
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

65

A New Task Scheduling Algorithm based on Water Wave

Optimization for Cloud Computing

Dina A. Amer
Computer and System Engineering

Dept,
Faculty of Engineering, Zagazig

University, Egypt

Gamal Attiya
Computer Science and Engineering

Dept,
Faculty of Electronic Engineering,

Menoufia University, Egypt

Ibrahim Ziedan
Computer and System Engineering

Dept,
Faculty of Engineering, Zagazig

University, Egypt

Aida A. Nasr
Robotics and Intelligent Machines Dept,

Faculty of Artificial Intelligence,
Kafrelsheikh University, Egypt

ABSTRACT

Nowadays cloud computing provides many benefits for
organizations. Businesses can ensure reliable calamity
recovery and backup solutions without the spat of tuning them
up on a physical machine. For many companies, exploiting

complex calamity recovery plans can be an expensive
guarantee, and backing up data is time exhaustion. The cloud
itself is built in such a way that the data stored more than one
time in servers, so that if any server fails, the data is backed
up immediately. The capability of accessing data readily is
available after handling the failure. However, still, cloud
computing resources face many problems such as scheduling
problems. This paper tackles the resource scheduling problem

and presents a new efficient algorithm, called Improved Water
Wave Optimization (IWWO), to address such a problem. The
main idea is the enhancement/improvement of the Water
Wave Optimization (WWO) algorithm by using reinforcement
learning to overcome the local optimality of the conventional
WWO during the searching process. The proposed IWWO is
implemented in the CloudSim toolkit and evaluated by
considering a real data set and a randomly generated data set.

The results are compared with the results of the Genetic
Algorithm (GA) and Ant Colony Optimization (ACO)
algorithm. The obtained results show that the IWWO can
solve the resource scheduling with minimum schedule length
and a high balance degree.

Keywords

Cloud computing, task scheduling, optimization, and water
wave optimization

1. INTRODUCTION
Cloud computing gives companies a high level of flexibility

over the presented services. There are unlimited virtual
resources with various capacities to provide users with
different functions. Moreover, several new services, like Big
Data as a Service (BDaaS), are now available to users [1].
Many users, companies, and governments are toward
transferring their works and data to the cloud aiming to save
cost and time. Nevertheless, the widespread use of cloud
computing in different fields causes many challenges as load
balancing, power consumption, security, and resource

scheduling. An important factor affecting cloud performance
is the task scheduling technique. Weak algorithms waste the

computing power of the cloud resource. On the contrary,
developing a smart algorithm can increase the performance of
cloud computing and save time and money [2] because it has
an important role in optimizing the utilization of the available
resources. It refers to the process of distributing tasks of a
given application onto available resources (virtual machines
/VMs) in the cloud. Since the number of VMs is limited and
has different capabilities, there is a need for an efficient

scheduling method for carefully assigning tasks to virtual
machines [3]. In a cloud environment, the number of user
tasks and the number of available resources can grow rapidly.
This requires task scheduling to play a major role in
enhancing the stability and reliability of the cloud system. The
primary objective of cloud task scheduling is to schedule user
tasks at the same time and provide the job with efficient
resources to meet QoS parameters such as reducing execution

time for all submitted tasks [4,5]. Recently, several methods
are proposed to solve the scheduling problem [6,7].
Nevertheless, most of the existing methods tackle one or more
performance parameters without considering the limitations of
the available resources. Further, the scheduling algorithms
that achieved a minimum schedule length provide a large
computational time, and vice versa. Briefly, the algorithms
concerned with reaching the optimal schedule length, take

more time to schedule the cloudlets, while the algorithms
concerned with reducing computation time, fall into local
optimality of the solution. The research paper's key
motivation is to closely address the problem of multi-
objective scheduling that selects the optimal resource for
user’s cloudlets to enhance required parameters of quality of
services (QoS) such as processing time, makespan,
throughput, and a high degree of balance through distributes

the user’s tasks onto the available virtual machines in an
efficient way that in turn enhances cloud computing resources
utilization. This paper introduces a new meta-heuristic
optimization approach, named Improved Water Wave
Optimization (IWWO) algorithm, to tackle the scheduling
problem. The introduced algorithm is derived from a new
nature-inspired optimization algorithm called Water Wave
Optimization (WWO). The WWO is based on shallow water
wave theory and imitates wave motion to solve optimization

problems. The main objective of the proposed IWWO
algorithm is to improve the WWO algorithm by using
reinforcement learning to overcome the local optimality
problem of the conventional WWO [8]. Furthermore, another

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

66

enhancement to the proposed IWWO is done by applying the
Max-Min algorithm as the breaking stage of the IWWO
algorithm. The proposed IWWO is implemented in the
CloudSim toolkit and evaluated by considering a real data set
and a randomly generated data set. The results are compared

with those obtained with the GA and ACO algorithms. The
obtained results prove that the IWWO can solve the resource
scheduling with minimum schedule length, high throughput,
and high balance degree.
The main contributions of this paper are as follows:

 Formulating WWO and IWWO algorithms for the

scheduling problem taking into account the availability
of cloud resources.

 Developing an Improved Water Wave Optimization

(IWWO) algorithm to tackle the scheduling problem and
solving the drawbacks of the conventional WWO.

 IWWO scheduling algorithm has been implemented and

tested at Cloudsim simulator by submitting random
independent tasks and real NASA-iPSC data set, and
results demonstrate that IWWO improved various QOS

parameters.

The rest of this paper is organized as the following. Sect. 2
presents the cloud computing model and scheduling process.
Section 3 formulates the scheduling problem as an
optimization problem. Section 4 presents a literature survey
of related work. Section 5 describes the WWO algorithm in
some detail. The proposed IWWO is presented in Section 6.
Section 7 introduces the experimental results and discussion.
The last section introduces the concluding remarks and future

work of this research.

2. CLOUD COMPUTIONG AND

SCHEDULING PROBLEM
Within cloud data centers, cloud infrastructure consists of a
limited number of heterogeneous physical servers. Each
server can host one or more VMs that are run in a parallel way
using one of the main sharing (time-shared or space-shared)
policies [9]. Further, each data center has a data center broker
that has a scheduler, the backbone of the scheduling process,
which is responsible for assigning arrived jobs/cloudlets onto

the available VMs. When a cloud user submits a cloudlet to
the cloud, it firstly enters the task management component
that organizes incoming requests. The task manager then
transmits the sent tasks to the task scheduler, which distributes
the incoming tasks to the convenient and relevant VMs by
applying the scheduling algorithm. The scheduler takes its
scheduling decision depending on the current state of the VMs
provided by the Cloud Information System (CIS). That is, if a

VM is not available, the tasks will wait in the task queue.
When the virtual machine finishes processing, the existing
tasks, it can be used for other tasks, and so [10]. Figure 1
shows a sample of cloud environments and cloudlets
scheduling.

3. SCHEDULING PROBLEM

FORMULATION
As mentioned earlier, the scheduling problem refers to the
process of assigning user tasks/cloudlets onto the available
VMs in cloud.

Fig 1: Scheduling in a Cloud Data Center

Since the number of submitted tasks (n) is greater than the

number of available VMs (m) and different tasks have
different requirements and the resources availability in cloud
have dynamic nature, the scheduling problem is defined as
NP-complete. This section presents the formulation of the
scheduling problem as an optimization problem to be solved
by an optimization algorithm.

The cloud user submits n cloudlets { each
cloudlet has a specific length in Million Instruction

(MI) for processing in the physical host Ph=
{ } in the cloud data center. Each

physical host has m virtual machines
 each has specific configurations

such as main memory (, storage , processing power

) in MIPS or Million Instruction Per Second, and

number of cores . Our objective is to find the

convenient mapping of each task in cloud resources so that it
is possible to enhance QoS parameters.

Let be a binary decision variable as:

Then, the scheduling problem may be formulated minimizing
the objective function that is the task processing time
(as:

 (1)

Subject to

 (2)

 (3)

 (4)

The objective function () in this model is to minimize the

total execution time of all submitted tasks. Where, Task

execution time

. The constraints

are to satisfy task requirements without wasting cloud
resources. Equation (2) represents the first constraint that is to

prevent overloading at any virtual machine () and

maintaining system balance. It ensures that the required load

for all tasks assigned to a virtual machine) doesn’t exceed

the processing power of that virtual machine. It also ensures
that the total number of tasks assigned to a virtual machine at

a time must be less than or equal to Where,

 . The second constraint, Eq.

(3), guarantees that the required memory for processing all
tasks assigned to a virtual machine doesn’t exceed its
available memory. Finally, the third constraint, Eq. (4),
assures that each task is allocated to only one VM while more
than one task may be assigned to the same VM at a time. The

tasks are non-preemptive so that each task must be executed

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

67

without any interruption [11].

4. RELATED WORK
The scheduling problem is solved by implementing
mathematical techniques like exhaustive search algorithm [12]
and branch-and-bound [13] to achieve the optimal solution.
However, the time complexity exponentially increases as the

number of tasks and/or VMs increases. In [14], a heuristics
method, called FCFS, is presented to solve the problem. It
first collects all users' tasks in a queue and then the scheduler
determines which task will be mapped on VM depending on
the task arrival time. The FCFS technique is the default
method in the cloud computing system, but it leads to a very
high schedule length as it does not consider any criteria for
allocating tasks into VMs. Many heuristic algorithms have

been designed and implemented to resolve the scheduling
problem, but it is difficult to choose the best algorithm to
solve problems of task assignment because the techniques are
developed under different assumptions. In [15], The author
discusses heuristic approaches for task scheduling and
provides a distinction between them. The proposed results
prove that Min-Min approach is the best suited for improving
cost, makespan and throughput. The Max-Min algorithm
exhibits a good performance for achieving the optimal task

scheduling in the IaaS cloud model. The MET algorithm
achieves better results for the degree of imbalance of the
optimal task scheduling. For obtaining the optimal results
with multi-objective scheduling problems, the author
recommended the hybridization of heuristic and meta-
heuristic algorithms. Therefore, in this paper Max-Min
algorithm is implemented as a breaking operator for
enhancing the performance of the WWO. For obtaining the

optimal results with multi-objective scheduling problem, the
author recommended combining heuristic and meta-heuristic
algorithms. Therefore, in this paper Max-Min algorithm is
implemented as a breaking operator for enhancing the
performance of the WWO. The Max-Min algorithm's concept
is to begin scheduling tasks with the longest completion time
to the available resource. This algorithm consists of two
phases. It starts with estimating the completion time for each

task in the task list with a different VM. In the second phase,
the task with the longest expected completion time is
identified and allocated to the resource that gives the shortest
completion time and then deleting the chosen task from the
task list. This process is repeated until all tasks are scheduled
[16,17]. The meta-heuristic techniques are based on
simulating the behavior of natural phenomena. These
algorithms are used for solving a problem with low time

complexity [18-22]. Genetic Algorithm (GA) [23] is one of
the most common optimization techniques. It is imitating on
evolutionary and chromosomal formation concepts. The
standard GA works through several operations: the forming of
an initial population, the assessment of the initial population's
solutions, determination of the best one, and procreation to
generate a new population. Crossover and mutation are two
operations that are applied to create alternative solutions. For

each operation, the algorithm formulates a new solution
(child) and adds this solution to a new population according to
a specific fitness function. In [24], a modified GA is proposed
to improve the execution time of all tasks, minimize the total
execution cost, and maximize the resource utilization.
 In [25], the authors proposed a new parallel bi-objective
hybrid GA that minimizing the makespan and energy
consumption. GA-based task scheduling for dynamic resource
provisioning has been presented in [26]. Based on the results

of workload forecasting, the author presented a cost-optimized

resource scheduling strategy in a cloud computing
environment to minimize the total cost of renting virtual
machines. The proposed scheduling module was tested using
NASA Ames iPSC / 860 data set and Google data tracking
and the obtained results were compared with the FCFS, Max-

Min, and Min-Min scheduling algorithms. The ACO
algorithm simulates the cooperative behavior of real ants. The
ACO algorithm was applied to solve combinatorial
optimization problems, and it is very successful in solving
various problems [27]. The main concern for ant behavior is
the collective behavior among ants to perform complex tasks
such as transporting food and finding the shortest path to food
sources. The ant colony reaches the food source by tracing

some of them from the colony's nest to the discovered food
source. The ants follow others during their trips by leaving a
chemical trace (pheromone) on the ground to determine the
shortest path to food. Pheromone is an olfactory and volatile
substance that loses its concentration over time. The role of
this trace is to direct the other ants to the target point. The
greater the value of pheromone on a given path, the greater
the probability (p) that ants will choose the same path. For an

ant, its path is determined according to the value of
pheromone on it.
 In [28], ACO used for task scheduling in cloud computing,
the authors introduced a new improvement in the ACO
algorithm for achieving the load balancing through task
scheduling depending on the past result in task scheduling.
The new meta-heuristics algorithms are also proposed for
solving the scheduling problem, like the FGMTS algorithm

presented in [29]. Where, Gray Wolf Optimizer algorithm is
combined with existing fractional theory. As well as the
formulation of the multi-objective function to solve the
scheduling problem. The objective of the proposed
improvement considers parameters, such as execution time,
communication time and cost, implementation cost, energy
consumption, and resource utilization. While in [30], the SA
is combined with the Harris Hawk optimizer (HHO) for
improving the local search process in the exploration phase

and improving the convergence rate and the solution quality
of the conventional HHO algorithm. The authors state that the
HHOSA outperforms other algorithms, namely, PSO, SSA,
MFO, FA, and HHO. Also, in [31], the whale optimization
algorithm is presented. The author introduces an optimized
version of the Whale optimization algorithm to solve the early
convergence problem in the conventional whale optimization
algorithm.

5. WATER WAVE OPTIMIZATION

(WWO) ALGORITHM

The traditional water wave optimization algorithm simulates a
shallow water wave model. This is a population based
algorithm, where each solution in the population is similar to
a wave, and the search area is similar to the seabed area. The

fitness value of the wave is influenced by the depth of the sea
floor, the short distance from the stable water level and the
high water level [32]. Each solution is equivalent to a unique
wave position in the seabed area. Each wave characterizes by
specific wave height and wavelength. The wave height is an
integer number that represents the wave energy while
wavelength belongs to real numbers and corresponding to the
searching area [33]. The most fitness wave has a small
wavelength and large wave height (high energy) as shown in

Figure 2. The searching process of the WWO depends on
three operators: propagation, breaking, and refraction.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

68

Fig 2: Different shapes for the wave in deep and shallow

water [32]

i) Propagation Operator
The propagation operator represents the global search process,
where each wave is propagated only once in each generation.
A new dimension of the new propagated wave expressed

by shifting a dimension d in the original according to Eq. (5):
 (5)

Where, r is a uniform distribution (random values [-1,1]),
 is the dimension length of the search space
) and is the wavelength of the propagated wave . If

the new position is outside the valid range, it is repositioned in
a new random position in the range. Then the wave length is
initialized with 0.5 for all waves and then updated after each

generation based on Eq. (6):

 (6)
Where, is the fitness value of the wave ,

 are the maximum fitness and minimum fitness

values in the current population, is a small positive number

to avoid division by zero and is the wavelength reduction

coefficient.

ii) Refraction Operator
After applying the propagation factor, the wave height may be
increased or decreased according to the fitness of the

generated wave. The wave height will be increased if the
generated wave fitness is better, which refers to the wave
propagates from deep water to shallow water. Otherwise, the
wave height will be reduced. When the wave height reaches
zero, the wave has not improved for generations. It loses its
momentum and discards. Then by applying the refractive
operator according to the Eq. (7), a new wave can be
generated at a random location between the old wave and the

best-known solution .

 (7)

Where, is the best solution, and is a Gaussian

random number with standard deviation and mean value .

The height of the new wave is reset to maximum height
and its wavelength is updated by Eq. (8).

 (8)

iii) Breaking Operator
When the propagation operator generates a new wave
better than the best-known wave , the WWO implements

the breaking operator to conduct a local search around the
wave multiple times. The first step is to randomly define the k
dimension (where k is a random number between 1 and the
predetermined number), and in each dimension it will

generate a solitary wave according to Eq. (9):

 (9)

Where, is the breaking coefficient. If none of the solitary

waves is better than , then it will remains, otherwise, is

replaced by the fittest wave between the solitary waves. The

overall steps of the conventional WWO algorithm are given in
table 1. In [34], an adaption for the WWO is proposed to
address the TSP. As the propagation is carried out by
subsequence reversal, breaking is performed by local search
on a swap-based neighborhood structure. Results indicate that

the modified WWO has better performance than GA and
BBO. In [35], a similar approach is used to adapt the WWO to
solve the permutation Flow-shop Scheduling Problem (FSP)
except that local search is conducted by the NEH reinsertion
method. In this paper, the conventional WWO procedure is
the same as those adapted for TSP. The propagation operator
is achieved by generating a random real number r (between 0
and 1) for each dimension d and comparing it to the

wavelength λ to determine if the wave propagated or not. In
refraction, it makes waves absorb some of the best-known
wave features. This is achieved by transferring the randomly
selected subsequence from the best known solution w* to the
corresponding portion of the refracted solution w. While the
breaking operation is applied to each newly found best
solution w*, then directly generate solitary waves, each

of which is obtained by alternating two randomly selected
components.

Table 1: The Conventional WWO algorithm framework

Algorithm 1: Conventional WWO Algorithm

Input: tasks list, VMs list Output: scheduling solution

1. Initialize a population of n random waves

2. WHILE (stop criterion is not met) DO

3. FOR each wave in population DO

4. Propagate w to w' based on Eq. 5

5. if (f(w') > f(w)) then

6. Replace w with w'

7. if (f(w') > f(w*)) then

8. Break w' based on Eq. 9

9. Update w* with w'

10. end if

11. else

12. Decrease wave height by one

13. end if

14. if (wave height ==0) then

15. refract w to w' based on Eq. 7 and Eq. 8

16. Update the wavelength based on Eq. 6

17. ENDFOR

18. ENDWHILE

19. return w*

6. PROPOSED TECHNIQUE

6.1 Improved Water Wave Optimization
The main idea of the Improved Water Wave Optimization
(IWWO) algorithm is to improve the traditional WWO
algorithm in the process of movement from a solution to the
neighbor solution by using a scientific intelligent method
called Reinforcement Learning (RL). In the proposed
improvement, the properties of the solution (wavelength and
wave height) are guided by the RL to make the WWO method
more intelligent in dealing with the problem. Where the RL
makes these properties to learn from its old movement to

move towards the best solution and avoid bad solutions and a
local minimum in the search space. Reinforcement Learning
(RL) is a method of machine learning. In the RL, the agent
moves in all possible directions to reach a solution, and then
an evaluation is performed to determine the quality of that
solution as well as determine the reward or punishment. The
agent should maximize the expected reward by improving the
obtained solution quality [36]. In the proposed IWWO, the

wave is rewarded by improving its quality through increasing

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

69

wave height and adding it to the population and punished by
decreasing its wave height. Table 2 shows the proposed
IWWO algorithm. The searching process of the proposed
IWWO depends on four operators: propagation, breaking,
refraction, and learning. These operators are clearly discussed

in the following sections through the rewarded function steps.

Table 2: The proposed IWWO algorithm

Algorithm 2: IWWO algorithm

Input: tasks list, VMs list Output: scheduling solution

1. Initialize a population of n random waves

2. WHILE (stop criterion is not met)

3. FOR each wave in population

4. Propagate w to w'

5. if (w' rewarded) then

6. Break w'

7. Else

8. if (wave height ==0) then

9. Refract w and reset its wave height to

10. Update wavelength

11. End if

12. if (f(w') < f(w*)) then

13. Update w* with w'

14. Break w to w'

15. If (w' rewarded)

16. Repeat steps from step 8 to step 12

17. ENDFOR

18. ENDWHILE

19. return w*

i) Propagation Operator
As mentioned previously, at each generation, the wave
propagated once according to its wavelength value. In the
proposed approach, the propagation operator is implemented
as in the TSP solving. First, it generates a random number r (r

is uniform distributed in the range between 0 and 1). If r < λ,
the subsequence of the wave w [d, d + L] is reversed, and L is
a random integer in the range [1, n-d]. The comparison of
wavelength satisfies that the low fitness wave, with a large
wavelength, has a large probability for propagating, while the
high fitness wave, with a small wavelength, has a small
probability for propagating and vice versa. The pseudo-code
of the propagation operator is given in Table 3.

Table 3: Propagating Algorithm

Algorithm 3: propagation

Input: wave and wavelength Output: new wave

1. Given a wave and its wavelength λ

2. for each dimension d of w do

3. Generate r uniformly distributed in [0, 1]

4. if r < λ do

5. Generate an integer L in [0, n - d]

6. Reverse [d, d + L], obtain '

7. return '

ii) Refraction Operator
As mentioned previously, a wave is refracted if its height
approaches zero. In the conventional WWO, the wave is reset
into a new random position between old and best positions. In
the proposed algorithm, we want the wave to learn from the
best obtained wave by determining the similar dimensions
with the optimal wave to follow them and avoiding its old bad
characteristics that causing a bad generation. New wave
height is set to and the wavelength is updated based on

Eq. (8). After implementing refraction, the wave is

replaced with in the population W. The refraction

algorithm is given in Table 4.

Table 4: Refraction Algorithm

Algorithm 4: refraction

Input: wave and wavelength Output: new wave with maximum

height

1. Given a wave and its wavelength λ

2. Count(s_n) the similar dimension between w* and w'

3. Generate a uniformly distributed in [0, n]

4. Generate an integer b in [0, s_n*(n – a)]

5. Replace [a, a+b], obtain '

6. return '

iii) Breaking Operator
The breaking operator represents the exploiting stage of the
WWO as it has the role of local search for the current optimal
solution to generate a better solution than last obtained. So, if
we discover that the newly generated solution is better the
breaking will be activated. Here, we have implemented the

steps of the Max-Min heuristic algorithm as a local search.
Where the new propagated wave is rewarded and then is
broken to enhance its quality based on the Max-Min steps.
The main concept of the Max-Min algorithm is declared in
section 4 and its implementation steps are given in table 5.

Table 5: Max_Min Algorithm

Algorithm 5: Max-Min

Input: task list Output: scheduled list

1. Given a task list T

2. For each submitted task () in task list (T) // start phase

1

3. For each resource (in available resource list

4. Compute completion time

5. End for

6. End for

7. While task list isn’t empty // start phase 2

8. Find task with maximum CT and assign it to resource

that gives minimum ET

9. Remove this task from list

10. Update ready time for selected resource

11. Update for unselected tasks

12. End while

13. End

iv) Learning Process (Rewarded decision)
In the proposed algorithm, the learning process is
implemented by applying the principle of reinforcement
learning. In other words, determining the reward or
punishment decision for the newly generated wave is decided
by reinforcement learning. As mentioned previously, the
higher the wave height, the higher the fitness wave, the better
solution, and vice versa. Therefore, when a new generated

wave improves solution, it must be rewarded by increasing its
height; otherwise, it must be punished by reducing its height.
There are possible four cases for the new wave position and
the reward function:
Case 1: The fitness value of the new wave is better than the
fitness of the current best wave. Here, the new wave will be
rewarded with the maximum possible reward by replacing the
current best wave with the new wave and increasing its height
to the maximum available height () and including the

new wave into the population.

Case 2: the new wave is not better than the current best wave
but it better than the old wave. In this case, the new wave

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

70

must be rewarded by adding it to the population because it
surpassed the old wave. Further, punishing it is done by
reducing its height by one because it does not learn from the
current best wave to outperform it.
Case 3: the new wave is not better than the old wave but it

does not exceed the threshold value. In this case, the new
wave will be punished by reducing its length by two and
adding it to the population.
Case 4: the new wave exceeds the threshold limit. This means
that this wave is very bad and will not be improved and does
not reach a better position. Therefore, the new wave will be
punished by neglecting and removing it from the population.

6.2 Performance Evaluation
This section introduces the experimental results of scheduling
different number of user tasks into a different number of
VMs. The results of the proposed IWWO are compared with
those obtained by the conventional WWO, ACO, and GA in
terms of schedule length, computation time, memory usage,

balancing degree, and throughput.

6.3 Experimental Environment
A Core i5 laptop with 8GB RAM and a 64-bit Windows 7
operating system was used for the simulation. In this
assessment, the well-known CloudSim tool kit is used to

simulate a cloud computing environment [37]. The CloudSim
provides the main classes used for building the cloud, such as
data center class, host class, cloudlet class, etc. Parameters
WWO and IWWO; Population size, number of iterations,
maximum wave height, and initial wavelength were set as
100, 50, 6, and 0.5, respectively. The ACO parameters; the
ants’ number, iterations number, Q, ρ, and initial pheromone
are set to 10, 70, 100, 0.7, and 0.3 respectively. The data

center and host configurations are given in table 6 while the
characteristics of VMs are given in table 7.

Table 6: Data center and host configuration

Cloud entity Characteristic value

Data
Center

No. of Data Centers
No. of Hosts
No. of users

1
3
1

Host

Storage
RAM
BW

Shared policy

1 TB
2 GB

10 GB

Space shared policy

Table 7: VM characteristics

Characteristic Value

No. of VMs 10,25, 50 and 75

 500 to 2000

 500 MB

BW 0.5Gb/S
 VMM Xen

Size 100 MB

 2,8,4,16,32

6.4 Data Sets
In this paper, two cases are considered in the experimental
test:
Case 1: Application tasks are randomly generated with
different lengths in range [1000, 10000] million instructions
while the virtual machines are generated with a number of
cores between 1 and 4, and MIPS from 400 to 1500.
Case 2: Several sets of real applications are used from the
harmonized standard workload [38]. These data sets were

taken from records in the NAS Division of Numerical
Aerodynamic Simulation Systems (NAS) at the NASA Ames

Research Center. NASA-iPSC-1993-1.1-cln.swf uses the
replaced cleaning log on 1 Aug. 2006 for trial. The records
contain 3-month accounting records for the 128 iPSC / 860
process item. After cleaning up a total of 43,910 records, this
log file used for research work contains only 42,264 records

[39]. The record workload from NASA Ames iPSC / 860 in
SWF format is shown in Fig 3. The workload on iPSC / 860 is
a mixture of interactive and batch functionality (development
and production) that mainly consists of computational
aviation science applications.

Fig 3: Sample of log file “NASA-iPSC-1993-1.1-cln-6.swf”

of the application model.

6.5 Performance Metrics
The metrics applied to measure the performance of the
introduced algorithm are schedule length, computation time,
used memory, balance degree, and throughput.

Schedule Length (SL): SL is defined as the amount of time,

from start to finish execute a set of submitted tasks on the
most loaded VM, i.e. the maximum completion time of all
submitted tasks. It is considered an important measure of the
quality of results obtained with any scheduling algorithm [40].
Since the SL including the waiting time and processing time,
all techniques used in the scheduling field aim to minimize SL
values to reduce the waiting time of the user task.

Computation time: The computation time of the scheduling
algorithm is defined as the amount of time it takes to resolve
the scheduling problem and obtain the scheduling decision for
each task. Or it is defined as the runtime of the scheduler to
reach the solution. A high computation time refers to the high
complexity of the used technique.

Used memory: The used memory is the amount of memory
used by the scheduling algorithm during the searching process
for completing the task scheduling. Heavily used memory

indicates a waste of system memory and is a weakness in the
algorithm.

Throughput: Throughput is the maximum number of
completed tasks at one time [41]. It measures the scheduling

technique efficiency, as high throughput value yields low
response time and high execution rate.

(BD) Balance Degree: BD is the degree of balancing the
workload on all VMs after applying the scheduling process.

The higher BD refers to a more efficient scheduling algorithm
and a higher load balancing system. The BD is calculated by
Eq. (10):

 (10)

Where, is the final SL after applying the scheduling

decision [42], is the optimal schedule length.

, where, is the sum of MI for all submitted

tasks and is the sum of all available MIPS.

6.6 Experimental Results

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

71

6.6.1 Schedule Length (SL)
Figures 4, 5, 6, and 7 show the SL of scheduling different
tasks (100, 250, 500, 1000, 2000) onto different VMs (10, 25,
50, and 75) by using the ACO, GA, WWO, and IWWO.
Figures 4.a, 5.a, 6.a, and 7.a show the results of the real data
set while the Figures 4.b, 5.b, 6.b, and 7.b show the results of
the random data set.

Fig 4.a: SL of scheduling real tasks on 10 VMs

Fig 4.b: SL of scheduling random tasks on 10 VMs

Fig 5.a: SL of scheduling real tasks on 25 VMs

Fig 5.b: SL of scheduling random tasks on 25 VMs

Fig 6.a: SL of scheduling real tasks on 50 VMs

Fig. 6.b: SL of scheduling random tasks on 50 VMs

Fig. 7.a: SL of scheduling real tasks on 75 VMs

Fig. 7.b: SL of scheduling random tasks on 75 VMs

Form the figures; the proposed IWWO algorithm achieves SL
less than that of ACO, GA, and WWO in all cases. The results
satisfy the goal of the improvement in the WWO algorithm
that leads to overcoming the local optimum point problem of
the SL value as declared in figures 4, 5, 6, and 7. Where the
SL of WWO is the largest one in most cases and IWWO gives
the best SL value but this improvement in SL leads to a
problem with computation time as will be discussed in the

following section.

6.6.2 Computation time
Table 8 presents the computation time (in seconds) of the
WWO, IWWO, ACO, and GA for the real data set. From the

table, the results indicate that the WWO requires less time
since most of its computational steps depend on the reverse
operation of a part of the wave which leads to falling into the
local maximum point. While the IWWO algorithm takes more
time in the rewarding process which leads to an improvement
in the result. As well, the time of running Max-Min algorithm
steps as the breaking operation. However, the obtained results
achieve a great improvement in the SL value as declared in

the previous section and also the throughput and balance
degree. In table 9 the computation time of scheduling 100,
250, 500, 1000, and 2000 random tasks onto 10, 25, and 50
VMs.

Table 8: Computation time (sec) of scheduling real tasks
No.

of

VMs

Algorithm

Number of Tasks

100 250 500 1000 2000

10

IWWO 0.031 0.063 0.172 0.577 2.199

WWO 0.01 0.015 0.031 0.062 0.141

GA 0.032 0.063 0.094 0.203 0.353

ACO 0.405 2.355 9.219 35.740 144.566

25

IWWO 0.016 0.109 0.203 0.655 2.324

WWO 0.015 0.047 0.078 0.141 0.281

GA 0.047 0.109 0.156 0.312 0.624

ACO 0.206 12.729 50.653 200.055 791.873

50

IWWO 0.047 0.124 0.296 0.827 2.574

WWO 0.031 0.078 0.125 0.250 0.515

GA 0.078 0.156 0.327 0.530 1.139

ACO 7.941 49.796 191.858 768.410 3048.011

75

IWWO 0.095 0.233 0.403 0.485 1.892

WWO 0.030 0.078 0.188 0.359 0.743

GA 0.093 0.203 0.390 0.780 1.581

ACO 17.534 108.031 427.161 1722.418 8002.913

Table 9: Computation time (sec) of scheduling random

0

5000

100 250 500 1000 2000

S
L

(s
ec

)

Tasks

ACO GA WWO IWWO

0

2000

100 250 500 1000 2000

S
L

(s
ec

)

Tasks

ACO GA WWO IWWO

0

2000

4000

100 250 500 1000 2000

S
L

(s
ec

)

Tasks

ACO GA WWO IWWO

0

500

1000

100 250 500 1000 2000

S
L

(s
ec

)

Tasks

ACO GA WWO IWWO

0

2000

100 250 500 1000 2000

S
L

(s
ec

)

Tasks

ACO GA WWO IWWO

0

500

1000

100 250 500 1000 2000

S
L

(s
ec

)

Tasks

ACO GA WWO IWWO

0

2000

100 250 500 1000 2000

S
L

(s
ec

)

Tasks

ACO GA WWO IWWO

0

500

100 250 500 1000 2000

S
L

(s
ec

)

Tasks

ACO GA WWO IWWO

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

72

tasks
 No.

of

VMs

Algorithm

Number of Tasks

100 250 500 1000 2000

10

IWWO 0.025 0.063 0.16 0.69 2.29

WWO 0.016 0.031 0.47 0.78 0.125

GA 0.016 0.062 0.078 0.125 0.218

ACO 0.41 2.324 9.03 37.09 142.74

25

IWWO 0.031 0.078 0.23 0.64 2.37

WWO 0.016 0.031 0.08 0.14 0.266

GA 0.031 0.063 0.09 0.19 0.42

ACO 2.08 12.5 49.56 195.765 792.97

50

IWWO 0.047 0.125 0.28 0.81 2.79

WWO 0.031 0.078 0.14 0.29 0.52

GA 0.047 0.078 0.19 0.25 0.66

ACO 7.97 48.14 191.63 769.57 3049.7

6.6.3 Balance Degree
Figures 8, 9, and 10 show the BD of scheduling 100, 250,
500, 1000, and 2000 tasks respectively into different numbers

of VMs. From the Figs., the presented IWWO scores the
highest BD ratio for all the examination cases because it gives
the minimum makespan in all experiment test (real and
random) cases. Results prove that the proposed approach can
distribute the different number of user tasks onto the
available VMs with a higher BD ratio that leads to improve
resources utilization.

Fig 8.a: BD of different real tasks on 10 VMs

 Fig 8.b: BD of different random tasks on 10 VMs

6.6.4 Used Memory
Figures 11, 12, 13, and 14 shows the used memory by the
WWO, IWWO, ACO, and GA algorithms for scheduling
different real tasks (100, 250, 500, 1000, and 2000) onto
different VMs. The memory usage metric is measured in
CloudSim toolkit where used memory is the subtraction result
of total memory before running the algorithm from the total
memory after running the algorithm. From figures, the

proposed IWWO used more memory than the traditional
WWO as a result of applying the learning features that lead to
increase the used memory as well the used memory by Max-
Min algorithm steps as the breaking operation. This point
considers as a weak point in the proposed IWWO but the
improvement in other performance metrics is very high
compared with the metrics of WWO especially in the SL
value and throughput that leads to high improvement in

overall system performance.

Fig 9.a: BD of different real tasks on 25 VMs

Fig 9.b: BD of different random tasks on 25 VMs

Fig 10.a: BD of different real tasks on 50 VMs

Fig 10.b: BD of different random tasks on 50 VMs

Fig 11: Used memory in the case of using 10 VMs

Fig 12: Used memory in the case of using 25 VMs

Fig 13: Used memory in the case of using 50 VMs

0

100

100 250 500 1000 2000

B
al

an
ce

 d
eg

re
e

%

Tasks
ACO GA WWO IWWO

0

50

100

100 250 500 1000 2000 B
al

an
ce

 d
eg

re
e

%

Tasks
ACO GA WWO IWWO

0

50

100

100 250 500 1000 2000

B
al

an
ce

 d
eg

re
e

%

Tasks
ACO GA WWO IWWO

0

50

100

100 250 500 1000 2000 B
al

an
ce

 d
eg

re
e

%

Tasks
ACO GA WWO IWWO

0

50

100

100 250 500 1000 2000

B
al

an
ce

 d
eg

re
e

%

Tasks

ACO GA WWO IWWO

0

50

100

100 250 500 1000 2000

B
al

an
ce

 d
eg

re
e

%

Tasks

ACO GA WWO IWWO

0

5000

100 250 500 1000 2000

u
se

d
 m

em
o
ry

 (
K

B
y
te

)

Tasks

ACO GA WWO IWWO

0

5000

100 250 500 1000

u
se

d
 m

em
o
ry

 (
K

B
y
te

)

Tasks

ACO GA WWO IWWO

0

100 250 500 1000 2000

u
se

d
 m

em
o
ry

(K
 B

y
te

)

Tasks

ACO GA WWO IWWO

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

73

6.6.5 Throughput
Figures 15, 16, 17, and 18 show the throughput obtained when
applying the IWWO, WWO, GA, and ACO to schedule
different tasks (100, 250, 500, 1000, and 2000) onto different
VMs (10, 25, 50, and 75) considering real time and randomly
generated tasks. From the Figs. 15,16,17, and 18, the IWWO
technique achieves the higher throughput. The proposed
IWWO technique can efficiently explore the available number

of VMs and improve the WWO performance. From the
figures, the IWWO achieves the maximum throughput and
this value increases as the number of tasks and number of
VMs increase.

Fig 14: Used memory in the case of using 75 VMs

Fig 15.a: Throughput of t real tasks on 10 VMs

Fig 15.b: Throughput of random tasks on 10 VMs

Fig 16.a: Throughput of t real tasks on 25 VMs

Fig 16.b: Throughput of random tasks on 25 VMs

7. EXPERIMENTAL RESULTS SUMMARY
From the previous results, the IWWO algorithm enhances
conventional WWO performance. It achieves better solutions in
all cases with a different number of tasks and different number
of VMs. On the other hand, the IWWO achieves near-optimal
SL, higher balance degree, and high throughput compared with

the WWO, GA, and ACO this achieves the main objectives
from our research in improving the QoS parameters. However,

it has a large memory and high computation time as a result of
running the Max-Min algorithm as the breaking operator.

Fig 17.a: Throughput of t real tasks on 50 VMs

Fig. 17.b: throughput of random tasks on 50 VMs

Fig 18.a: Throughput of t real tasks on 75 VMs

Fig 18.b: Throughput of random tasks on 75 VMs

Moreover, the improvement in the value of SL, BD, and
throughput is great with respect to WWO and IWWO. This
improvement reaches 90% in SL results for most

experimental cases and up to 95% in throughput. While the
increment in the computation time does not reach 15%
compared with 50% with WWO.

8. CONCLUSION
The scheduling problem has a strong impact on the

performance of cloud computing. Therefore, there is a need
to apply an efficient scheduling strategy to improve cloud
performance. This article developed a new scheduling
algorithm, called IWWO for scheduling problem in cloud
computing. It is intended to efficiently schedule tasks onto
VMs based on applying some features of reinforcement
learning to improve the performance of the WWO. The
obtained results prove that the presented IWWO can assign

many tasks with SL less than that of the WWO as well it
gives better results than the WWO algorithm. This because
the proposed IWWO first applies some features of RL and
then applies a heuristic algorithm Max-Min in the breaking
operation to enhance the algorithm local search phase. The
proposed IWWO can be improved by dispensing the
refraction operator or by applying multithreading
programming to minimize the computation time and the used
memory.

0

20000

100 250 500 1000 2000

u
se

d
 m

em
o
ry

(K
 B

y
te

)

Tasks

ACO GA WWO IWWO

0

2

4

100 250 500 1000 2000

th
ro

u
g
h
p
u

t

Tasks

ACO GA WWO IWWO

0

100 250 500 1000 2000

th
ro

u
g
h
p
u

t

Tasks

ACO GA WWO IWWO

0

5

10

100 250 500 1000 2000

th
ro

u
g
h
p
u

t

Tasks

ACO GA WWO IWWO

0

20

40

100 250 500 1000 2000

th
ro

u
g
h
p
u

t

Tasks

ACO GA WWO IWWO

0

10

20

100 250 500 1000 2000

th
ro

u
g
h
p
u

t

Tasks

ACO GA WWO IWWO

0

50

100

100 250 500 1000 2000

th
ro

u
g
h
p
u

t

Tasks

ACO GA WWO IWWO

0

10

20

100 250 500 1000 2000

th
ro

u
g
h
p
u

t

Tasks

ACO GA WWO IWWO

0

30

60

90

100 250 500 1000 2000

th
ro

u
g
h
p
u

t

Tasks

ACO GA WWO IWWO

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

74

9. REFERENCES
[1] Zheng, Zibin, Jieming Zhu, and Michael R. Lyu.

"Service-generated big data and big data-as-a-service: an
overview", the IEEE BigData Congress, 2013.

[2] Alkhanak, E. Nabiel, S. P. Lee, R. Rezaei, and R. M.
Parizi, “Cost optimization approaches for scientific
workflow scheduling in cloud and grid computing: A
review, classifications, and open issues”, Journal of
Systems and Software, Vol.113, pp. 1-26, 2016.

[3] L. Mei, W.K. Chan, and T. H. Tse, “A tale of clouds:

paradigm comparisons and some thoughts on research
issues,” Proceedings of the IEEE Asia-Pacific Services
Computing Conference (APSCC’08), pp. 464-469, 2008.

[4] B. Keshanchi and N.J. Navimipour, “Priority-based task
scheduling in the cloud systems using a memetic
algorithm”, Journal of Circuits, Systems and Computers
25(10) (2016), 1–33.

[5] F. Ramezani, J. Lu and F. Hussain, “Task scheduling

optimization in cloud computing applying multi-
objective particle swarm optimization”, Proceeding of
the International Conference on Service-Oriented
Computing, Springer, 2013, pp. 237–251.T. Mathew, K.
C. Sekaran, and J. Jose, “Study and analysis of various
task scheduling algorithms in the cloud computing
environment.” Proceedings of the International
Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 658–
664, 2014.

[6] S. K. Panda, I. Gupta, and P. K. Jana, “Allocation-aware
task scheduling for heterogeneous multi-cloud systems,”
Procedia Comput. Sci., vol. 50, pp.176–184, 2015.

[7] Zhang, J., Zhou, Y. and Luo, Q, “Nature-inspired
approach: a wind-driven water wave optimization
algorithm“, Appl. Intell., Vol. 49, pp. 233-252, 2019.

[8] S.K. Mishra, B. Sahoo and P. P. Parida, “Load balancing

in cloud computing: A big picture”, Journal of King Saud
University – Computer and Information Sciences, Vol.
32, pp.149–158, 2018.

[9] I. Strumberger , M. Tuba, N. Bacanin and E. Tuba,
“Cloudlet Scheduling by Hybridized Monarch Butterfly
Optimization Algorithm”, J. Sensor and Actuator
Network, Vol. 8: doi:10.3390/jsan8030044 , 2019.

[10] A. A. Nasr, N. A. El-Bahnasawy, G. Attiya, and A. El-

Sayed, “Using the TSP Solution Strategy for Cloudlet
Scheduling in Cloud Computing”, Journal of Network
and Systems Management, Vol. 27, Issue 2, pp. 366-387,
2019.

[11] F. Mahmoodi and K.Dooley “A comparison of
exhaustive and non-exhaustive group scheduling
heuristics in a manufacturing cell,” Int. J. Prod. Res, Vol.
29, pp. 1923–1939, 1991.

[12] S. Toumi, B. Jarboui, M. Eddaly, and A. Rebaı,
“Branch-and-bound algorithm for solving blocking
flowshop scheduling problems with makespan criterion,”
Int. J. Math. Oper. Res, Vol. 10, pp. 34–48, 2017.

[13] B. Pavithra, and R. Ranjana, “A comparative study on
performance of energy efficient load balancing
techniques in cloud,” International Conference in
Wireless Communications, Signal Processing and

Networking (WiSPNET), pp. 1192–1196, 2016.

[14] S. H. H. Madni, M. S. Abd Latiff, M. Abdullahi, S. M.
Abdulhamid, and M. J. Usman, “Performance
comparison of heuristic algorithms for task scheduling in
IaaS cloud computing environment,” PLoS One, vol. 12,
no. 5, pp. 1–26, 2017, doi:

10.1371/journal.pone.0176321.

[15] G. Ming and H. Li, "An Improved Algorithm Based on
Max-Min for Cloud Task Scheduling," Recent Advances
in Computer Science and Information Engineering in
Springer Berlin Heidelberg, vol. Volume 125 of the
series Lecture Notes in Electrical Engineering, pp. 217-
223, January 2012.

[16] O. M. Elzeki, M. Z. Reshad and M. A. Elsoud,

“Improved Max-Min Algorithm in Cloud Computing”,
International Journal of Computer Applications Vol. 50,
pp.22-27, July 2012.

[17] H. Gamal El Din Hassan Ali, I. A. Saroit, and A. M.
Kotb, “Grouped tasks scheduling algorithm based on
QoS in cloud computing network,” Egypt. Informatics J.,
vol. 18, no. 1, pp. 11–19, 2017, doi:
10.1016/j.eij.2016.07.002.

[18] R. Zhang, F. Tian, X. Ren, Y. Chen, K. Chao, R. Zhao,
B. Dong, W. Wang, “Associate multi-task scheduling
algorithm based on self-adaptive inertia weight particle
swarm optimization with disruption operator and chaos
operator in cloud environment,” Serv. Oriented Comput.
Appl. 2018. https://doi.org/10.1007/s11761-018-0231-
72018.

[19] D. Karaboga and B. Basturk, “A powerful and efficient

algorithm for numerical function optimization: Artificial
bee colony (ABC) algorithm”, Journal of Global
Optimization, Vol. 39, pp.459–471, 2007.

[20] M. Kalra and S. Singh, “A review of metaheuristic
scheduling techniques in cloud computing,” Egypt.
Informatics J., vol. 16, no. 3, pp. 275–295, 2015, doi:
10.1016/j.eij.2015.07.001.

[21] A. F.S. Devaraj, M. Elhoseny, S. Dhanasekaran, E.
LaxmiLydia and K.Shankar,” Hybridization of firefly

and Improved Multi-Objective Particle Swarm
Optimization algorithm for energy efficient load
balancing in Cloud Computing environments,” Journal of
Parallel and Distributed Computing, Vol. 142, pp. 36-
45, 2020.

[22] Keshanchi, Bahman, A. Souri, and N. J. Navimipour,
“An improved genetic algorithm for task scheduling in
the cloud environments using the priority queues: formal

verification, simulation, and statistical testing”, Journal
of Systems and Software, Vol. 124, pp. 1-21, 2017.

[23] S. A. Hamad and F.A. Omara, “Genetic-Based Task
Scheduling Algorithm in Cloud Computing
Environment,” International Journal of Advanced
Computer Science and Applications, Vol. 7, pp. 550-556,
2016.

[24] K. L. D. S. Valli, “Multi ‑ objective heuristics algorithm

for dynamic resource scheduling in the cloud computing
environment,” J. Supercomput., no. 0123456789, 2021,
doi: 10.1007/s11227-020-03606-2

[25] M.Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E.-G.
Talbi, A.Y. Zomaya and D. Tuyttens, “A parallel bi-
objective hybrid metaheuristic for energy-aware
scheduling for cloud computing systems,” Journal of

https://www.mdpi.com/2224-2708/8/3/44
https://doi.org/10.1007/s11761-018-0231-72018
https://doi.org/10.1007/s11761-018-0231-72018
https://www.sciencedirect.com/science/article/abs/pii/S0743731520300459#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731520300459#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731520300459#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731520300459#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731520300459#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731520300459#!
https://www.sciencedirect.com/science/journal/07437315
https://www.sciencedirect.com/science/journal/07437315
https://www.sciencedirect.com/science/journal/07437315/142/supp/C
https://www.sciencedirect.com/science/article/abs/pii/S0743731511000827#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731511000827#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731511000827#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731511000827#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731511000827#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731511000827#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731511000827#!
https://www.sciencedirect.com/science/article/abs/pii/S0743731511000827#!
https://www.sciencedirect.com/science/journal/07437315

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 3, May 2021

75

Parallel and Distributed Computing, Vol. 71,pp. 1497-
1508, 2011.

[26] M. Dorigo, and L.M. Gambardella, “Ant colony system:
a cooperative learning approach to the traveling salesman
problem,” IEEE Trans. Evol. Comput., Vol. 1, pp. 53–66,

1997.

[27] K. Li, G. Xu, G. Zhao, Y. Dong and D. Wang, "Cloud
Task Scheduling Based on Load Balancing Ant Colony
Optimization," 2011 Sixth Annual Chinagrid
Conference, Liaoning, 2011, pp. 3-9, doi:
10.1109/ChinaGrid.2011.17.

[28] K. Sreenu and S. Malempati, “MFGMTS: Epsilon
Constraint-Based Modified Fractional Grey Wolf

Optimizer for Multi-Objective Task Scheduling in Cloud
Computing,” IETE J. Res., vol. 65, no. 2, pp. 201–215,
2019, doi: 10.1080/03772063.2017.1409087.

[29] I. Attiya, M. Abd Elaziz, and S. Xiong, “Job Scheduling
in Cloud Computing Using a Modified Harris Hawks
Optimization and Simulated Annealing Algorithm,”
Comput. Intell. Neurosci., vol. 2020, 2020, doi:
10.1155/2020/3504642.

[30] F. Hemasian-Etefagh and F. Safi-Esfahani, “Dynamic
scheduling applying new population grouping of whales
meta-heuristic in cloud computing,” J. Supercomput.,
vol. 75, no. 10, pp. 6386–6450, 2019, doi:
10.1007/s11227-019-02832-7.

[31] Yu-Jun Zheng, “Water wave optimization: A new nature-
inspired metaheuristic”, Computers &Operations
Research, Vol. 55, pp.1–11, 2015.

[32] Jinzhong Zhang, Yongquan Zhou and Qifang Luo, “An
improved sine cosine water wave optimization algorithm
for global optimization,” Journal of Intelligent & Fuzzy
Systems, Vol.34, pp. 2129–2141, 2018.

[33] Xiao-Bei Wu, Jie Liao and Zhi-Cheng Wang, “Water
wave optimization for the traveling salesman problem”
in: D.-S. Huang, V. Bevilacqua, P. Premaratne (Eds.),
Intelligent Computing Theories and Methodologies,
Springer, Cham, pp. 137–146.

[34] X. Yun, X. Feng, X. Lyu, S. Wang, and B. Liu, “A novel
water wave optimization based memetic algorithm for
flow-shop scheduling” IEEE Congress on Evolutionary
Computation, pp. 1971–1976, 2016.

[35] A. Gosavi, “A tutorial for reinforcement learning,”
Missouri University of Science and Technology, Tech.
Rep., September 2019.

[36] T. Goyal, A. Singh and A. Agrawal, “Cloudsim:

simulator for cloud computing infrastructure and
modeling,” Procedia Engineering, Vol. 38, pp. 3566-
3572, 2012.

[37] D. G. Feitelson, D. Tsafrir, D. Krakov, “Experience with
using the parallel workloads archive,” J. Parallel Distrib.
Comput. 74 (10), 2967–2982 (2014).

[38] http://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ip
sc/index.html#usage.

[39] K. Jansen, K.-M. Klein, and J. Verschae, “Closing the
gap for makespan scheduling via sparsification
techniques,” arXiv preprint arXiv:1604.07153 (2016).

[40] A. V. Lakra and D. K. Yadav, “Multi-Objective Tasks
Scheduling Algorithm for Cloud Computing Throughput
Optimization,” Procedia Computer Science, vol. 48, pp.
107 – 113, 2015.

[41] A.A. Nasr, A. T. Chronopoulos, N.A. El-Bahnasawy, G.

Attiya, and A. El-Sayed, “A Novel Water Pressure
Change Optimization Technique for Solving Scheduling
Problem in Cloud Computing” Journal of Cluster
Computing, Vol. 22, Issue 2, pp. 601-617, 15 June 2019.

https://www.sciencedirect.com/science/journal/07437315/71/11
http://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/index.html#usage
http://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/index.html#usage

