran Wang, Yuchen Xie, Zhuoran

Yang, “A Theoretical Analysis of Deep Q-Learning”,

2019 https://arxiv.org/abs/1901.00137

[14] Bouktif, Salah, Abderraouf Cheniki, and Ali Ouni. 2021.

"Traffic Signal Control Using Hybrid Action Space Deep

Reinforcement Learning" Sensors 21, no. 7: 2302.

[15] P. A. Lopez et al., "Microscopic Traffic Simulation using

SUMO," 2018 21st International Conference on

Intelligent Transportation Systems (ITSC), 2018, pp.

2575-2582 [H]

[16] Lucas Rivoirard, Martine Wahl, Patrick Sondi, Marion

Berbineau, Dominique Gruyer. “Using Real-World Car

Traffic Dataset in Vehicular Ad Hoc Network

Performance Evaluation”. International journal of

advanced computer science and applications (IJACSA),

The Science and Information Organization,2016, 7 (12),

p390-398.

[17] Van der Pol, E., & Oliehoek, F. A. “Coordinated deep

reinforcement learners for traffic light control.

Proceedings of Learning, Inference and Control of Multi-

Agent Systems” (at NIPS 2016).

[18] Mannion, P., Duggan, J., & Howley, E. (2016). “An

experimental review of reinforcement learning

algorithms for adaptive traffic signal control”.

Autonomic road transport support systems, 47-66

[19] Tilkov, S., & Vinoski, S. (2010). “Node. js: Using

JavaScript to build high-performance network

programs”. IEEE Internet Computing, 14(6), 8083.

IJCATM : www.ijcaonline.org

