
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 29, October 2021

33

Application of T-SEC to Measure the Performance of

Static Analyzers and Penetration Testing Approaches

Akwasi Amponsah
Mamp. Tech. Coll of Educ.
Asante Mampong, Ghana

Richard Amankwah
Accra Institute of Technology

Accra, North Ghana

Daniel PaaKorsah
Komenda Coll of Educ

Komenda, Ghana

ABSTRACT
Software vulnerability analysis is very relevant in the process of

investigating the existence of bugs (referred to as vulnerabili-

ties) in software application. Recently, several empirical studies

such as static code analyzers (SCA) and penetration testing ap-

proaches such as web vulnerability scanners (WVS) have been

purported to aid the analysis of vulnerabilities in web applica-

tions. Although, there are several SCA and penetration testing

tools (both open and commercial source) proposed in literature,

the performance of these tools varies and make vendors skep-

tical in relation to the one most suited for detecting a particular

type of vulnerability or bug, have a high precision and recall

value, a low false positive and a high detection rate.In this

study, we applied the standard evaluation criteria (T-SEC),

namely precision and recall, Youden index, OWASP web

benchmark evaluation (WBE) and the web application security

scanner evaluation criteria (WASSEC) to measure the perfor-

mance of the aforementioned approaches using the Damn Vul-

nerable Web Application (DVWA) and extracted report from

the Juliet Test Suite.

General Terms
Software Privacy • Information security • Software Analysis

Keywords
Open-source scanner, Vulnerability detection, Vulnerability

scanner, damn vulnerable web application

1. INTRODUCTION
Security vulnerabilities are uncovered on a regular basis in

modern-day systems such as networking, application software

and most importantly web applications. Currently,the web ap-

plication has become the main attacking spot by hackers due to

its enormous benefits. The National Vulnerability Database

(NVD) [1]which is managed by the National Institute of Stan-

dards and Technology (NIST) showsthat vulnerability such as

SQL Injection, File Inclusion and Cross-Site Scripting (XSS)

continually increased at an astronomical rate yearly in web ap-

plication [2]. This is because most of the web applications dep-

loyed are not totally devoid of vulnerabilities. These vulnerabil-

ities normally cause data breaches and have serious security

implications when they are exploited by attackers. To address

such a challenge, vulnerability analysis such as manual code

inspection, static code analyzers (SCA) and penetration testing

approaches have been proposed as a better alternative to im-

prove the quality and efficiency of the manual procedure used

in previous studies for bug detection.Unfortunately, the tradi-

tional method, which involves manual examination of numer-

ous lines of code is often difficult, unproductive and produce a

high rate of false positives. Current techniques which involve

the use of automated SCA and WVS also shows varied effi-

ciency and detection capabilities as reported by Antunes and

Vieira [3], Makino and Kleve [4], making it difficult to select

the appropriate tool for vulnerability detection. Consequently,

this study presents an application of the standard evaluation cri-

teria (T-SEC), namely precision and recall, Youden index,

OWASP Web Benchmark Evaluation (WBE) and the Web Ap-

plication Security Scanner Evaluation Criteria (WASSEC) to

measure the performance of the static code analyzers and pene-

tration testing approach using the Damn vulnerable web appli-

cation (DVWA) and vulnerability report from the Juliet Test

Suite.The key idea of this study is to apply the standard evalua-

tion criteria (T-SEC):

To evaluate the performance of eight WVS, namely Acunetix,

HP WebInspect, IBM AppScan, OWASP ZAP, Skipfish,

Arachni, Vega and Iron WASP in identifying security vulnera-

bility in web service environment using the DVWA.

To evaluate the effectiveness of seven widely use SCA, namely

Findbug, PMD, LAPSE+, JLint, Bandera, ESC/Java and YAS-

CA using Juliet Test Suite v1.2 test cases.

To suggest possible measures that can be used to improve SCA

and WVS

The remaining section of the paper is organized as follows: Sec-

tion presents the standard evaluation criteria which were used to

measure the performance of the tools. Section 3 discusses the

methodology and experimental setup for the study. In section 4,

we present evaluation of the SCA and the WVS tools. Section 5

present the conclusion and future directions in this domain of

study.

2. THE STANDARD EVALUATION CRI-

TERIA (T-SEC)
We evaluated the performance of the tools using the standard

evaluation metrics: precision and recall, Youden index,

OWASP Web Benchmark Evaluation (WBE) and the Web Ap-

plication Security Scanner Evaluation Criteria (WASSEC) fol-

lowing a similar procedure in[1].

2.1 Precision and Recall
Precision [5] which is also known as predictive value is the per-

centage of a correctly detected bug to the number of all detected

bugs (i.e. number of bugs detected by the tool that are actually

rear bugs). Eq.1 shows how it is calculated. Precision value of

100% represents a high detection accuracy of the exact bug.

Precision = TP/(TP + FP) (Eq. 1)

Recall [6] is the percentage of a correctly detected bug to the

number of known bugs (i.e. a number of bugs that were sup-

posed to be detected by the tool but couldn’t detect. Eq.2

shows the formula for recall.

Recall = TP/(TP + FN) (Eq. 2)

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 29, October 2021

34

2.2 Youden Index
The Youden index [7] was proposed by Youden to evaluate the

performance of analytical tests (diagnostic tests). The values for

the index ranges from -1 to 1. For instance, if a tool is able to

detect all bugs without any false positive present it obtains a

Youden index of 1 (i.e., no false positive and false negative),

this is called a perfect bug detection. However, if the tool could

not detect actual bugs but produced false positives then it ob-

tains a Youden index of -1. A Youden index of 0 means the tool

recorded the same result for test cases with bugs and test cases

without bugs.Eq 6 shows how the Youden index is calculated.

J = TP/(TP + FN) + TN/(TN + FP) − 1 (Eq. 3)

2.3 Web Application Security Scanner

Evaluation Criteria (WASSEC)
The Web Application Security Scanner Evaluation Criteria

(WASSEC) [8]is an evaluation guideline to help developers

assess the detection capabilityof web application security scan-

ners. The aim is to help stakeholders in this domain to make

appropriate decision that meets their specification (in terms of

tools capabilities) and for future improvement (by developers)

of the tools. The evaluation criteria of WASSEC comprises of

the following: protocol support, session management, testing,

parsing, authentication, crawling reporting and command con-

trol.

2.4 OWASP WBE Result Interpretation

Guide
OWASP Benchmark Project proposed a system to measure and

evaluate the effectiveness of static analysis tools, which is

termed as the WBE result interpretation guide [9]. The WBE

result interpretation is a visual representation of static analysis

tool performance based on their fallout and recall rate. The

guide illustrates how effective a tool had performed in detecting

a bug. From Figure. 1, the line extending from the point (100%,

100%) is the “guessing line” where the True Positive rate of

bug detection is equivalent to False Positive rate of bug detec-

tion. A plot of a tool false positive rate against its true positive

rate on the cartesian plane (X-Y) which meet at the top right

corner of the guessing line indicates that the tool reported every

bug in the test case. On the other hand, if the resulting detection

point falls at bottom left corner of the guessing line it means the

tool recorded no vulnerability. A top left corner indicates the

ideal detection efficiency of the tool.

Figure 1: WBE results interpretation guide

3. METHODOLOGY AND EXPERIMEN-

TAL STUDY
This section of the paper discusses the methodology and expe-

rimentalsetup for the study.

3.1 Experimental setup
The experimental activity is divided into three steps: Pre-

Experimental Activities, Experimental Activities and Post Ex-

perimental Activities.

Pre-experimental Activities

 Gather information about the SCA and the WVS un-

der studied.

 Gather information about the web service and the da-

taset under studied.

 Generate the workload based on the information ga-
thered in the previous step

Experimental Activities

 Input the URL of DVWA into the text field of the

scanners to scan for vulnerability

 Imported source code for the selected test cases to

NetBeans ID Environment together with the installed

static analysis tools.

 Also, import test cases source code to the LAPSE+,

JLint, Bandera, ESC/Java and YASCA installed on

standalone computer.
 Scan for bug in the respective test cases

Post experimental Activities

 Analyze the vulnerability report from the scanners.

 Evaluate the performance of SCA and WVC using

The Standard Evaluation Criteria (T-SEC)

3.2 Dataset Description
This paper used Juliet Test Suite v1.2 with a total of 247 java

source code files (test cases) which is made up oftwenty Com-

mon Weakness Enumeration (CWE) flaw classes. The source

code is obtained from the National Institute of Standards and

Technology (NIST) Software Assurance Metrics and Tool

Evaluation (SAMATE) Project [10]. The Juliet test suite (files)

contain test cases which are made up of two descriptions (i.e.,

Bad and Good) in the file names. When a tool detects a bug in a

method with the description “Bad” in its name, then it is classi-

fied as a True Positive. In the sense that every "Bad” method

contained in the test cases are considered to be known vulnera-

bility. On the other hand, when a tool detects a bug in a method

with the description “Good” in its name, it is also classified as a

False Positive because it is expected that no actual bug should

be found in the method.

3.3 Web Service Tested
In order to test our approach, we identify a vulnerable web ap-

plication program. We used the open source vulnerable web

application commonly referred to as Damn Vulnerable Web

Application (DVWA).DVWA[11] has a friendly user interface

that allows developer, teachers, and students to explore and

analyze web service security.

3.4 Static Code Analyzers Studied
The static analysis technology has grown from early lexical

analysis to formal verification method and its detection capabil-

ity has now improved a lot [12]. Static code analyzers investi-

gated in this study include: Findbug [13], PMD [14] Yasca [15]

, JLint [16], Bandera [17] and Extended Static Checking sys-

tem for Java ESC/Java [18]

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 29, October 2021

35

3.5 Penetration Testing Tools Studied
A Web scanner examines an application by going through its

web pages and performs penetration testing. Most web applica-

tion scanners consist of three main components: a crawling

component, an attacker component, and an analysis component.

The web vulnerability scanners investigated in this study in-

clude: ZAP Skipfish [19]Arachni[20]IronWASP (Iron Web ap-

plication Advanced Security testing Platform) Vega

[21]Acunetix[22], WebInspect[23]AppScan.

Figure 2: Framework for the tool detection.

4. RESULTS AND DISCUSSION
This section presents evaluation of the SCA and the WVS tools.

4.1 Precision And Recall Analysis
In this study, both precision and recall metrics are measured in

the range of 0-100%. For instance, an effective tool whose de-

tection has no false negative and false positive would have a

value of 100% or 1 for precision and recall. The result shows

that all the WVS obtained a recall value of 1 in DVWA which

is an indication of the tools ability to detect rear vulnerabilities

in web application under study. Additionally, there is variation

in terms of the precision values of the scanners. For example,

Skipfish obtained a precision value of 0.75 in DVWA, whereas

Acunetix obtained a precision value of 0.68 in DVWA and

0.64. Zap, Arachni and Vega obtained a precision value of 0.56

respectively. This is because the aforementioned tools detected

vulnerabilities that are actually not correctly classified as rear

vulnerability (false positive). We observed from the SCA re-

sults that most of the tools show variations in the precision and

recall figures. For example, JLint shows a high precision for

CWE-568 and a low recall, which indicates that the number of

bugs it’s detected were correctly found. Findbug and PMD

shows a high precision and a high recall figure for CWE-328,

CWE-382, CWE-476, which means, some of the bugs detected

are actually not correctly classified as bugs (False Positive). We

also observed that tools such as Bandera and ESC/Java could

not detect bugs in some of the test cases, this could be attributed

to the way the tools are design to detect specific types of bugs.

Most of the tools could not detect CWE-198 apart from Find-

bug and PMD and we believe it is because such bug is difficult
to detect in the Juliet test cases.

4.2 OWASP WBE Analysis
As explained in section 2, a tool effectiveness is determined by

its position on the WBE interpretation guide.Zap position is at

the top right corner of the guessing line, which means the tool

detect and report” everything is vulnerable” (i.e., the tool per-

formance in terms of false positive and true positive is high).

Iron Wasp fell in the category of “nothing is vulnerable”, which

means the tool false positive and true positive is low.

The remaining scanner such as, Acunetix, Arachni, WebInspect

fell into the “random detection of vulnerability” category except

AppScan which was close to “everything is vulnerable catego-

ry. Conversely, the result of the SCA shows that Findbug rec-

orded a True Positive Rate of 136% and False Positive Rate of

44% which makes it an ideal bug detection tool. PMD had a

True Positive Rate of 129% and False Positive Rate of 51%

which also makes it an ideal bug detection tool. LAPSE+ rec-

orded a True Positive Rate of 20%% and False Positive Rate of

6% which means the tool detection rate is low. ESC/Java and

Bandera falls into this same category. YASCA is an ideal bug

detection tool.

4.3 Youden Index Analysis
IronWASP obtained the highest Youden Index of 0.83 which

implies that the tool was able to detect the vulnerability it was

intended for with no or little False Positive. Followed by Skip-

fish, AppScan, WebInspect and Acunetix with 0.45, 0.31, 0.23

and 0.21 respectively.Zap recorded the lowest Youden index of

0.08. LAPSE+ obtained the highest Youden Index of 0.9 which

implies that the tool was able to detect all bugs it was intended

for with no or little False Positive. Followed by Bandera and

ESC/Java with index of 0.8. Findbug recorded the lowest You-
den Index of 0.1.

4.4 The Web Application Security Scanner

Evaluation Criteria (WASSEC) Analysis
We evaluated the performance of the scanners based on the

WASSEC criteria (i.e., protocol support, session management,

testing, parsing, authentication, crawling). The results show that

in the protocol support, Acunetix scanners are very good fol-

lowed by AppScan and Skipfish. But in the area of session

management, the differences in the performance of the scanners

are not much. Additionally, although there are differences in the

performance of the scanners as far as the criteria is concern,

there are also similarities in the area of crawling, authentication

and testing. Generally, we can say thatAcunetix and AppScan

are very effective considering their average evaluation factors

of 0.81 and 0.65 respectively. However, scanners such as Skip-

fish and Zap are alternative for stakeholder with an average in-

dex of 0.43 and 0.40 respectively which is better than WebIns-
pect.

5. CONCLUSION AND FUTURE WORK
In this study, we applied the standard evaluation criteria namely

precision and recall, Youden index, OWASP Web Benchmark

Evaluation (WBE) and the Web Application Security Scanner

Evaluation Criteria (WASSEC) to measure the performance of

Static Code Analyzers (SCA) and penetration testing approa-

chesusing the Damn Vulnerable Web Application (DVWA) and

extracted report from the Juliet Test Suite. The results show

that, the commercial WVS are effective in detecting security

vulnerabilities in web application. Again, the experimental out-

come of the SCA shows a lot of diversities, LAPSE+ static

analysis tool has the highest Youden Index of 0.9, making it the

best effective tool to detect all bugs with relatively low false

positive.However, tools such as Findbug, PMD, YASCA, and

JLint also have a high rate of precision, but their level of false

positive rate is high. Theremaining section presents recommen-
dations for possible replication of the study.

5.1 Future Direction
We recommend and make the following suggestions for future

research direction and possible replication of this study:An im-

provement in the internal structure of both SCA and WVS to

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 29, October 2021

36

enhance accuracy, coverage and a reduction in false positive

rate. We additionally suggest a further upgrade and mainten-

ance of SCA and WVS. Again, we recommend an approach that

can integrate SCA and WVS to compliment the weakness and

strength of each other in detecting vulnerabilities or bugs. We

observed that the higher the lines of code the greater number of

bugs detected. We therefore recommend better quality coding

style by programmers. Finally, IDE enhance bug detection in

program source code, hence developers should ensure the inte-
gration of static analysis tools into existing IDE’s.

6. REFERENCES
[1] N. Antunes and M. Vieira, "Benchmarking vulnerability

detection tools for web services," in 2010 IEEE Interna-

tional Conference on Web Services, 2010, pp. 203-210.

[2] C. L. Blackmon, D. F. Sang, and C.-S. Peng, "Performance

Evaluation of Automated Static Analysis Tools," GSTF

Journal on Computing (JoC), vol. 2, 2014.

[3] Y.-H. Tung, S.-S. Tseng, J.-F. Shih, and H.-L. Shan, "A

cost-effective approach to evaluating security vulnerability

scanner," in 2013 15th Asia-Pacific Network Operations

and Management Symposium (APNOMS), 2013, pp. 1-3.

[4] Y. Makino and V. Klyuev, "Evaluation of web vulnerabili-

ty scanners," in 2015 IEEE 8th International Conference

on Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications (IDAACS), 2015,

pp. 399-402.

[5] E. Goubault and S. Putot, "Static analysis of finite preci-

sion computations," in International Workshop on Verifi-

cation, Model Checking, and Abstract Interpretation, 2011,

pp. 232-247.

[6] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler,

and J. Penix, "Using static analysis to find bugs," IEEE

software, vol. 25, pp. 22-29, 2008.

[7] W. J. Youden, "Index for rating diagnostic tests," Cancer,

vol. 3, pp. 32-35, 1950.

[8] W. A. S. Consortium, "Web application security scanner

evaluation criteria WASSEC," ed, 2016.

[9] "OWASPBenchmarkProject.

https://www.owasp.org/index.php/Benchmark (visited

2016-06-2).", ed, 2016.

[10] P. E. Black, "Samate and evaluating static analysis tools,"

Ada User Journal, vol. 28, pp. 184-188, 2007.

[11] Y. Makino and V. Klyuev, "Evaluation of web vulnerabili-

ty scanners," in Proceedings of the 8th IEEE Internation-

al Conference on Intelligent Data Acquisition and Ad-

vanced Computing Systems: Technology and Applications

(IDAACS), 2015, 2015, pp. 399-402.

[12] R. Amankwah, P. K. Kudjo, B. K. Agyman, K. Mensah, B.

Brew, and S. Y. Antwi, "A Theoretical Framework for

Software Vulnerability Detection based on Cascaded Re-

finement Network," International Journal of Computer

Applications, vol. 975, p. 8887.

[13] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y.

Zhou, "Evaluating static analysis defect warnings on pro-

duction software," in Proceedings of the 7th ACM SIG-

PLAN-SIGSOFT workshop on Program analysis for soft-

ware tools and engineering, 2007, pp. 1-8.

[14] N. Rutar, C. B. Almazan, and J. S. Foster, "A comparison

of bug finding tools for Java," in null, 2004, pp. 245-256.

[15] H. H. AlBreiki and Q. H. Mahmoud, "Evaluation of static

analysis tools for software security," in Proceedings of

2014 10th International Conference on Innovations in In-

formation Technology (INNOVATIONS), , 2014, pp. 93-

98.

[16] C. Artho, "Finding faults in multi-threaded programs," ed,

2001.

[17] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.

Pasareanu, and H. Zheng, "Bandera: Extracting finite-state

models from Java source code," in Proceedings of the 2000

International Conference on Software Engineering. ICSE

2000 the New Millennium, 2000, pp. 439-448.

[18] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J.

B. Saxe, and R. Stata, "Extended static checking for Java,"

ACM Sigplan Notices, vol. 37, pp. 234-245, 2002.

[19] T. P. Chiem, "A study of penetration testing tools and ap-

proaches," Auckland University of Technology, 2014.

[20] C. Mainka, J. Somorovsky, and J. Schwenk, "Penetration

testing tool for web services security," in 2012 IEEE

Eighth World Congress on Services, 2012, pp. 163-170.

[21] N. Antunes and M. Vieira, "Penetration testing for web

services," Computer, vol. 47, pp. 30-36, 2013.

[22] H. M. Z. Al Shebli and B. D. Beheshti, "A study on pene-

tration testing process and tools," in 2018 IEEE Long Isl-

and Systems, Applications and Technology Conference

(LISAT), 2018, pp. 1-7.

[23] R. Amankwah, J. Chen, P. K. Kudjo, and D. Towey, "An

empirical comparison of commercial and open‐source web

vulnerability scanners," Software: Practice and Expe-

rience, vol. 50, pp. 1842-1857, 2020.

IJCATM : www.ijcaonline.org

http://www.owasp.org/index.php/Benchmark

