
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 31, October 2021

28

Comparative Study of Two Divide and Conquer Sorting

Algorithms: Modified Quick Sort and Merge Sort

Ibtehal Mishal
Computer System Engineering

Department,
Faculty of Engineering, Al-Balqa

Applied University,
Al Salt, Jordan

Rasha AL-Khatib
Computer System Engineering

Department,
Faculty of Engineering, Al-Balqa

Applied University,
Al Salt, Jordan

Razan Hiasat
Computer System Engineering

Department,
Faculty of Engineering, Al-Balqa

Applied University,
Al Salt, Jordan

ABSTRACT
Divide and conquer is a well-known technique for sorting

algorithms. Such include Quick sort and Merge sort sorting

algorithms. These two algorithms have been extensively used

for sorting. However, discovering the most efficient sorting

algorithm among the two has always been a contentious

problem. Most of the existing research have compared quick

sort and merge sort, this study intends to compare the

intelligent Quick Sort algorithm based on a dynamic pivot

selection technique “modified quicksort” and the merge sort.

Using machine-dependent factors such as computational and

employed machine-independent internal/external sorting

factors, memory usage, stability, algorithm complexity: best,

average, and worst cases. This study intends to contribute to

this discussion using both machine-dependent and

independent factors. Results obtained revealed that in terms of

computational speed using an array of small sizes, the

classical Quicksort algorithm is almost fast, meanwhile, the

Merge sort algorithm is faster with an array of large sizes,

However, modified quicksort is the fastest available option in

all sizes. Also, the best case for both merge sort and classical

quick sort complexity is O(nlogn), but the modified quicksort

best case is O(n) which happened when the array is already

sorted while the three sorts are of O(nlogn) average case, and

the worst case for classical quicksort is O(𝒏𝟐) and that of

merge sort and modified quick sort remains unchanged. In

terms of stability, modified Quicksort is stable while Merge

sort is not. Despite the excellent performance of the Merge

sort algorithm, the need for an auxiliary memory for sorting

makes it less preferable than the modified Quicksort algorithm

for applications where a good cache locality is of paramount

importance.

General Terms

Computer Science ,sorting algorithems.

Keywords

Computer Science, Software engineering, Sorting algorithms,

Computational Mathematics

1. INTRODUCTION
Sorting requires arranging or organizing the elements of a list

(1D Array) in a specified manner.[3] The sort order is a way

of comparing two items for the purpose of sorting.

A common and simple example where sorting is always

applied is a list of items. However, in computer science, there

are many problems in which it is less obvious that sorting is

required.[6] Some of the factors that are normally considered

when it comes to the choice of sorting algorithm to be used

include: format of input, amount, and nature of data, and

machine-specific criteria.[3]

Of all the algorithm design techniques, the divide and conquer

technique is the most extensively applied technique. [5]

It employs the following approach:

a) It divides a problem into several sub-problems of

the same type.

b) These sub-problems are sorted recursively

c) Most times the resulting solutions are combined to

get a final sorting solution to the original problem.

Two perfect examples of sorting algorithms that are a product

of the divide and conquer algorithm design technique are

Merge sort and Quicksort algorithms. And in the advanced

level modified quicksort has been widely employed to solve

various real-life sorting problems, however, the choice of the

more preferred of the merge and quick sort algorithms have

always resulted in heated arguments and controversies. As a

result, different comparison that has been carried out by

researchers, leading to enhancement on the quicksort reducing

its time complexity Most of these comparisons have been

implemented on virtual and real computers using different

number of inputs. However, most works have not employed

large range of data to examine the true behavior of these

algorithms.

The machine-dependent factors were carefully selected using

a range of different data sizes and different data types to better

understand the algorithms' true behavior for both small and

large data sizes.

The factors such as time complexity, stability memory space,

and the actual time is taken when each of the algorithms is

implemented are used as the basis of comparison [7].

2. COMPARATIVE STUDY OF MERGE

SORT AND MODIFIED QUICKSORT

ALGORITHM

The comparative study of the two algorithms can be studied

using factors that are machinedependent and machine-

independent. Machinedependent factors are factors that can be

measured and compared to specific machine configurations.

For example, Computational complexity where the time taken

by each algorithm to perform the sorting operation is

measured, is considered as a machine-dependent factor.

Machine independent factors are the factors that can be

measured and compared from a general point of view using a

mathematical entity or based on the behavior of each

algorithm. [7] Factors such as internal/external sorting, system

complexity which measures metrics such as worst case,

average case and best case, memory usage, and stability are

examples of machineindependent factors. The factors

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 31, October 2021

29

considered in this paper are defined as follows: [7] a) Internal

Sorting: this examines the mode of sorting carried out in the

main memory. This could be direct or indirect. b) External

Sorting: this examines the mode of sorting carried out in the

auxiliary memory. c) System complexity: these can be

classified using metrics such as: worst, average, and bestcase

scenarios. d) Computational complexity: this could be

measured using the number of swaps carried out by the

algorithm during the sorting process. e) Memory Usage: each

algorithm has different memory requirements. This can be

used to differentiate them. f) Stability: this measures the state

of the input and output records as shown by the order of its

elements before and after sorting. g) Input size: different sizes

of arrays are used to test the program where the two

algorithms are implemented.

2.1 System Complexity of Merge Sort

Algorithms

Suppose we had to sort an array A. A subproblem would be to

sort a subsection of this array starting at index p and ending at

index r, expressed as A[p...r].[4]

 . Divide If q is the half-way point between p and r, then

we can split the subarray A[p..r]

into two sub-arrays A[p...q] and A[q+1, r]

 . Conquer In the conquer step, we try to sort both the

sub-arrays A[p…q] and A[q+1, r]., we again divide both

these subarrays and try to sort them.

 . Combine When the conquer step reaches the base step

and we get two sorted subarrays

 A[p…q] and A[q+1, r] for array A[p..r], we combine

the results by producing a sorted array A[p...r] from two

sorted sub-arrays A[p…q] and A[q+1,r].

 The following Figure (1) shows the complete merge sort

process for an example array

Fig1:merge sort process

For example, with a list containing elements: {5, 2, 4, 7, 1, 3,

2, 6 }

, Merge Sort algorithm will employ the master’s theorem

explained in Fig 1 to sort the elements. The analysis of the

Merge Sort algorithm requires the use of the master’s

theorem[4].

 The Master’s theorem is given as follows:

Given function f (n) with constants a≥ 1 and b>1; then the

time complexity of a recursive relation is given by

T(n) = aT(n/b) + f(n) where,

T(n) has the following asymptotic bounds:

If f(n) = O(nlogb a-ϵ), then T(n) = Θ(nlogb a).

If f(n) = Θ(nlogb a), then T(n) = Θ(nlogba * log n).

If f(n) = Ω(nlogb a+ϵ), then T(n) = Θ(f(n)).

 ϵ > 0 is a constant

the time for merge Sort function will become n(log n + 1),

which gives us a time complexity of O(nlog n) for the Worst

Case ,Best Case and Average Time Space Complexity of

O(n) is used.

Time complexity of Merge Sort is O(nLog n) in the 3 cases as

merge sort always divides the array in two halves and takes

linear time to merge two halves[4].

Given below is an implementation of merge sort using C++ in

the figure (2):

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 31, October 2021

30

Fig 2: theimplementation of merge sort

2.2 System Complexity Of Modified Quick

Sort Algorithms

The QuickSort algorithm is the fastest sorting algorithm based

on different studies.

Quicksort follows the technique of divide and conquer by

recursively splitting each array into two sub-arrays, which

makes it easier to solve smaller problems than a single larger

one

In Quicksort, a pivot is selected from the unsorted array and

used to split the array into two sub arrays for which the same

algorithm is called recursively until the sub arrays have size

one or zero.

For an input size n, the worst-case scenario of Θ(𝒏𝟐) when

sorting an already sorted list while choosing the largest

element as a pivot.

However, the QuickSort algorithm has an average runtime

complexity of Θ(nlog n)

The runtime of the Quicksort algorithm mainly depends on

the splitting of the array and the following sub-arrays.

If splitting constantly results in a small reduction in the size of

the array or sub-array, the runtime will be:

 T(n) = n + T(n-c), where c is a constant.

Thereby,

T(n) = Θ(𝑛) (1)

However, if splitting constantly results almost equal size

subarrays, the runtime complexity of Quick sort will be:

T(n) = n + T(n/2).

Thereby,

T(n) = Θ(n log n) (2)

Splitting the array into almost equal halves ensures the best

performance for the Quicksort algorithm and reduces the

number of recursive calls which will eventually reduce

execution time.

The enhancement is concerned with the pivot selection

technique which has proven to be the most determining factor

in dividing the array into sub-arrays.

Various techniques have been proposed to avoid the worst-

case scenario previously explained in (1). [2]

Classical Quicksort algorithm uses the left-most or the right-

most element as a pivot which can easily cause the worst-case

behavior when sorting a sorted or a partially sorted list.

Therefore, it drives the worst case behavior to be O(n log n).

The proposed technique also verifies an already sorted array

or sub-array which is done while comparing the elements of

the array to the pivot. If the array is already sorted, it will not

be sorted any further which modifies theO(𝒏𝟐) complexity

into the best-case behavior of the algorithm, i.e. O(n).

The proposed technique operates as follows, at first, the pivot

value is chosen to be the value of the rightmost element of the

array. Each element value will be compared with the pivot

value and two counters are used to count the number of

elements with values smaller than the pivot versus the number

of elements with values larger than the pivot.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 31, October 2021

31

 The sum of the values of the elements smaller than the pivot

and the sum of those larger than the pivot is calculated.

The integer average of the values smaller than the pivot is

passed as the pivot value of the recursive call for the left sub-

array. Likewise, the integer average of the values larger than

the pivot is passed as the pivot value of the recursive call for

the right sub array.

This pivot selection technique helps in successively splitting

the array into nearly equal halves which in turn decrease the

complexity of the Quick Sort algorithm.

A Boolean variable is used by the algorithm to recognize an

already sorted array or sub array which reduces the number of

recursive calls. Along with the reduction in recursive calls, the

proposed technique converts the worst-case scenario for the

classical Quick Sort algorithm into a best-case scenario with

Θ(n) runtime in the modified quick sort[2].

The dynamic pivot selection technique is independent on the

position of the values stored in the array. Figure(3) displays

the splitting of the arrays in Figure (3 /a) and (3/b) where the

same splitting tree is generated for both arrays which indicate

that the Modified Quick Sort algorithm is not sensitive to the

order of elements in the array[2].

Fig 3/a :MQuick sort processor on the first order

Fig 3/b :MQuick sort processor on the second order

Given below is an implementation of modified quick sort in

the figure(4)

Fig 4:the implementation of MQuick sort

3. RESULTS AND DISCUSSION

3.1Results Of System Complexity for

Quicksort and Merge Sort and Modified

Quick Sort Algorithms

An overview of the system complexity, stability, and internal

versus external characteristics of modified quick sort, merge

sort and classical quicksort algorithms are provided in Table

(1). Regarding the system complexity, the best case for both

merge sort and classical quick sort complexity is O(nlogn),

but the modified quicksort best case is O(n) which occurred

when the array is already sorted while the three sorts are of

O(nlogn) average case, and the worst case for classical

quicksort is O(𝒏𝟐) and that of merge sort and modified quick

sort remains unchanged

Quicksort algorithm does not keep elements with equal values

in the same relative order in the output as they were in the

input (unstable) while merge and modified quick sorts do

(stable).

 Quick Sort and modified quicksort do not need auxiliary

memory therefore it is an in-place (internal) algorithm while

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 31, October 2021

32

merge sort needs auxiliary memory (external).

 [Kazim. (n.d.). A. A Comparative Study of Well Known

Sorting Algorithms.] explains this as an advantage that

quicksort has over merge sort, the fact that quicksort does not

need additional storage space makes it presents good cache

locality.[3]

Table1.systems complexity for three algorithms

S/N Parameters

Quick sort Merge sort Modified

Quicksort

1

System

Complexity

Best Case O(nlogn) O(nlogn) O(n)

Average

Case

O(nlogn) O(nlogn) O(nlogn)

Worst Case O(n
2

) O(nlogn) O(nlogn)

2 Stability Unstable Stable Stable

3 Internal vs

External

memory

 Internal External Internal

3.2 Results of Sorting Time between

Quicksort and Merge Sort and Modified

Quick Sort Algorithms
The time taken by three algorithms to sort data of different

data type sizes and ether for sorted and unsorted arrays were

documented. (Already sorted array of integer, unsorted

(integer, character and double) data type which data sizes

between 100 and 100000 were evaluated. The division is

done to observe the true behavior of the three algorithms in

the divided sections. Table (2) show the recorded time for

both sorted and unsorted integer array:

Table2.recoded time for sorted and unsorted integer array

Array type Number

of inputs

(n)

Quicksor

t

(ms)

Merge

sort

 (ms)

Modifie

d Quick

Sort

(ms)

Already

sorted

integer

array

100 0.0200 0.0770 0.0080

200 2.0700 0.1540 0.0100

500 7.4850 0.3050 0.0100

1000 31.9520 0.6630 0.0130

10000 ---- 4.6860 0.0400

50000 ----- 23.297 0.1580

100000 ----- 46.6900

0.3190

unsorted

integer

array

100 0.0290 0.0730 0.0250

200 0.0790 0.1810 0.0540

500 0.3080 0.3060 0.1910

1000 0.6350 0.5330 0.2400

10000 35.4000 4.9600 2.200

50000 841.007 28.903 11.008

100000 3278.697 50.7030 23.0880

Table (3) show the recorded time for both unsorted

(character and double) array:

Array type Number

of inputs

(n)

Quicksort

 (ms)

Merge

sort

 (ms)

Modified

Quick

Sort

(ms)

Unsorted

character

array

100 0.0320 0.0660 0.0200

200 0.1010 0.1400 0.0430

500 0.4760 0.3060 0.0870

1000 2.1940 0.8090 0.1640

10000 132.5910 4.963 1.953

50000 3163.7420 23.328 7.711

100000 12669.5020 48.238 17.487

Unsorted

double

array

100 0.0150 0.0770 0.0460

200 0.0330 0.1200 0.0720

500 0.0880 0.2970 0.1820

1000 0.1800 0.5600 0.4290

10000 2.6960 5.3500 5.0750

50000 27.952 29.302 29.446

100000 84.270 55.309 66.280

For already sorted integer array :Quicksort is Much slower

than the other types, which is compatible with the complexity

in the case of the already sorted array which is the worst case

for quicksort which is equal to O(𝒏𝟐).

While, the modified quicksort is much faster in this case,

which is compatible with the complexity in this case which is

the best case for modified quick sort which is equal to

O(n).However, the merge sort is the intermediate state

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 31, October 2021

33

between them because the complexity of it is the intermediate

Compared to other sorts which is equal to O(nlogn)As shown

in figure(5):

Fig 5:already sorted array of integers

For unsorted integer, character, and double array:Quicksort

algorithm sorting time as shown in Figure (6), (7), and (8),

revealed that quicksort is faster than merge sort for small data

sizes elements while for large data size merge sort seems

faster than quicksort. however, modified quicksort is the

fastest for all data sizes.

Fig 6:unsorted array of integers

Fig 7:unsorted array of characters

Fig 8:unsorted array of character

4. CONCLUSION
A comparative study of the three sorting algorithms that

employ the divide and conquer technique is done in this study.

The analysis of the three algorithms was carried out based on

System complexity (where the best, average, and worst cases

were considered independent of the machine from the

mathematical point of view), stability, internal versus external

memory requirement, and computational complexity.

Quicksort is faster than merge sort when the data size is small

while merge sort is faster when the data size is large.

However, Modified quick sort is the fastest for all data sizes.

The Merge sort needs an additional memory space of O(n)

for storing the extra array while modified quick sort and

Quicksort need space of O(logn). If there is therefore the need

to choose between Quicksort and Merge sort and modified

quicksort algorithms for faster computation, Quicksort is

preferred to Merge sort when the size of the data is small

while Merge sort is recommended for data of large sizes,

where there is the need to make use of cache locality,

Modified Quicksort is preferred for all data sizes. It is

believed that the information given in this paper will be of

great value to programmers for choice modified quick sort in

all time.

5. ACKNOWLEDGMENTS
The authors would like to thank Rula Al-Nusirat.

EynasAjarmeh for their contributions during data collection

phase.

6. REFERENCES
[1] Ashima. (n.d.). G. Implementation and Application of

Bubble sort in D Array" International Journal for

Scientific Research.

[2] Dalhoum1, A. l. (n.d.). Enhancing QuickSort Algorithm

using a Dynamic Pivot Selection Technique.

[3] Kazim. (n.d.). A. A Comparative Study of Well Known

Sorting Algorithms. International Journal of Advanced

Research in Computer.

[4] Kumar, A. (n.d.). Merge Sort Algorithm.

[5] Mandeep. (n.d.). Why Quicksort is better than

Mergesort? Retrieved May 14, 2019, from

Geeksforgeeks: http:// www.geekforgeeks.org.

[6] Sorting and Efficient Searching. Lecture Note.

Unpublished. 2008

[7] third international conference on computing and network

communications (coconet’19) comparative study of two

divide and conquer sorting algorithms: quicksort and

mergesort.

[8] A Comparative Analysis of Sorting Algorithms on

Integer and Character Arrays Ahmed M. Aliyu, Dr. P. B.

Zirra

[9] Optimizing Complexity of Quick Sort Md. Sabir Hossain

Snaholata Mondal Rahma Simin Ali Mohammad Hasan.

0
50000

100000
150000

0 20 40 60D
at

a
si

ze
(n

)

Time(ms)

Alraedy sorted array of integer

quick sort

merge sort

modified
quick sort

IJCATM : www.ijcaonline.org

