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ABSTRACT 

Nowadays cloud computing provides many benefits for 
organizations. Businesses can ensure reliable calamity 
recovery and backup solutions without the spat of tuning them 
up on a physical machine. For many companies, exploiting 

complex calamity recovery plans can be an expensive 
guarantee, and backing up data is time exhaustion. The cloud 
itself is built in such a way that the data stored more than one 
time in servers, so that if any server fails, the data is backed 
up immediately. The capability of accessing data readily is 
available after handling the failure. However, still, cloud 
computing resources face many problems such as scheduling 
problems. This paper tackles the resource scheduling problem 

and presents a new efficient algorithm, called Improved Water 
Wave Optimization (IWWO), to address such a problem. The 
main idea is the enhancement/improvement of the Water 
Wave Optimization (WWO) algorithm by using reinforcement 
learning to overcome the local optimality of the conventional 
WWO during the searching process. The proposed IWWO is 
implemented in the CloudSim toolkit and evaluated by 
considering a real data set and a randomly generated data set. 

The results are compared with the results of the Genetic 
Algorithm (GA) and Ant Colony Optimization (ACO) 
algorithm. The obtained results show that the IWWO can 
solve the resource scheduling with minimum schedule length 
and a high balance degree.  

Keywords 

Cloud computing, task scheduling, optimization, and water 
wave optimization 

1. INTRODUCTION 
Cloud computing gives companies a high level of flexibility 

over the presented services. There are unlimited virtual 
resources with various capacities to provide users with 
different functions. Moreover, several new services, like Big 
Data as a Service (BDaaS), are now available to users [1]. 
Many users, companies, and governments are toward 
transferring their works and data to the cloud aiming to save 
cost and time. Nevertheless, the widespread use of cloud 
computing in different fields causes many challenges as load 
balancing, power consumption, security, and resource 

scheduling. An important factor affecting cloud performance 
is the task scheduling technique. Weak algorithms waste the 

computing power of the cloud resource. On the contrary, 
developing a smart algorithm can increase the performance of 
cloud computing and save time and money [2] because it has 
an important role in optimizing the utilization of the available 
resources. It refers to the process of distributing tasks of a 
given application onto available resources (virtual machines 
/VMs) in the cloud. Since the number of VMs is limited and 
has different capabilities, there is a need for an efficient 

scheduling method for carefully assigning tasks to virtual 
machines [3]. In a cloud environment, the number of user 
tasks and the number of available resources can grow rapidly. 
This requires task scheduling to play a major role in 
enhancing the stability and reliability of the cloud system. The 
primary objective of cloud task scheduling is to schedule user 
tasks at the same time and provide the job with efficient 
resources to meet QoS parameters such as reducing execution 

time for all submitted tasks [4,5]. Recently, several methods 
are proposed to solve the scheduling problem [6,7]. 
Nevertheless, most of the existing methods tackle one or more 
performance parameters without considering the limitations of 
the available resources. Further, the scheduling algorithms 
that achieved a minimum schedule length provide a large 
computational time, and vice versa. Briefly, the algorithms 
concerned with reaching the optimal schedule length, take 

more time to schedule the cloudlets, while the algorithms 
concerned with reducing computation time, fall into local 
optimality of the solution. The research paper's key 
motivation is to closely address the problem of multi-
objective scheduling that selects the optimal resource for 
user’s cloudlets to enhance required parameters of quality of 
services (QoS) such as processing time, makespan, 
throughput, and a high degree of balance through distributes 

the user’s tasks onto the available virtual machines in an 
efficient way that in turn enhances cloud computing resources 
utilization. This paper introduces a new meta-heuristic 
optimization approach, named Improved Water Wave 
Optimization (IWWO) algorithm, to tackle the scheduling 
problem. The introduced algorithm is derived from a new 
nature-inspired optimization algorithm called Water Wave 
Optimization (WWO). The WWO is based on shallow water 
wave theory and imitates wave motion to solve optimization 

problems. The main objective of the proposed IWWO 
algorithm is to improve the WWO algorithm by using 
reinforcement learning to overcome the local optimality 
problem of the conventional WWO [8]. Furthermore, another 
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enhancement to the proposed IWWO is done by applying the 
Max-Min algorithm as the breaking stage of the IWWO 
algorithm. The proposed IWWO is implemented in the 
CloudSim toolkit and evaluated by considering a real data set 
and a randomly generated data set. The results are compared 

with those obtained with the GA and ACO algorithms. The 
obtained results prove that the IWWO can solve the resource 
scheduling with minimum schedule length, high throughput, 
and high balance degree.  
The main contributions of this paper are as follows: 

 Formulating WWO and IWWO algorithms for the 

scheduling problem taking into account the availability 
of cloud resources. 

 Developing an Improved Water Wave Optimization 

(IWWO) algorithm to tackle the scheduling problem and 
solving the drawbacks of the conventional WWO. 

 IWWO scheduling algorithm has been implemented and 

tested at Cloudsim simulator by submitting random 
independent tasks and real NASA-iPSC data set, and 
results demonstrate that IWWO improved various QOS 

parameters. 

The rest of this paper is organized as the following. Sect. 2 
presents the cloud computing model and scheduling process. 
Section 3 formulates the scheduling problem as an 
optimization problem.  Section 4 presents a literature survey 
of related work. Section 5 describes the WWO algorithm in 
some detail. The proposed IWWO is presented in Section 6. 
Section 7 introduces the experimental results and discussion. 
The last section introduces the concluding remarks and future 

work of this research. 

2. CLOUD COMPUTIONG AND 

SCHEDULING PROBLEM  
Within cloud data centers, cloud infrastructure consists of a 
limited number of heterogeneous physical servers. Each 
server can host one or more VMs that are run in a parallel way 
using one of the main sharing (time-shared or space-shared) 
policies [9]. Further, each data center has a data center broker 
that has a scheduler, the backbone of the scheduling process, 
which is responsible for assigning arrived jobs/cloudlets onto 

the available VMs. When a cloud user submits a cloudlet to 
the cloud, it firstly enters the task management component 
that organizes incoming requests. The task manager then 
transmits the sent tasks to the task scheduler, which distributes 
the incoming tasks to the convenient and relevant VMs by 
applying the scheduling algorithm. The scheduler takes its 
scheduling decision depending on the current state of the VMs 
provided by the Cloud Information System (CIS). That is, if a 

VM is not available, the tasks will wait in the task queue. 
When the virtual machine finishes processing, the existing 
tasks, it can be used for other tasks, and so [10]. Figure 1 
shows a sample of cloud environments and cloudlets 
scheduling.  

3. SCHEDULING PROBLEM 

FORMULATION  
As mentioned earlier, the scheduling problem refers to the 
process of assigning user tasks/cloudlets onto the available 
VMs in cloud.  

Fig 1: Scheduling in a Cloud Data Center 

Since the number of submitted tasks (n) is greater than the 

number of available VMs (m) and different tasks have 
different requirements and the resources availability in cloud 
have dynamic nature, the scheduling problem is defined as 
NP-complete. This section presents the formulation of the 
scheduling problem as an optimization problem to be solved 
by an optimization algorithm.  

The cloud user submits n cloudlets {                 each 
cloudlet has a specific length         in Million Instruction 

(MI) for processing in the physical host Ph= 
{               } in the cloud data center. Each 

physical host has m virtual machines 
                  each     has specific configurations 

such as main memory (     , storage    , processing power 

       ) in MIPS or Million Instruction Per Second, and 

number of cores        . Our objective is to find the 

convenient mapping of each task in cloud resources so that it 
is possible to enhance QoS parameters. 

Let      be a binary decision variable as: 

      
                       
          

  

Then, the scheduling problem may be formulated minimizing 
the objective function that is the task processing time 
(     as:  

                      
  
   

 
                        (1) 

Subject to 

          
 
                                              (2) 

           
 
                   

                       (3) 

    
 
                                                        (4) 

The objective function (   ) in this model is to minimize the 

total execution time of all submitted tasks. Where, Task 

execution time             
         

              
. The constraints 

are to satisfy task requirements without wasting cloud 
resources. Equation (2) represents the first constraint that is to 

prevent overloading at any virtual machine (  ) and 

maintaining system balance. It ensures that the required load 

for all tasks assigned to a virtual machine   ) doesn’t exceed 

the processing power of that virtual machine. It also ensures 
that the total number of tasks assigned to a virtual machine at 

a time must be less than or equal to                 Where, 

                           . The second constraint, Eq. 

(3), guarantees that the required memory for processing all 
tasks assigned to a virtual machine doesn’t exceed its 
available memory. Finally, the third constraint, Eq. (4), 
assures that each task is allocated to only one VM while more 
than one task may be assigned to the same VM at a time. The 

tasks are non-preemptive so that each task must be executed 
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without any interruption [11]. 
 

4. RELATED WORK 
The scheduling problem is solved by implementing 
mathematical techniques like exhaustive search algorithm [12] 
and branch-and-bound [13] to achieve the optimal solution. 
However, the time complexity exponentially increases as the 

number of tasks and/or VMs increases. In [14], a heuristics 
method, called FCFS, is presented to solve the problem. It 
first collects all users' tasks in a queue and then the scheduler 
determines which task will be mapped on VM depending on 
the task arrival time. The FCFS technique is the default 
method in the cloud computing system, but it leads to a very 
high schedule length as it does not consider any criteria for 
allocating tasks into VMs. Many heuristic algorithms have 

been designed and implemented to resolve the scheduling 
problem, but it is difficult to choose the best algorithm to 
solve problems of task assignment because the techniques are 
developed under different assumptions. In [15], The author 
discusses heuristic approaches for task scheduling and 
provides a distinction between them. The proposed results 
prove that Min-Min approach is the best suited for improving 
cost, makespan and throughput. The Max-Min algorithm 
exhibits a good performance for achieving the optimal task 

scheduling in the IaaS cloud model. The MET algorithm 
achieves better results for the degree of imbalance of the 
optimal task scheduling. For obtaining the optimal results 
with multi-objective scheduling problems, the author 
recommended the hybridization of heuristic and meta-
heuristic algorithms. Therefore, in this paper Max-Min 
algorithm is implemented as a breaking operator for 
enhancing the performance of the WWO. For obtaining the 

optimal results with multi-objective scheduling problem, the 
author recommended combining heuristic and meta-heuristic 
algorithms. Therefore, in this paper Max-Min algorithm is 
implemented as a breaking operator for enhancing the 
performance of the WWO. The Max-Min algorithm's concept 
is to begin scheduling tasks with the longest completion time 
to the available resource. This algorithm consists of two 
phases. It starts with estimating the completion time for each 

task in the task list with a different VM. In the second phase, 
the task with the longest expected completion time is 
identified and allocated to the resource that gives the shortest 
completion time and then deleting the chosen task from the 
task list. This process is repeated until all tasks are scheduled 
[16,17]. The meta-heuristic techniques are based on 
simulating the behavior of natural phenomena. These 
algorithms are used for solving a problem with low time 

complexity [18-22].  Genetic Algorithm (GA) [23] is one of 
the most common optimization techniques. It is imitating on 
evolutionary and chromosomal formation concepts. The 
standard GA works through several operations: the forming of 
an initial population, the assessment of the initial population's 
solutions, determination of the best one, and procreation to 
generate a new population. Crossover and mutation are two 
operations that are applied to create alternative solutions. For 

each operation, the algorithm formulates a new solution 
(child) and adds this solution to a new population according to 
a specific fitness function. In [24], a modified GA is proposed 
to improve the execution time of all tasks, minimize the total 
execution cost, and maximize the resource utilization. 
 In [25], the authors proposed a new parallel bi-objective 
hybrid GA that minimizing the makespan and energy 
consumption. GA-based task scheduling for dynamic resource 
provisioning has been presented in [26]. Based on the results 

of workload forecasting, the author presented a cost-optimized 

resource scheduling strategy in a cloud computing 
environment to minimize the total cost of renting virtual 
machines. The proposed scheduling module was tested using 
NASA Ames iPSC / 860 data set and Google data tracking 
and the obtained results were compared with the FCFS, Max-

Min, and Min-Min scheduling algorithms. The ACO 
algorithm simulates the cooperative behavior of real ants. The 
ACO algorithm was applied to solve combinatorial 
optimization problems, and it is very successful in solving 
various problems [27]. The main concern for ant behavior is 
the collective behavior among ants to perform complex tasks 
such as transporting food and finding the shortest path to food 
sources. The ant colony reaches the food source by tracing 

some of them from the colony's nest to the discovered food 
source. The ants follow others during their trips by leaving a 
chemical trace (pheromone) on the ground to determine the 
shortest path to food. Pheromone is an olfactory and volatile 
substance that loses its concentration over time. The role of 
this trace is to direct the other ants to the target point. The 
greater the value of pheromone on a given path, the greater 
the probability (p) that ants will choose the same path. For an 

ant, its path is determined according to the value of 
pheromone on it. 
 In [28], ACO used for task scheduling in cloud computing, 
the authors introduced a new improvement in the ACO 
algorithm for achieving the load balancing through task 
scheduling depending on the past result in task scheduling. 
The new meta-heuristics algorithms are also proposed for 
solving the scheduling problem, like the FGMTS algorithm 

presented in [29]. Where, Gray Wolf Optimizer algorithm is 
combined with existing fractional theory. As well as the 
formulation of the multi-objective function to solve the 
scheduling problem. The objective of the proposed 
improvement considers parameters, such as execution time, 
communication time and cost, implementation cost, energy 
consumption, and resource utilization. While in [30], the SA 
is combined with the Harris Hawk optimizer (HHO) for 
improving the local search process in the exploration phase 

and improving the convergence rate and the solution quality 
of the conventional HHO algorithm. The authors state that the 
HHOSA outperforms other algorithms, namely, PSO, SSA, 
MFO, FA, and HHO.  Also, in [31], the whale optimization 
algorithm is presented. The author introduces an optimized 
version of the Whale optimization algorithm to solve the early 
convergence problem in the conventional whale optimization 
algorithm. 

 

5. WATER WAVE OPTIMIZATION 

(WWO) ALGORITHM 

The traditional water wave optimization algorithm simulates a 
shallow water wave model. This is a population based 
algorithm, where each solution in the population is similar to 
a wave, and the search area is similar to the seabed area. The 

fitness value of the wave is influenced by the depth of the sea 
floor, the short distance from the stable water level and the 
high water level [32]. Each solution is equivalent to a unique 
wave position in the seabed area. Each wave characterizes by 
specific wave height and wavelength. The wave height is an 
integer number that represents the wave energy while 
wavelength belongs to real numbers and corresponding to the 
searching area [33]. The most fitness wave has a small 
wavelength and large wave height (high energy) as shown in 

Figure 2. The searching process of the WWO depends on 
three operators: propagation, breaking, and refraction.  
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Fig 2: Different shapes for the wave in deep and shallow 

water [32] 

i) Propagation Operator 
The propagation operator represents the global search process, 
where each wave is propagated only once in each generation. 
A new dimension of the new propagated wave    expressed 

by shifting a dimension d in the original according to Eq. (5): 
                                                              (5) 

Where, r is a uniform distribution (random values [-1,1] ),  
     is the     dimension length of the search space    
   ) and    is the wavelength of the propagated wave  . If 

the new position is outside the valid range, it is repositioned in 
a new random position in the range. Then the wave length is 
initialized with 0.5 for all waves and then updated after each 

generation based on Eq. (6): 

                                                               (6) 
Where,      is the fitness value of the wave  , 

              are the maximum fitness and minimum fitness 

values in the current population,   is a small positive number 

to avoid division by zero and   is the wavelength reduction 

coefficient. 

ii) Refraction Operator  
After applying the propagation factor, the wave height may be 
increased or decreased according to the fitness of the 

generated wave. The wave height will be increased if the 
generated wave fitness is better, which refers to the wave 
propagates from deep water to shallow water. Otherwise, the 
wave height will be reduced. When the wave height reaches 
zero, the wave has not improved for generations. It loses its 
momentum and discards. Then by applying the refractive 
operator according to the Eq. (7), a new wave can be 
generated at a random location between the old wave and the 

best-known solution   . 

        
          

 
 
            

 
                        (7) 

Where,    is the best solution, and        is a Gaussian 

random number with standard deviation   and mean value  . 

The height of the new wave is reset to maximum height       
and its wavelength is updated by Eq. (8). 

          
    

     
                                                             (8)            

iii) Breaking Operator 
When the propagation operator generates a new wave      
better than the best-known wave     , the WWO implements 

the breaking operator to conduct a local search around the 
wave multiple times. The first step is to randomly define the k 
dimension (where k is a random number between 1 and the 
predetermined number     ), and in each   dimension it will 

generate a solitary wave    according to Eq. (9): 

                                                        (9) 

Where,   is the breaking coefficient. If none of the solitary 

waves is better than   , then it will remains, otherwise,    is 

replaced by the fittest wave between the solitary waves. The 

overall steps of the conventional WWO algorithm are given in 
table 1. In [34], an adaption for the WWO is proposed to 
address the TSP. As the propagation is carried out by 
subsequence reversal, breaking is performed by local search 
on a swap-based neighborhood structure.  Results indicate that 

the modified WWO has better performance than GA and 
BBO. In [35], a similar approach is used to adapt the WWO to 
solve the permutation Flow-shop Scheduling Problem (FSP) 
except that local search is conducted by the NEH reinsertion 
method. In this paper, the conventional WWO procedure is 
the same as those adapted for TSP. The propagation operator 
is achieved by generating a random real number r (between 0 
and 1) for each dimension d and comparing it to the 

wavelength λ to determine if the wave propagated or not. In 
refraction, it makes waves absorb some of the best-known 
wave features. This is achieved by transferring the randomly 
selected subsequence from the best known solution w* to the 
corresponding portion of the refracted solution w. While the 
breaking operation is applied to each newly found best 
solution w*, then directly generate      solitary waves, each 

of which is obtained by alternating two randomly selected 
components. 

 

Table 1: The Conventional WWO algorithm framework 

Algorithm 1: Conventional WWO Algorithm 

Input: tasks list, VMs list Output: scheduling solution 

1. Initialize a population of n random waves 

2. WHILE (stop criterion is not met) DO 

3.     FOR each wave in population DO 

4.        Propagate w to w' based on Eq. 5 

5.         if (f(w') > f(w)) then  

6.                 Replace w with w'           

7.                if (f(w') > f(w*)) then  

8.                 Break w' based on Eq. 9 

9.                 Update w* with w' 

10.                 end if 

11.          else  

12.           Decrease wave height by one 

13.          end if 

14.           if (wave height ==0) then  

15.        refract w to w' based on Eq. 7 and Eq. 8 

16.       Update the wavelength based on Eq. 6  

17.      ENDFOR 

18.     ENDWHILE 

19.   return w* 

 

6. PROPOSED TECHNIQUE 

6.1 Improved Water Wave Optimization 
The main idea of the Improved Water Wave Optimization 
(IWWO) algorithm is to improve the traditional WWO 
algorithm in the process of movement from a solution to the 
neighbor solution by using a scientific intelligent method 
called Reinforcement Learning (RL). In the proposed 
improvement, the properties of the solution (wavelength and 
wave height) are guided by the RL to make the WWO method 
more intelligent in dealing with the problem. Where the RL 
makes these properties to learn from its old movement to 

move towards the best solution and avoid bad solutions and a 
local minimum in the search space. Reinforcement Learning 
(RL) is a method of machine learning. In the RL, the agent 
moves in all possible directions to reach a solution, and then 
an evaluation is performed to determine the quality of that 
solution as well as determine the reward or punishment. The 
agent should maximize the expected reward by improving the 
obtained solution quality [36]. In the proposed IWWO, the 

wave is rewarded by improving its quality through increasing 
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wave height and adding it to the population and punished by 
decreasing its wave height. Table 2 shows the proposed 
IWWO algorithm. The searching process of the proposed 
IWWO depends on four operators: propagation, breaking, 
refraction, and learning. These operators are clearly discussed 

in the following sections through the rewarded function steps. 
 

Table 2: The proposed IWWO algorithm 

Algorithm 2: IWWO algorithm 

Input: tasks list, VMs list  Output: scheduling solution 

1. Initialize a population   of n random waves 

2. WHILE (stop criterion is not met)  

3.     FOR each wave in population   

4.        Propagate w to w' 

5.         if (w' rewarded) then 

6.             Break w' 

7.            Else 

8.                if (wave height ==0) then 

9.              Refract w and reset its wave height to       

10.                Update wavelength 

11.            End if 

12.             if (f(w') < f(w*)) then 

13.              Update w* with w' 

14.           Break w to w' 

15.          If (w' rewarded) 

16.          Repeat steps from step 8 to step 12  

17.      ENDFOR 

18.     ENDWHILE 

19.   return w* 

 

i) Propagation Operator 
As mentioned previously, at each generation, the wave 
propagated once according to its wavelength value. In the 
proposed approach, the propagation operator is implemented 
as in the TSP solving. First, it generates a random number r (r 

is uniform distributed in the range between 0 and 1). If r < λ, 
the subsequence of the wave w [d, d + L] is reversed, and L is 
a random integer in the range [1, n-d].  The comparison of 
wavelength satisfies that the low fitness wave, with a large 
wavelength, has a large probability for propagating, while the 
high fitness wave, with a small wavelength, has a small 
probability for propagating and vice versa. The pseudo-code 
of the propagation operator is given in Table 3. 

 

Table 3: Propagating Algorithm 

Algorithm 3: propagation 

Input: wave and wavelength   Output: new wave 

1. Given a wave        and its wavelength λ  

2. for each dimension d of w do 

3. Generate r uniformly distributed in [0, 1]  

4.  if r < λ do  

5.  Generate an integer L in [0, n - d]  

6.  Reverse    [d, d + L], obtain   '  

7.  return   ' 

ii) Refraction Operator 
As mentioned previously, a wave is refracted if its height 
approaches zero. In the conventional WWO, the wave is reset 
into a new random position between old and best positions. In 
the proposed algorithm, we want the wave to learn from the 
best obtained wave by determining the similar dimensions 
with the optimal wave to follow them and avoiding its old bad 
characteristics that causing a bad generation. New wave 
height is set to      and the wavelength is updated based on 

Eq. (8).  After implementing refraction, the wave   is 

replaced with    in the population W. The refraction 

algorithm is given in Table 4. 
 

Table 4: Refraction Algorithm 

Algorithm 4: refraction 

Input: wave and wavelength Output: new wave with maximum 

height  

1. Given a wave        and its wavelength λ  

2. Count(s_n) the similar dimension between w* and w' 

3. Generate a uniformly distributed in [0, n]  

4. Generate an integer b in [0, s_n*(n – a)]  

5.  Replace    [a, a+b], obtain   '  

6.  return   ' 

iii) Breaking Operator 
The breaking operator represents the exploiting stage of the 
WWO as it has the role of local search for the current optimal 
solution to generate a better solution than last obtained. So, if 
we discover that the newly generated solution is better the 
breaking will be activated. Here, we have implemented the 

steps of the Max-Min heuristic algorithm as a local search. 
Where the new propagated wave is rewarded and then is 
broken to enhance its quality based on the Max-Min steps. 
The main concept of the Max-Min algorithm is declared in 
section 4 and its implementation steps are given in table 5.   
 

Table 5: Max_Min Algorithm 

Algorithm 5: Max-Min 

Input: task list            Output: scheduled list 

1. Given a task list T 

2. For each submitted task (  ) in task list (T) // start phase 

1 

3.    For each resource (   in available resource list 

4.    Compute completion time              

5.    End for 

6.  End for  

7. While task list isn’t empty // start phase 2 

8.     Find task with maximum CT and assign it to resource 

that gives minimum ET 

9.     Remove this task from list 

10.      Update ready time for selected resource 

11.      Update      for unselected tasks 

12.    End while    

13. End  

iv) Learning Process (Rewarded decision) 
In the proposed algorithm, the learning process is 
implemented by applying the principle of reinforcement 
learning. In other words, determining the reward or 
punishment decision for the newly generated wave is decided 
by reinforcement learning. As mentioned previously, the 
higher the wave height, the higher the fitness wave, the better 
solution, and vice versa. Therefore, when a new generated 

wave improves solution, it must be rewarded by increasing its 
height; otherwise, it must be punished by reducing its height. 
There are possible four cases for the new wave position and 
the reward function: 
Case 1: The fitness value of the new wave is better than the 
fitness of the current best wave. Here, the new wave will be 
rewarded with the maximum possible reward by replacing the 
current best wave with the new wave and increasing its height 
to the maximum available height (    ) and including the 

new wave into the population.  

Case 2: the new wave is not better than the current best wave 
but it better than the old wave. In this case, the new wave 
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must be rewarded by adding it to the population because it 
surpassed the old wave. Further, punishing it is done by 
reducing its height by one because it does not learn from the 
current best wave to outperform it.  
Case 3: the new wave is not better than the old wave but it 

does not exceed the threshold value. In this case, the new 
wave will be punished by reducing its length by two and 
adding it to the population. 
Case 4: the new wave exceeds the threshold limit. This means 
that this wave is very bad and will not be improved and does 
not reach a better position. Therefore, the new wave will be 
punished by neglecting and removing it from the population.  

6.2 Performance Evaluation 
This section introduces the experimental results of scheduling 
different number of user tasks into a different number of 
VMs. The results of the proposed IWWO are compared with 
those obtained by the conventional WWO, ACO, and GA in 
terms of schedule length, computation time, memory usage, 

balancing degree, and throughput. 

6.3  Experimental Environment 
A Core i5 laptop with 8GB RAM and a 64-bit Windows 7 
operating system was used for the simulation. In this 
assessment, the well-known CloudSim tool kit is used to 

simulate a cloud computing environment [37]. The CloudSim 
provides the main classes used for building the cloud, such as 
data center class, host class, cloudlet class, etc. Parameters 
WWO and IWWO; Population size, number of iterations, 
maximum wave height, and initial wavelength were set as 
100, 50, 6, and 0.5, respectively. The ACO parameters; the 
ants’ number, iterations number, Q, ρ, and initial pheromone 
are set to 10, 70, 100, 0.7, and 0.3 respectively. The data 

center and host configurations are given in table 6 while the 
characteristics of VMs are given in table 7. 
 

Table 6: Data center and host configuration 

Cloud entity Characteristic value 

Data 
Center 

No. of Data Centers 
No. of Hosts 
No. of users 

1 
3 
1 

 
Host 

Storage 
RAM 
BW 

Shared policy 

1 TB 
2 GB 

10 GB 

Space shared policy 

Table 7: VM characteristics 

Characteristic Value 

No. of VMs 10,25, 50 and 75 

      500 to 2000 

     500 MB 

BW 0.5Gb/S 
  VMM Xen 

Size 100 MB 

      2,8,4,16,32 

6.4 Data Sets 
In this paper, two cases are considered in the experimental 
test: 
Case 1: Application tasks are randomly generated with 
different lengths in range [1000, 10000] million instructions 
while the virtual machines are generated with a number of 
cores between 1 and 4, and MIPS from 400 to 1500. 
Case 2: Several sets of real applications are used from the 
harmonized standard workload [38]. These data sets were 

taken from records in the NAS Division of Numerical 
Aerodynamic Simulation Systems (NAS) at the NASA Ames 

Research Center. NASA-iPSC-1993-1.1-cln.swf uses the 
replaced cleaning log on 1 Aug. 2006 for trial. The records 
contain 3-month accounting records for the 128 iPSC / 860 
process item. After cleaning up a total of 43,910 records, this 
log file used for research work contains only 42,264 records 

[39]. The record workload from NASA Ames iPSC / 860 in 
SWF format is shown in Fig 3. The workload on iPSC / 860 is 
a mixture of interactive and batch functionality (development 
and production) that mainly consists of computational 
aviation science applications.  

 
Fig 3: Sample of log file “NASA-iPSC-1993-1.1-cln-6.swf” 

of the application model. 
 

6.5 Performance Metrics 
The metrics applied to measure the performance of the 
introduced algorithm are schedule length, computation time, 
used memory, balance degree, and throughput. 

Schedule Length (SL): SL is defined as the amount of time, 

from start to finish execute a set of submitted tasks on the 
most loaded VM, i.e. the maximum completion time of all 
submitted tasks. It is considered an important measure of the 
quality of results obtained with any scheduling algorithm [40].  
Since the SL including the waiting time and processing time, 
all techniques used in the scheduling field aim to minimize SL 
values to reduce the waiting time of the user task. 

Computation time: The computation time of the scheduling 
algorithm is defined as the amount of time it takes to resolve 
the scheduling problem and obtain the scheduling decision for 
each task. Or it is defined as the runtime of the scheduler to 
reach the solution. A high computation time refers to the high 
complexity of the used technique. 

Used memory: The used memory is the amount of memory 
used by the scheduling algorithm during the searching process 
for completing the task scheduling. Heavily used memory 

indicates a waste of system memory and is a weakness in the 
algorithm.  

Throughput: Throughput is the maximum number of 
completed tasks at one time [41]. It measures the scheduling 

technique efficiency, as high throughput value yields low 
response time and high execution rate.  

(BD) Balance Degree: BD is the degree of balancing the 
workload on all VMs after applying the scheduling process. 

The higher BD refers to a more efficient scheduling algorithm 
and a higher load balancing system. The BD is calculated by 
Eq. (10): 

                                                              (10) 

Where,         is the final SL after applying the scheduling 

decision [42],       is the optimal schedule length.       

        
 
, where,      is the sum of MI for all submitted 

tasks and      is the sum of all available MIPS. 

 

 

6.6 Experimental Results 
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6.6.1 Schedule Length (SL) 
Figures 4, 5, 6, and 7 show the SL of scheduling different 
tasks (100, 250, 500, 1000, 2000) onto different VMs (10, 25, 
50, and 75) by using the ACO, GA, WWO, and IWWO. 
Figures 4.a, 5.a, 6.a, and 7.a show the results of the real data 
set while the Figures 4.b, 5.b, 6.b, and 7.b show the results of 
the random data set. 

Fig 4.a: SL of scheduling real tasks on 10 VMs

Fig 4.b: SL of scheduling random tasks on 10 VMs

Fig 5.a: SL of scheduling real tasks on 25 VMs 

 
Fig 5.b: SL of scheduling random tasks on 25 VMs 

 

 
Fig 6.a: SL of scheduling real tasks on 50 VMs   

 
Fig. 6.b: SL of scheduling random tasks on 50 VMs

   
Fig. 7.a: SL of scheduling real tasks on 75 VMs 

 
Fig. 7.b: SL of scheduling random tasks on 75 VMs 

 
Form the figures; the proposed IWWO algorithm achieves SL 
less than that of ACO, GA, and WWO in all cases. The results 
satisfy the goal of the improvement in the WWO algorithm 
that leads to overcoming the local optimum point problem of 
the SL value as declared in figures 4, 5, 6, and 7. Where the 
SL of WWO is the largest one in most cases and IWWO gives 
the best SL value but this improvement in SL leads to a 
problem with computation time as will be discussed in the 

following section.  

 

6.6.2 Computation time 
Table 8 presents the computation time (in seconds) of the 
WWO, IWWO, ACO, and GA for the real data set. From the 

table, the results indicate that the WWO requires less time 
since most of its computational steps depend on the reverse 
operation of a part of the wave which leads to falling into the 
local maximum point. While the IWWO algorithm takes more 
time in the rewarding process which leads to an improvement 
in the result. As well, the time of running Max-Min algorithm 
steps as the breaking operation. However, the obtained results 
achieve a great improvement in the SL value as declared in 

the previous section and also the throughput and balance 
degree.  In table 9 the computation time of scheduling 100, 
250, 500, 1000, and 2000 random tasks onto 10, 25, and 50 
VMs. 
 

Table 8: Computation time (sec) of scheduling real tasks  
No. 

of 

VMs 

Algorithm 

Number of Tasks 

100 250 500 1000 2000 

10 

IWWO 0.031 0.063 0.172 0.577 2.199 

WWO 0.01 0.015 0.031 0.062 0.141 

GA 0.032 0.063 0.094 0.203 0.353 

ACO 0.405 2.355 9.219 35.740 144.566 

25 

 

IWWO 0.016 0.109 0.203 0.655 2.324 

WWO 0.015 0.047 0.078 0.141 0.281 

GA 0.047 0.109 0.156 0.312 0.624 

ACO 0.206 12.729 50.653 200.055 791.873 

50 

IWWO 0.047 0.124 0.296 0.827 2.574 

WWO 0.031 0.078 0.125 0.250 0.515 

GA 0.078 0.156 0.327 0.530 1.139 

ACO 7.941 49.796 191.858 768.410 3048.011 

75 

IWWO 0.095 0.233 0.403 0.485 1.892 

WWO 0.030 0.078 0.188 0.359 0.743 

GA 0.093 0.203 0.390 0.780 1.581 

ACO 17.534 108.031 427.161 1722.418 8002.913 

 

 

Table 9: Computation time (sec) of scheduling random 
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tasks 
 No. 

of 

VMs 

Algorithm 

Number of Tasks 

100 250 500 1000 2000 

10 

IWWO 0.025 0.063 0.16 0.69 2.29 

WWO 0.016 0.031 0.47 0.78 0.125 

GA 0.016 0.062 0.078 0.125 0.218 

ACO 0.41 2.324 9.03 37.09 142.74 

25 

 

IWWO 0.031 0.078 0.23 0.64 2.37 

WWO 0.016 0.031 0.08 0.14 0.266 

GA 0.031 0.063 0.09 0.19 0.42 

ACO 2.08 12.5 49.56 195.765 792.97 

50 

IWWO 0.047 0.125 0.28 0.81 2.79 

WWO 0.031 0.078 0.14 0.29 0.52 

GA 0.047 0.078 0.19 0.25 0.66 

ACO 7.97 48.14 191.63 769.57 3049.7 

 

6.6.3 Balance Degree  
Figures 8, 9, and 10 show the BD of scheduling 100, 250, 
500, 1000, and 2000 tasks respectively into different numbers 

of VMs. From the Figs., the presented IWWO scores the 
highest BD ratio for all the examination cases because it gives 
the minimum makespan in all experiment test (real and 
random) cases. Results prove that the proposed approach can 
distribute the different number of user tasks onto the 
available VMs with a higher BD ratio that leads to improve 
resources utilization. 

 
Fig 8.a: BD of different real tasks on 10 VMs 

 

 
     Fig 8.b: BD of different random tasks on 10 VMs 

 

6.6.4 Used Memory 
Figures 11, 12, 13, and 14 shows the used memory by the 
WWO, IWWO, ACO, and GA algorithms for scheduling 
different real tasks (100, 250, 500, 1000, and 2000) onto 
different VMs. The memory usage metric is measured in 
CloudSim toolkit where used memory is the subtraction result 
of total memory before running the algorithm from the total 
memory after running the algorithm. From figures, the 

proposed IWWO used more memory than the traditional 
WWO as a result of applying the learning features that lead to 
increase the used memory as well the used memory by Max-
Min algorithm steps as the breaking operation. This point 
considers as a weak point in the proposed IWWO but the 
improvement in other performance metrics is very high 
compared with the metrics of WWO especially in the SL 
value and throughput that leads to high improvement in 

overall system performance. 

 
Fig 9.a: BD of different real tasks on 25 VMs 

 

Fig 9.b: BD of different random tasks on 25 VMs 

Fig 10.a: BD of different real tasks on 50 VMs 

Fig 10.b: BD of different random tasks on 50 VMs 

Fig 11: Used memory in the case of using 10 VMs           

 
Fig 12: Used memory in the case of using 25 VMs 

 
Fig 13: Used memory in the case of using 50 VMs 
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6.6.5 Throughput 
Figures 15, 16, 17, and 18 show the throughput obtained when 
applying the IWWO, WWO, GA, and ACO to schedule 
different tasks (100, 250, 500, 1000, and 2000) onto different 
VMs (10, 25, 50, and 75) considering real time and randomly 
generated tasks.  From the Figs. 15,16,17, and 18, the IWWO 
technique achieves the higher throughput. The proposed 
IWWO technique can efficiently explore the available number 

of VMs and improve the WWO performance. From the 
figures, the IWWO achieves the maximum throughput and 
this value increases as the number of tasks and number of 
VMs increase. 

   
Fig 14: Used memory in the case of using 75 VMs 

 
Fig 15.a: Throughput of t real tasks on 10 VMs

   
Fig 15.b: Throughput of random tasks on 10 VMs 

 

 
Fig 16.a: Throughput of t real tasks on 25 VMs

 
Fig 16.b: Throughput of random tasks on 25 VMs 

 

7. EXPERIMENTAL RESULTS SUMMARY  
From the previous results, the IWWO algorithm enhances 
conventional WWO performance. It achieves better solutions in 
all cases with a different number of tasks and different number 
of VMs. On the other hand, the IWWO achieves near-optimal 
SL, higher balance degree, and high throughput compared with 

the WWO, GA, and ACO this achieves the main objectives 
from our research in improving the QoS parameters. However, 

it has a large memory and high computation time as a result of 
running the Max-Min algorithm as the breaking operator. 

 

 
Fig 17.a: Throughput of t real tasks on 50 VMs 

 
Fig. 17.b: throughput of random tasks on 50 VMs

 
Fig 18.a: Throughput of t real tasks on 75 VMs 

 
Fig 18.b: Throughput of random tasks on 75 VMs 

Moreover, the improvement in the value of SL, BD, and 
throughput is great with respect to WWO and IWWO. This 
improvement reaches 90% in SL results for most 

experimental cases and up to 95% in throughput. While the 
increment in the computation time does not reach 15% 
compared with 50% with WWO. 

8. CONCLUSION 
The scheduling problem has a strong impact on the 

performance of cloud computing. Therefore, there is a need 
to apply an efficient scheduling strategy to improve cloud 
performance. This article developed a new scheduling 
algorithm, called IWWO for scheduling problem in cloud 
computing. It is intended to efficiently schedule tasks onto 
VMs based on applying some features of reinforcement 
learning to improve the performance of the WWO. The 
obtained results prove that the presented IWWO can assign 

many tasks with SL less than that of the WWO as well it 
gives better results than the WWO algorithm. This because 
the proposed IWWO first applies some features of RL and 
then applies a heuristic algorithm Max-Min in the breaking 
operation to enhance the algorithm local search phase. The 
proposed IWWO can be improved by dispensing the 
refraction operator or by applying multithreading 
programming to minimize the computation time and the used 
memory.    
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