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ABSTRACT
In the Internet of Things (IoT), the internet-connected objects send
the Collected data and act on the received data. Encryption controls
a large number of structured and unstructured data protection
during transmission. Inadequate memory and processing capacity
of IoT devices demand Elliptic Curve Cryptography (ECC) for
simple, secure functionalities. Scalar Multiplication frequently
uses Modular Inversions that impact significantly on ECC-based
applications with low resource usage with the enhancement of
reliable IoT System availability. The Point Inversion algorithm
for Elliptic Curve Cryptology (PIECC) enhances security and
reduces the Computation time of Modular Point Inversion of
Elliptic Curve using High-Speed Split Multiplication and Squaring.
The use of limited intermediate registers for Cryptographic
functions optimizes the Storage. The proposed algorithm reduces
the Computation Time of the Cryptographic operations in terms of
Clock cycles using chain Fermat-based Inversion compared with
High-Speed multiplication and Product Scanning algorithms with
lower Space Complexity.
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1. INTRODUCTION
The varying worldwide development in Modern Technology shows
the converging of computation and communication. The distributed
Smart devices with a remote connection substitute the Personal
Computers with a wired network in almost all the sectors. It
necessitates information protection and security measures. Data
security and confidentiality are currently the requisite for Banking
applications (mobile, SMS, UPI, etc.,) on Phones, wearable
Healthcare devices, work-from-home, etc. Internet of Things (IoT)
drives the concept of bringing the world together via universal
connectivity. The fundamental requirement of IoT is to secure
information and data communication providing robust availability
with optimized resource usage.
The embedded systems are highly domain-specific; The domains
expand for such systems. The purpose of the washing machine is

to inlet and outlet water at a controlled time using a programmed
microcontroller. The fully automatic washing machines provide
the option of fuzzy, pre-set hot water washing and other
fabric-dependent programming features. The cell phone acts as
a router and the Television screen as a Smart screen using
Hotspot and WifiDirect facility. Every device viz., laptop, printer,
refrigerator provides functionality and maintenance status. The
internet of Things provides connectivity of the underlying devices
with least or without human intervention. The connected embedded
devices transfer information and need network security in a
resource-constrained environment. The small key size with a high
level of protection causes Elliptic Curve Cryptography [1] effective
in an IoT scenario with reduced Storage, and Time overhead
minimizes the power consumption. It increases the life span of IoT
devices.
The primary component of IoT is Device-to-Device
communication. Wireless sensor networks are application-specific.
The sensor nodes or motes design in compliance with the
application. IoT and Device-to-Device communication use existing
motes. The functionality of sensors integrates into the chipset of
the specific device leads to a device-specific implementation.
The Sensor nodes of the IoT and WSN nodes vary in IP
connectivity. Cooja simulator implements an IP stack into sensor
nodes e.g., TELOSB, Tmote, Micaz, etc., Sensor nodes in IoT
are IP-enabled with a 6lowPAN IP address allowing them to
interact with remote Edge-to-Edge motes. The characteristics of
the sensor node or mote are non-replaced battery, low data transfer
capacity, restricted computational and operational efficiency. IoT
environment requires the highest performance of the nodes
consuming the least energy.
Motivation: Finite Field Arithmetic is extensively used in
numerous fields viz., Combinatorics, Coding, String Theory,
and Cryptology, Logic Gate Theory, etc., A wide range of
Public-Key Crypto Applications implemented are over a high-order
Finite Fields [2]; accordingly, multiplying and dividing operations
influence the processing time of encrypting and decrypting
functionality. Thus, designing and developing a faster approach to
carry out such operations is essential. High Speed Split Multiplier
(HSSM) for Elliptic Curve Cryptography [3] uses Split Multiplier
with confined registers to carry out Cryptographic operations in
IoT. The faster Inversion algorithm accelerates the implementation
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of the Scalar Multiplication. The reduction in computation cost
and storage complies with Micaz mote of 4KB RAM. The Point
Inversion algorithm for Elliptic Curve Cryptology (PIECC) to
secure Data Communication in IoT reduces the Computation Time.
It thereby decreases the processing time of the Encryption and
Decryption in the Public Key Infrastructure of IoT.
Laporta et al., [4] described a Modular Multiple Word Inversion
enhancing Stein Greatest Common Divisor with De Bruijn
Contiguous Subsequence and Montgomery arithmetic. Hyper
Thread [5] and Reverse Product Scanning [6], [7]enhanced the
existing systems. Many researchers worked on Binary Edward,
Twisted Edward, and Montgomery curve [8], [9], [10] over modular
Non-CoPrime [11],Gaussian Integer [12] and Prime Field [13].
Contributions: The key contributions of this work are to enhance:

i) security by reducing the Computation time of Modular
Point Inversion of Elliptic Curve using High-Speed Split
Multiplication and Squaring.

ii) performance by optimizing the Storage using limited
intermediate registers of motes for Cryptographic functions.

Organization: The paper is structured as follows: Section
2 abstracts the Related Works of the modular Inversions
for Elliptic Curve Cryptography in an IoT environment.
Section 3 describes the Background Work, and Section 4
presents the Proposed Point Inversion algorithm for Elliptic
Curve Cryptology (PIECC) for secure Data Communication
in IoT Algorithm. The Performance Analysis of the
proposed system is in Section 5. Section 6 contains the
Conclusions.

2. RELATED WORKS
Fermat’s little theorem (FLT) over Prime Fields reduces Squaring
and Multiplication in modular Inversion. Gallin et al., [14]
presented a Pipelined Modular Multipliers for Hyper Elliptic
Curve Cryptography of Field Programmable Gate Arrays with
Digital Signal Processor blocks. The pipelines are filled using
Dynamic Threads. The modified 128 bits algorithm computes
parallel independent intermediate results and uses Block RAMs to
produce smaller and faster circuits compared to the Multiplier with
Threads of [5]. The performance is distinct and non-generalized,
excluding the non-square quadrate blocks of the Digital Signal
Processor, focusing on the single word parameters applicable for
Digital Signal Processor functions of the Field Programmable Gate
Array.
Ding et al., [15] presented a Two-stage pipelined Montgomery
Modular Multiplication using a Two-stage Karatsuba
multiplication [9] which is extended to Three and Four stage
multipliers for unbounded positive operands [15]. The partitioning
of the operands into small chunks reduces the core multiplication
by occupying all the pipeline stages. The cropped multipliers and
registers reduce the Look-Up Table (LUT) cost. Feng et al., [16]
proposed a multi-path Number Theoretic Fourier Transformation
algorithm using Quantum Computational cryptanalysis train and
test over Polynomial Rings. The computational complexity is
directly proportional to the degree and inversely proportional to the
paths. The use of the modified Caching technique and the Round
Constant speeds up the product computation.
Leelavathi et al., [17] implemented and processed ECC with
8 Montgomery Curve Point Product obtained using Urdhva
Triyambhagyam Vedic Multiplication technique. The 194 bits
implementation overflows the Spartan-3E resource limitations. Li
et al., [18] presented a framework for a Koblitz Elliptic Curve

Point Multiplier (ECPM) with Heterogeneous Scalar conversion.
The parallel and pipelined executions with a three-level channeled
Finite Field accumulator of the functional unit increase the
performance of the Addition operation. The heterogeneous delayed
reduction and dual τ -adic Nonadjacent Form method reduce the
resource usage. Inversion is performed using continuous Addition
operations.
Wenger et al., [19] implemented Four Elliptic Curve multiplier with
an Accumulator and performed Elliptic Curve Multiplication of 4
Bytes accessed in 2 sets of a Word using eight registers accelerating
the Functional Unit. Abdulrahman et al., [20] presented a
Radix-Eight Multiplier method to assess the EC multiplier by
pre-computing results of doubling and addition operations for three
bits of the scalar in parallel without using the Look-Up Table.
The Prime Extended Twisted Edward Curve with Eight multiplier
implementation performs better compared to the Montgomery
with resistance to Simple Power Analysis (SPA) attack. The
scheme outperforms in a multiple processor parallel execution
environment.
Salarifard et al., [21] proposed architecture for an Elliptic Curve
Point Multiplier using a Fixed base Comb to decrease the quantity
of Addition Operations performed and the time complexity. The
Static base algorithm requires the Prior Multiplication operation
to complete, introducing an extra operating cost. A Two-level
pipelined Karatsuba Ofman Point Multiplier with overlapped
operations decreases the complexity and latency, increasing the
throughput. Ali et al., [22] designed a 521-bit Modular Multiplier
using Matrices and Vectors applying dual and triple partitions
over a Four Byte result for the static and varied base operands
in two stages. The number of Arithmetic operations and the time
complexity are reduced by avoiding the overflow compromising the
efficiency of the algorithm.
Roy et al., [10] presented an improved Montgomery Elliptic
Curve Point Multiplier [23] that incorporates the compressed
circuitry allowing two sets of multiplier functionalities performed
simultaneously using Carry links, LUTs, and the scheduler. Amiet
et al., [24] designed an ECPM processing framework for the
operands to the maximum of 0.5Kbits encompassing a Finite
Field bounded by 1Kbits. The implementation uses DSP blocks
of FPGA, and parallelization of Addition and Doubling increases
the efficiency. The Modular Arithmetic functionalities execute in
parallel. Fermat’s method is applied in the Modular Inversion
operation. The Elliptic Curves of Parameter Size more than 256bits
are not supported.
Rashidi et al., [25] employed two-Field parallel Multiplier Selim
et al., [26] NIST Montgomery Modular Multiplication Al-Asli
et al., [27] resists Internal Attack. Loi et al., [28] designed and
implemented a NIST ECC processing framework using DSP blocks
and parallel execution to reduce the time complexity and memory
usage. The multiplier and the Inverter use the same functional block
without parallelization.
Xu et al., [29] constructed a Modular Inversion over 192 bit
NIST and Chinese Elliptic Curves resistive to SPA and Heuristic
Lattice-based Decoding Attacks. The Montgomery Point reduction
decreased the number of multiplication operations performed to
minimize the Time complexity.
Choi et al., [30] Hardware-based NIST ECC processor. A repeated
Modular Prime number reduction over multiple intermediate
products of size greater than the operand size and half the size
of Final Result used. The Computation cost reduced is directly
proportional to the size of the Intermediate results using a 0.5Kbits
register. Gu et al., [11] generalized the McLaughlin Multiplier of
Residue Number System with unpaired Secondary Prime applying
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the Chinese Remainder Theorem. The Montgomery representation
allows the same coefficients used for varied sizes.
Researchers have designed Scalar Multiplication with Inversion
algorithms for specific Elliptic Curves providing mathematical
models and validations for various motes in an IoT scenario.

3. BACKGROUND WORK
Researchers have designed Scalar Multiplication with Inversion
algorithms for specific Elliptic Curves providing mathematical
models and validations for various motes in an IoT scenario.
Liu et al., [7] implemented MoTE Curves to secure IoT device
communication. The Curve models resist the Power Analysis
attack. Table 1 gives the comparison of related background works
on the Elliptic Curve Cryptographic operations.

3.1 Elliptic Curve Cryptography
The Elliptic Curve Point representation of the data provides
tamper-resistance data transfer. The secure ECC is assured by
the Discrete Logarithmic Property (DLP). An Elliptic Curve is a
smooth, Planar, Projective, Algebraic Curve with a single genus,
characterized by two Curve Coefficients that belong to a Finite
Field. An Elliptic Curve satisfies the properties of an Abelian
Group over a Multiplication with a Commutator O, the Point at
Infinity in the Projective Plane [3]. Cryptographic Applications
require adequate security, which is provided by the Elliptic Curves.
If the selected Elliptic Curve satisfy the characteristics reported in
SafeCurve [31], then the security is assured. Montgomery Elliptic
Curves Em represented by the equation (1).

Em : B.Y 2 = X3 +A.X2 +X, (1)

where A,B curve coefficients belong to a Finite Field Prime Fp

with (A2 − 4).B resulting in a non-zero number. Twisted Edwards
Curve Et/Fp is given in equation (2).

Et : A.X2 + Y 2 = 1 +D.X2.Y 2 (2)

where A, D ∈ Fp and A.D.(A−D) a non-zero integer.
The Additive Policy of Elliptic Curve [3] states that sum of any
two Points Pi, Pj on the Et curve results in a Curve Point subject
to
√
A is a positive Integer with A ∈ Fp and

√
D is a real number

i.e., ∀Pi,Pj∈E{Pj + Pj ∈ E : if
√
A ∈ Z+ and

√
D /∈ Z+}.

The properties of the Montgomery and Twisted Edward Curves
allow the Weierstrass Elliptic Curve Point representation.

3.2 Fermat-Euler theorem
The Fermat-Euler theorem is given in the equation (3), (4) is used
to Inverse the Prime number exponentiation representation of an
Elliptic Curve.

∀a∈N+∃b{|a = ρ ∗ b} (3)

where ρ is Prime, N+ is the set of Positive Integer Numbers and
a, b, ρ ∈ N+; i.e.,

∀a∈N+

{
aρ ≡ a mod ρ ⇐⇒ a mod ρ ̸= 0

aρ−1 ≡ 1mod ρ ⇐⇒ (a− 1)mod ρ = 0

}
(4)

3.3 Problem Statement
The Encryption/Decryption technique provides secure information
exchange in a stable framework. The resource-restricted IoT
devices demand the utilization of Elliptic Curve Cryptographic
(ECC) techniques. The Scalar Multiplication significantly affects

the ECC usage in minimizing the Computational Complexity and
the Storage overhead of Modular Inversions, as the ECC operations
involve the Fundamental Modular Arithmetic. Thus, upgrading an
ECC enhances the Security and Privacy of the IoT Application.
Given a collection of IoT devices of specified configuration, to
design a Point Inversion algorithm for Elliptic Curve Cryptology
to secure IoT Data Communication, the objectives are as follows:

i) Enhance the security with decreased computation time using the
High-Speed Split Multiplication based Squaring algorithm for
Modular Point Inversion of Elliptic Curve Cryptography.

ii) Optimize the data and code Storage, improving the performance
of IoT devices using limited intermediate registers to carry out
Cryptographic functions.

3.4 Assumptions
The heterogeneous IoT devices or the Sensor nodes:

i) Handle unexpected failure.

ii) Report on session failure.

iii) Portable within a network range of varied topologies.

iv) Scalable, independent, and re-programmable.

4. PROPOSED POINT INVERSION ALGORITHM
FOR ELLIPTIC CURVE CRYPTOLOGY (PIECC)
FOR SECURE DATA COMMUNICATION IN IOT

The Cryptographic Elliptic Curve Point Encrypt and Decrypt
functions perform Point Addition, Doubling, Inversion, etc.,. The
Prime numbers chosen depend on the Curve properties to satisfy.
There is no division arithmetic function for the prime group, a
division is performed by finding Inversion of the denominator and
then multiplying with the numerator. Table 2 provides the definition
of the notations used in the Section.

4.1 Selection of Curves
A Prime Field number is represented as p = 2α − β [3] where,
β ≤ 2ω (ω, mote Word-length), p ∼= 1mod4 and β ∼= 5mod8.
Let the equation (5) given below represent a 159 bit Montgomery
Curve

Em159 : −319156.y2 = x3 + 3191566.x2 + x (5)

and Twisted Edwards curve given in the equation (6).

Et159 : −x2 + y2 = 1 + d.x2.y2, (6)

where d = 8372259163916347487045608834894170521
976562663492.

4.2 Modular Squaring
The Modular Squaring function performs multiplication of two
same operands based on HSSM.
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Table 1. Comparison of Recent Related works
Article Approaches Advantage Disadvantage
Gallin et al.,
[14] (2019)

Pipelined Modular
Multipliers Dynamic
Threads.

computes parallel independent
intermediate results; uses Block
RAMs

Distinct, non-generalized; exclude
non-square quadrate blocks; focus
on the single word parameters

Leelavathi
et al., [17]
(2019)

ECC using Urdhva
Triyambhagyam Vedic
Multiplication

8 Montgomery Curve Point Product 194 bits implementation overflows
the Spartan-3E resource limitations.

Amiet et al.,
[24] (2016)

Finite Field bounded by
1Kbits

ECPM for the operands to the
maximum of 0.5Kbits; DSP blocks
and parallelization of Addition and
Doubling increases the efficiency.

Parameter Size more than 256bits
not supported.

Loi et al.,
[28] (2015)

NIST ECC processing
framework using DSP
blocks

parallel execution reduce the time
complexity and memory usage

Multiplier, and Inverter use the
same functional block without
parallelization.

Table 2. Table of Notations
Symbol Definition
p Prime Field number
ω mote Word-length
EmX X bit Montgomery Curve
EtX X bit Twisted Edwards curve
Em Montgomery Curve
Et Twisted Edwards curve
P1 = (P1[η−1], · · · P1[1],P1[0]) Operand of η-words
P2 Product of 2η-words
Ti Temporary variables
µ, ν Iteration control variables
a Finite Field element a

Function 1 Squaring of two numbers.
Input: Two operands P1 = (P1[η − 1], · · · P1[1],P1[0])
Output: Product P2 = P1 × P1 = (P2[2η −
1], · · · P2[1],P2[0])

1. T1 ← P2[0]← 0
2. for µ from 1 to η do
3. for ν from 0 to µ/2− 1 do
4. T1 ← T1 + P1[ν]P1[µ− ν − 1]
5. end for
6. P2[µ− 1]← T1 mod 2ω; T1 ← T >> ω
7. end for
8. for µ from η to 2η − 3 do
9. for ν from µ− η + 1 to (µ− 1)/2 do

10. T1 ← T1 + P1[ν]P1[µ− ν]
11. end for
12. P2[µ]← T1 mod 2ω; T1 ← T >> ω
13. end for
14. P2[2η − 2]← T1 mod 2ω; P2[2η − 1]← 0
15. T1 ← 0
16. for µ from 0 to η − 1 do
17. T1 ← T1 + P1[µ]P1[µ] + 2(P2[2µ+ 1]2ω + P2[2µ])
18. P2[2µ]← T1 mod 2ω; T1 ← T >> ω
19. P2[2µ+ 1]← T1 mod 2ω; T1 ← T >> ω
20. end for
21. return (P2[2η − 1], · · · ,P2[1],P2[0])

The Function 1 plays a vital role in the Modular Inversion algorithm
as the frequency of multiplying in others is more. So the efficiency
of this Function increases the efficiency of incorporated algorithms

in many folds. The symmetrical factor of the large Integer
Multiplicand and Multiplier in the Square Function, P1 provides
better performs compared to asymmetric Integer Multiplication
function. In a regular Multiplication based Squaring, all interjacent
outcomes of the form P1κ × P1ν with ν! = κ computed twice.
The Function 1 computes these interjacent outcomes merely one
time and later shifts words to the right to obtain the Doubled result
by shrinking excess processing cost.
The two nested loops in the Function compute the Double of
interjacent outcomes P1κ ×P1ν equivalent loops in multiplication
algFuncorithm used in this HSSM. The initial and the final
interjacent outcomes are attached to the interleaved blocks, and
reduction in the frequency of inner blocks repetition differs
the Squaring Function from the regular Doubling. The modified
exit-control statements reduce the overall Multiplications carried
out by the dual repetitive blocks from η2 − 2 to (η2 − η)/2.

4.3 Modular Reduction
The Multiplication and Squaring of two numbers of bit length η
results in 2η length of the result. Since the value of η is large,
subtracting the prime number from the result consumes much time.
The Reduction is a process of minimizing the result of 2η bit length
to η bit length less than the prime number chosen, which is the same
as reducing the result belong to the selected Prime Field.

Function 2 Reducing 2η bit length result.
Input: Prime number p,Z = A ∗ A, a 2η-word.
Output: Reduced product Z ′ having η-word. (A ∗ A) modulo p.

1: ZH ← A[2m],A[2m− 1], · · · ,A[m]
2: ZL ← A[m− 1],A[m− 2], · · · ,A[0]
3: Write the Prime number p as

2p = 2(2k − C) = 2n − d where d = 2 ∗ C
4: Z ′ ← ZH .d+ ZL

5: while Z ′ > p do
6: Z ′ ← Z ′ − p
7: end while
8: return Z ′

The Modular Reduction Function can be implemented in two
methods efficiently. In Function 2, the first method, the value of
ZH is left-shifted n times, where n is the bit length of the integer
d. The intermediate results and the valueZL are added and reduced
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further using subtraction. In Function 3, the second method, the
usual multiplication algorithm is used instead of the left shift, and
further reduction is obtained by subtraction.

Function 3 Calculating Z in Reduction function.
Input: ZH ,ZL and d = 2 ∗ C.
Output:Z ′, whereZ ′ = ZH ∗d+ZL.

1: Convert to binary form.
2: while d > 0 do
3: left shift ZH log(d) times.
4: Z ′ ← Z ′ + ZH

5: d = d/2
6: end while
7: return Z ′

4.4 Modular Inversion
Modular Inverse of an integer a is an integer x such that a.x ≡
1 (mod p) Since the elements of the Prime Field p are from 0 to
p−1, the modular Inversion, i.e., reducing the integer obtained after
multiplying and squaring to an integer in the Prime Field p.
Modular Inversion is the most consuming process in the encryption
algorithm. The Extended Euclidean Algorithm and Inversion via
exponentiation based on Fermat’s little theorem are two principal
approaches for evaluating an inversion in Fp. A Fermat-based
inversion in Fp with p = 2k − c costs about k− 1 squaring and no
more than 2.log2(k − 1) multiplications.
For the 223 bit Prime Field with prime number p = 2223 − 235
the optimized chain Fermat-based inversion algorithm is shown in
Algorithm 1.

Algorithm 1 Calculating Inversion for p = 2223 − 235

Input: Finite Field element a.
Output: The inversion a−1 in Fp as t = ap−2 mod p, p = 2223 −
235.

1: a2 ← a2

2: a9 ← (a2)
4.a

3: x1 ← 2; t← (a2.a2)
x1 .a9

4: x2 ← x3 ← 25; t← (t)x2 .t
5: for i from 1 to 4 do
6: x3 ← (x3)

2; t← (t)x3 .t
7: end for
8: x3 ← (x2)

2; t← ((t)x3 .t)x2

9: x3 ← x2.4; t← ((t)x3 .a9)
2.a

10: return t

From the given integer a, which belongs to the Finite Field, the
algorithm has to calculate the value ap−2 where p = 2223 − 235.
The algorithm calculates intermediate powers and reduces at each
step by calling the modular reduction function. The intermediate
results are stored in the array to prevent re-calculating the values
calculated earlier, thus increasing speed. The modular Reduction
of any number results in values being in the finite field save the
memory required to store non-reduced values. The squaring and
multiplications are obtained by the respective functions described
before.
The total number of squaring and multiplications required to
calculate Inversion for the prime number p = 2223 − 235 is 173
squaring and 12 multiplications. As the squaring of a number is

considerably faster than multiplying the number twice, Squaring
Function is called wherever feasible to make it more efficient.
The algorithm 1 described, calculates the Inversion of any number
belonging to the Finite Field chosen significantly faster than most
previously implemented versions. The inversion algorithms for the
prime numbers p = 2191 − 19, p = 2159 − 91 and p = 2255 − 19
follows the same methodology with few required changes required
accordingly.

Algorithm 2 Calculating Inversion for p = 2159 − 91

Input: Finite Field element a.
Output: Inversion a−1 in Fp as t = ap−2 mod p, p = 2159 −
91.

1: a2 ← a2

2: a4 ← (a2)
2

3: a9 ← (a4)
2.a

4: a15 ← (a9.a4.a2)
5: a31 ← (a15)

2.a
6: x1 ← 24; t← (a31)

x1 .a15

7: x2 ← (x1).2; t← (t)x2 .t
8: x3 ← x1.x2; t← (t)x3 .t
9: x3 ← (x3)

2.2; t← (t)x3 .t
10: x3 ← (x3)

2; t← (t)x3 .t
11: x3 ← (x3)

2; t← (t)x3 .t
12: x← (x1).2

3; t← (t)x.a31.a2

13: return t

Algorithm 3 Calculating Inversion for p = 2191 − 19

Input: Finite Field element a.
Output: The inversion a−1 in Fp as t = ap−2 mod p, p = 2191 −
19.

1: a2 ← a2

2: a4 ← (a2)
2

3: a7 ← a4.a2.a
4: a9 ← (a4)

2.a
5: a15 ← (a9.a4.a2)
6: a31 ← (a15)

2.a
7: x2 ← 25; t← (a31)

x2 .a31

8: x1 ← 23; t← (t)x1 .a7

9: x3 ← (x2)
2.x1; t← (t)x3 .t

10: x3 ← (x2)
4.x1; t← (t)x3 .t

11: x3 ← (x3)
2; t← (t)x3 .t

12: x3 ← (x3)
2; t← (t)x3 .t

13: x3 ← (x1)
2.2; t← (t)x3 .(a31)

4.(a7)
2

14: return t

Fermat’s little theorem states that Any prime number perfectly
divides one of the powers - 1 of any progression, i.e., ∃t ∋ [ρ|(at−
1)]. The exponent of this power is a sub-multiple of the given prime
number - 1, i.e., t|ρ− 1. The first power that satisfies the property,
all those whose exponents are multiple of the exponent of the first,
still satisfy the property.
Consider an Integer a = 3 and a Prime ρ = 5, then, 35 = 243
and 243 − 3 = 240 = 5 × 48, i.e., 35 ≡ 3 mod 5 and 34 = 81
and 81 − 1 = 80 = 5 × 16, i.e., 34 ≡ 1 mod 5. Similarly, let
a = 3 and ρ = 11, then, 311 = 177147 and 177147 − 3 =
177144 = 11 × 16104, i.e., 311 ≡ 3 mod 11 and 310 = 59049
and 59049 − 1 = 59048 = 11 × 5368, i.e., 310 ≡ 1 mod 11.
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Thus, 31 = 25 − 1, hence, a31 is represented as a25−1 given in the
equation (7)

a31 = a25−1 (7)

In general,

a(2r−1)2s a(2s−1) = a(2(r+s)−2s)+(2s−1) = a(2r+s−1) (8)

a(25−1)25 a(25−1) = a(2(5+5)−25)+(25−1) = a(210−1) (9)

a(280−1)280 a(280−1) = a(2(80+80)−280)+(280−1) = a(2160−1)

(10)

a(2160−1)240 a(240−1) = a(2160+40−240)+(240−1) = a(2200−1)

(11)

(a(2215−1)27 a91)
21

a1 = a2(215+7+1)−2(7+1)+(9)(2)+1 (12)

= a2223−256+19 (13)

= a2223−237 (14)

For the prime number p = 2159 − 91, the algorithm 2 follows
the same procedure. The algorithm requires 155 squares and 15
multiplications to calculate all the intermediate powers to find the
inverse of the given number. All the intermediate values contributed
to reduced multiplication values and squared values calculated by
the Brute-Force method. This comparison is to determine whether
all the intermediate calculations and reducing perform correctly.
The Inversion algorithm is then used to calculate the inversion of
the denominator in point addition and point doubling. As there
is no division arithmetic function for the prime group, a division
is performed by finding Inversion of the denominator and then
multiplying with the numerator.

Algorithm 4 Calculating Inversion for p = 2255 − 19

Input: Finite Field element a.
Output: The inversion a−1 in Fp as t = ap−2 mod p, p = 2255 −
19.

1: a2 ← a2

2: a4 ← (a2)
2

3: a7 ← (a4)
2.a

4: a15 ← (a7)
2.a

5: x1 ← 23; t← (a15)
x1 .a2.a

6: x2 ← (x1).2; t← (t)x2 .t.a
7: x3 ← x1.x2; t← (t)x3 .t
8: x3 ← (x3)

2.2; t← (t)x3 .t
9: x3 ← (x3)

2; t← (t)x3 .t
10: x3 ← (x3)

2; t← (t)x3 .t
11: x← (x1).2

3; t← (t)x.a31.a2

12: return t

The Algorithms 2, 3, 1 and 4 describes the Point Inversion for
p = 2159 − 91, p = 2191 − 19, p = 2223 − 235 and
p = 2255 − 19 respectively. These individual Algorithms call
Multiplication, Squaring, and Reduction algorithms. The number
of times multiplication and squaring called and efficiency of
Multiplication and Squaring decides the efficiency of the Inversion

Table 3. Comparison of Inversion Algorithms over Existing Schemes
bits RPSM LHS PIECC
160 158Sqr + 12Mul 158Sqr + 11Mul 155Sqr + 15Mul

192 190Sqr + 08Mul 190Sqr + 12Mul 167Sqr + 16Mul

224 222Sqr + 15Mul 222Sqr + 13Mul 173Sqr + 12Mul

256 254Sqr + 08Mul 254Sqr + 11Mul 122Sqr + 16Mul

algorithm. The intermediate calculations are stored, and complex
calculations break into sub-problems to increase efficiency. All
intermediate calculations are stored as computationally expensive
and used when required. The algorithms for p = 2191 − 19 and
p = 2159 − 91.
The number of Multiplication and Squaring in the Inversion
Algorithms are as given in Table 3. PIECC uses 173 Squaring,
and 12 Multiplication operations for 224 bit; and 122 Squaring
and 16 Multiplying operations. A 50% reduction in the number
of Squaring operations compared to LHS and RPSM reduces the
Computation time of PIECC algorithm.

4.5 Scalar Point Multiplication
Scalar point multiplication multiplies a fixed point on the selected
elliptic curve and performs scalar multiplication κ times. Scalar
point multiplication is one of the time-consuming processes in
elliptic curve cryptology. In this step, the message is represented by
any point on the elliptic curve. Then the selected Point is multiplied
κ times, which is the Elliptic Curve Discrete Logarithm problem.
Key generation and Diffie-Hellman key exchange require one
Scalar multiplication. In Diffie-Hellman key exchange, κ is kept
secret. The computation of κ.P is the same for public and secret
κ. The problem with the standard, straightforward implementation
of scalar multiplication is safety. An attacker can measure time
and can try and deduce information about κ. Montgomery Ladder
Algorithm used for performing Scalar multiplication. The safety
and execution of the algorithm depend on the value of κ. The steps
involved are shown in algorithm 5.

Algorithm 5 Calculating Scalar Point Multiplication.
Input: An integer κ > 0 and a Point P0.
Output: P3 = κP0.

1: set κ← (κl−1, κl−2, · · · , κ1, κ0)
2: set P1 ← 0;P2 ← P0

3: for i from l − 1 downto 0 do
4: if κi = 1 then
5: P1 ← P1 + P2;P2 ← 2P2

6: else
7: P2 ← P2 + P1;P1 ← 2P1

8: end if
9: end for

10: P3 ← P1

11: return P3

The algorithm calculates κ.P0 by repeated point addition and point
multiplication. For point addition and point multiplication, the
standard formula requires Addition, Subtraction, Multiplication,
Reduction, and Inversion. Hence Scalar Point Multiplication
calls corresponding arithmetic functions whenever required. The
algorithm computes the point multiplication in a fixed time, thus
providing immunity against time-based attacks. This algorithm
performs the same number of point additions and doubles
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regardless of the value of κ. The algorithm does not leak any
information through timing or power.

5. PERFORMANCE ANALYSIS
The Elliptic Curve Cryptosystem designed consists of Sensor
devices or the mote as the fundamental component. These devices
are equipped with 4-16 KiloBytes of main memory and 256
KiloBytes of nonvolatile memory. In Elliptic Curve Cryptosystem,
the selected Curve Parameters and Prime numbers are in Binary
representation. The system encodes data into a Point on the
Elliptic Curve. The required number of Inversion and Reduction is
performed over the Elliptic Curve Point. The Scalar multiplication
is performed to encrypt the data in Elliptic Curve Diffie-Hellman
Cryptography. The encrypted data is sent from the Sender to the
Receiver.
Computation Time: The reduction in Computation Time of
Multiplication, Squaring, Inversion, and Scalar Multiplication used
in the Elliptic Curve Crypto-system shows the better performance
of PIECC over the existing algorithms: Liu [7], and Reverse
Product Scanning methods [6] with Fermat-based Inversion. The
Computation time of the Functions and Algorithms is given in
Table 5.
Computation time of Multiplication: Fig. 1 shows the time taken
to perform Multiplication over Elliptic Curves of 160, 192, 224,
255 bits. The multiplication function of PIECC over the 192-bit
curve consumes 2632 Clock Cycles, LHS consumes 2706 Clock
Cycles, and RPSM consumes 3831 Clock Cycles for 192 bits. The
processing time of multiplication in PIECC is 2.7% better than LHS
and 36% better than RPSM for 256 bits. The use of the High-Speed
Split multiplier reduces the computation Time of multiplication.
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Fig. 1. Computation Time of Multiplication LHS, RPSM and PIECE
Elliptic Curves

Computation time of Squaring: Fig. 2 shows the time taken to
perform Scalar Multiplication over Elliptic Curves of 160, 192,
224, 255 bits. The Scalar multiplication algorithm of PIECC over
the 192-bit curve consumes 1603 Clock Cycles, LHS consumes
1651 Clock Cycles, and RPSM consumes 2457 Clock Cycles for
192 bits. The processing time of multiplication in PIECC is 49%
better than LHS and 69% better than RPSM for 256 bits. The use
of the High-Speed Split multiplier, HSSM based Inversion reduces
the computation Time of Scalar Multiplication.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

160 192 224 256

C
o

m
p

u
ta

ti
o

n
 T

im
e
 i

n
 C

lo
c
k

 C
y

c
le

s

Elliptic Curve bits

LHS
RPSM
PIECC

Fig. 2. Computation Time of Squaring in LHS, RPSM and PIECE Elliptic
Curves

Computation time of Inversion: Fig. 3 depicts the time of Inversion
over Elliptic Curves of 160, 192, 224 and, 255 bits. The Inversion
algorithm over the 192-bit curve uses 309813 Clock Cycles, LHS
uses 346162 Clock Cycles, and RPSM uses 497478 Clock Cycles
for 192 bits. For 224 bits curve, the Point Inversion algorithm takes
399059 Clock Cycles, LHS takes 518504 Clock Cycles, and RPSM
takes 791946 Clock Cycles. The processing time of Inversion in
PIECC is 46.6% better than LHS and 64.5% better than RPSM
for 256 bits. The use of limited High-Speed Split multiplier and
HSSM-based Squaring reduces with reduced code decreases the
computation Time of Inversion.
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Fig. 3. Computation Time of Inversion in LHS, RPSM and PIECE Elliptic
Curves

Computation time of Scalar Multiplication: Fig. 4 shows the time
taken to perform Scalar Multiplication over Elliptic Curves of 160,
192, 224, 255 bits. The Scalar multiplication algorithm of PIECC
over the 192-bit curve consumes Clock Cycles, LHS consumes
Clock Cycles and, RPSM consumes Clock Cycles for the 192 bits.
The processing time of multiplication in PIECC is 49% better than
LHS and 69% better than RPSM for 256 bits. The High-Speed Split
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Table 4. Comparison of Computation Time of Inversion Algorithms over Existing (in Clock Cycles) Schemes
curve Multiplication Squaring Inversion ScalarMultiplication
bits LHS[7] RPSM[6] PIECC LHS[7] RPSM[6] PIECC LHS[7] RPSM[6] PIECC LHS[7] RPSM[6] PIECC
160 2022 2690 1967 1233 1795 1198 217056 315890 215195 1638000 2296115 1550781
192 2706 3831 2632 1651 2457 1603 346162 497478 309813 2433000 3616027 2079402
224 3494 5170 3398 2131 3218 2071 518504 791946 399059 3489000 5756432 2564260
256 4386 6707 4266 2675 4078 2602 727696 1089468 385700 4798000 7919036 2428489

multiplier and HSSM based Inversion reduces the computation
Time of Scalar Multiplication.
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Fig. 4. Computation Time of Scalar Multiplication in LHS, RPSM and
PIECE Elliptic Curves

Memory usage: The reduction in Memory usage of PIECC in
Fig. 5 shows the better performance of PIECC over the existing
algorithms: Liu [7], and Reverse Product Scanning methods [6]
with Fermat-based Inversion. The PIECE uses 412Bytes, LHS uses
446Bytes, and RPSM uses 1174Bytes of RAM. The PIECE uses
11434Bytes, LHS uses 12156Bytes, and RPSM uses 19000Bytes of
ROM. The PIECC uses ROM 5.5% lesser than LHS and 39.8% than
RPSM. The RAM used by PIECE is 7.6% less than LHS and 64.9%
less than RPSM. The memory usage is reduced by minimizing the
intermediate memory usage for data and the code.

6. CONCLUSIONS
In an IoT environment, devices store and transmit data over
communication media must be protected from illegitimate usage.
Encryption controls for Data security at rest and in transit are
essential. Elliptic Curve Cryptography enhances IoT security
providing secure data communication in the Internet of Things
Application. The proposed Point Inversion algorithm for Elliptic
Curve Cryptology uses High-Speed Split Multiplier and HSSM
based Squaring in Scalar Multiplication to secure IoT Data
Communication. The PIECC optimizes the data and code
Storage, improving the performance of IoT devices using limited
intermediate registers to carry out Cryptographic functions. The
proposed algorithm is almost two times faster than LHS and three
times than RPSM. The PIECC uses 6% less memory than the LHS
and 41% than RPSM by the reduction in intermediate memory
usage and code. The Modular Inversion for other Curves can apply
Factorization over Montgomery-friendly Prime Representation.
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