
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 32, October 2021

34

Types of socket programming and socket designs: A

Review

Ameya Gokhale
Bal Shikshan Mandir

English Medium School
Pune, Maharashtra,

India

ABSTRACT

Sockets are used to connect multiple devices on a network.

This concept is used widely in networking and network based

applications. Complex networks can be developed using APIs

(Application Programming Interface) in the applications using

network. Socket Programming is supported in many

languages, namely C, C++, C#, Python, Java and others.

Sockets are created using the host IPA (Internet Protocol

Address) and the TCP (Transmission Control Protocol) port

number. Socket Programming can be done in numerous ways,

as there are different designs of socket programming. Also,

there are many different types of sockets. In this paper,

Python and Java are used instead of other powerful

programming languages, due to multiple reasons, including

the fact that these two languages are extensively used in

networking. This paper also discusses varied reasons for

choosing Python and Java over other programming languages.

A code presenting a simple client-server connection using

socket programming in both, Python and Java has also been

included in this paper. This research paper focuses on

Applications of socket, their designs, types of socket and a

simple socket server using Python and Java.

Keywords

Sockets, network, Application Programming Interface, host

IPA, Internet Protocol Address, Transmission Control

Protocol port number, Python and Java, client-server, socket

programming, Applications of Socket.

1. INTRODUCTION
Client-Server program has become a very common concept in

computer networks and in distributed computing. A client is a

computer terminal, permitting the user to access the

interface(s) created by the server. A client initiates

communication with the server through a connection. The

server, who is waiting for clients, further responds to the

client request [10]. A socket is an endpoint of a two-way

communication link between two programs running on a

network, which allows sending and receiving of data. In

socket programming, socket APIs are used to establish

communication between remote and local processes. Socket is

used for connecting the clients and the server together, either

on one or multiple devices. It is used for both, connection-

oriented and connection-less communication between the

applications that are running on different compilers. A socket

is connected to a specific TCP port, making the TCP layer

identify the application to which the data is destined to be sent

to. The server IPA is also needed for establishing the

connection [4]. A socket program can send or receive data;

irrespective of the programming language used for it. That is,

a socket which is programmed using Java, can communicate

and establish a connection with another program, which is

programmed using Python, or any other programming

language [10]. This paper presents socket programming using

Python and Java.

2. BENEFITS OF USING PYTHON AND

JAVA FOR SOCKET PROGRAMMING
Both, Python and Java are powerful and widely used

programming languages. Python and Java, both support OOP

(Object Oriented Programming) and are used in various fields

like web development (User and Server side programming in

Web apps, websites etc.), android and other software

development and also in networking. There are 6 key benefits

of using Python and Java for socket programming:

Sending and receiving of any object can be done through

socket programming in Java, just that the object class needs to

implement Serializable interface [1].

Basic data type conversion into integer and float can be done

using built-in methods like writeInt() and readInt(), reducing

the overhead of converting from byte stream to the required

data type [1].

Java is already being used widely for networking in Android.

Hence, the code for socket connection compatible with PC

can be used for socket programming in android applications

with minimum changes [1].

Standardized exception handling makes debugging easier in

Java [1].

Python packages are already being considered competent

tools for network programming and is used in network

management systems. Learning basic socket programming in

Python may help in development of higher applications later,

using complex networking packages and libraries in python,

like Twisted [2].

Even though Python programs tend to run slower than Java

programs, the time needed to develop them is less [1].

3. SET-UP FOR SOCKET

PROGRAMMING

3.1 Set-up for socket programming in

Python:
In python, socket programming is done by importing a

module, 'socket'. All the inbuilt functions needed for a simple

socket connection are present in this module. The server is

bound to a specific port number, using the bind() method,

which takes 2 parameters, the IP address of the server and the

port number. The server has 2 more methods, accept() and

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 32, October 2021

35

close() which initiate and end the connection respectively [5].

The module needed for python is imported as follows:

Fig 1: Importing Modules for Python

3.2 Set-up for socket programming in

Java:
In Java, the modules needed for socket programming can be

imported from the Java API networking package (java.net).

Also, for performing operations related to input and output,

input-output module also has to be imported. All the

connections and input-output processes need to be ended after

the completion of their task [3]. The modules needed for java

are imported as follows:

Fig 2: Importing Modules for Java

4. SOCKET PROGRAMMING

4.1 Server Side Programming
The socket connection is created by entering the host (IP

Address of the server) and the TCP port number. The server

initiates the connection and waits for the clients to join. On

receiving the client request, the server communicates back

through the connection to the client. For achieving this, 2

sockets are needed: A ServerSocket and a main socket. The

ServerSocket waits for client connections, and the main

socket is used for communication between the server and the

client. In Java, getOutputStream() method is used to send a

message through the socket connection, while in Python,

send() is used for sending the message [3] [5].

4.2 Client Side Programming
The client is connected to the server connection using the

functions, „connect()‟ and „new Socket()‟ in Python and Java

respectively. Here, the client waits till the server starts the

connection. When the socket connection is made, it sends a

request to the server, and then joins the connection when the

server grants access [3] [5].

This is how a basic socket connection is initiated in Python

and Java.

Fig 3: Important commands for server socket in Java

import java.io.*

import java.net.*

server = new
ServerSocket(portnumber);

socket = server.accept();
inp = new DataInputStream
(new BufferedInputStream
(socket.getInputStream()));

msg = inp.readUTF();

System.out.println("Client : "+
message);

socket.close(); inp.close();

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 32, October 2021

36

Fig 4: Important commands for Client socket in Java

Fig 5: Important commands for Server socket in Python

import java.io.*

import java.net.*

socket = new
Socket(addr,

portNumber);

inp = new
DataInputStream(System.i

n);

outp = new
DataOutputStream(socket.getOutp

utStream());

message = inp.readLine();

outp.writeUTF(message);
inp.close();

outp.close();

socket.close();

import socket

server = socket.socket()

server.bind((host_ipa, port)) server.listen(1)

connection,addr =
server.accept()

msg = connection.recv(1024)
.decode('utf-8')

print('Client:', msg)

connection.close()
server.close()

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 32, October 2021

37

Fig 6: Important commands for Client socket in Python

In the above diagrams, the key commands needed for a simple

client-server socket connection are given for both, Python and

Java. In Java, the socket for server is created using function

ServerSocket(), which takes one parameter, the TCP port

number, while in Python, the function, bind() takes 2

parameters, the host IPA and the TCP port number. It binds

the server to the specified port number, and the listen()

function waits for and queues the client connection request(s).

At the end of the program, the connection is closed using

close() function. The commands in the chart allow an input

from the client side, which is then sent through the connection

to the server and then printed out on the server side. The

message is encoded before sending it through the connection,

and it is decoded when it is received by the server. This is

done in utf-8 format. The encoding and decoding is done

using the functions, str.encode() and decode('utf-8')

respectively in Python. However, the task of encoding and

decoding is done using the functions writeUTF() and

readUTF() respectively in Java. In this example, only single

way messaging (client to server) can be seen. However, a

connection, where input and output is allowed on both, the

server and client side, can be programmed using

multithreading, which is supported by both the languages,

Python and Java. That is, there will be two-way flow of

messages, server to client and client to server. When these

programs are run on a console, they show the following

output:

Fig 7: Output seen on server side

Fig 8: Output seen on client side

In the above outputs, the server prints “waiting for clients” till

it gets client requests. Later, when the client is connected, it

prints the message, which is sent by the client to the server.

On the client side, the port number used for the connection is

printed as soon as the client connects to the server. At the end,

when the connection is closed, an acknowledgement message

is printed on the client side. The above programs allow

sharing of a single message, but the chat process can be kept

repetitive using loops.

5. TYPES OF SOCKETS
Sockets can be classified according to the properties of the

communication which are visible to the user. The Internet

family for the sockets, connecting over both IPv6 and IPv4, is

recognized by the value AF_INET6. Also, the Internet

Family Sockets allow accessibility to transport protocols,

TCP/IP. AF_INET permits source compatibility with the older

applications and raw access to IPv4 [12].

5.1 Stream Sockets
These sockets permit the connection of processes over TCP. A

stream socket allows bidirectional, reliable, sequenced, and

unduplicated transfer of data without any record boundaries.

The data from the socket can be read and written (edited) in

the form of a byte stream after the establishment of the

connection. The type of socket is SOCK_STREAM [12].

5.2 Datagram Sockets
These sockets permit the connection of processes over UDP

(User Datagram Protocol). Similar to stream socket, these

sockets also allow bidirectional flow of messages. However,

the sequence of receiving of the messages on the socket may

be different from the sequence of sending the messages from

the other end. There may be duplication of messages in this

type of socket connection. Record boundaries in the data are

stored. The type of the socket is SOCK_DGRAM [12].

5.3 Raw Sockets
These sockets permit the connection of processes over ICMP

(Internet Control Message Protocol) for communication.

Usually, these sockets are based on datagram. However, their

specific characteristics depend on the interface by the

import socket

connection = socket.socket()

connection.connect ((host_ipa, port)) msg = input()

connection.send (str.encode(msg))

connection.close()

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 32, October 2021

38

protocol. These sockets are used for supporting development

of new communication protocols. Also, these are used for

accessing cryptic facilities of other protocol(s). Raw Sockets

are used very rarely, as only super user processes can use

them. The type of the socket is SOCK_RAW [12].

6. SOCKET DESIGNS
Sockets can be programmed in a more advanced way, in order

to establish secure and stronger connections. Graphics and

listing of calls, illustrating the flow of events in the

applications can also be observed in socket programming.

Xsockets tool can be used interactively, using some of the

following APIs in the programs, or specific changes can be

made for the environment [6]. Following are a few examples

of socket application designs:

6.1 Connection oriented designs
A connection oriented server can be created using an Iterative

Server and/or a concurrent server [7].

6.1.1 Iterative Server
A server job handles all the incoming client-requests and

connections indigenously. All the data in this connection

flows in client jobs. This server is comparatively easier and

faster to develop, but has some disadvantages. When the

server is handling request from a client, some other client may

try to connect to the server, making the requests fill the

listen() backlog, making the server eventually reject some

clients [7].

6.1.2 Concurrent Server
Many threads are used for handling the connection requests

from the clients. Mostly, multiple clients connect to the server

simultaneously in this connection. For multiple concurrent

clients in a network, asynchronous I/O (Input Output) socket

APIs can be used. These APIs provide the best network

performance for multiple concurrent clients [7].

6.2 Asynchronous Input-Output
The application using asynchronous I/O (input-output) starts

an I/O function, specifying a port handle. On its completion,

the I/O completion port is posted with the information of

status and an application-defined handle, activating one of the

waiting threads. Then, a buffer is supplied on the original

request. The buffer, length of data processed to/from the

buffer, type of completed I/O operation and application-

defined handle is received by the application. This application

handle can be used to identify the client connection and also

to store the information of the state of the connection. This

passed handle makes the worker thread determine the next

step to establish the client connection. Worker threads

processing the completed asynchronous operations can handle

multiple client requests. Copying to and from user buffers

occurs asynchronously to the server processes, diminishing

the waiting time of client. This is useful in multi-processor

systems [8].

6.3 Using signals with blocking APIs
When a process or an application is blocked, the signals report

the user and provide a time limit for blocking the processes. A

signal is created every five seconds on the accept() call. As

there is a specific time limit, the call blocks only for five

seconds at a time. Signals can be used to reduce the impact, as

blocked programs can obstruct the performance of an

application of a server [9].

Fig 9: Processes in socket connection while using signals with blocking socket APIs

7. APPLICATIONS OF SOCKET

PROGRAMMING
Socket Programming has multiple applications in networking,

wherever computer networks and/or distributed computing

comes into picture. However, currently many layers are

applied on sockets, like HTTP (Hypertext Transfer Protocol)

in network-based applications. There are many other

ways/designs of sockets than mentioned in this paper. These

include using poll() instead of select() API, using multicasting

with AF_INET and some others. The poll() API is included in

the Single Unix Specification and the UNIX 95/98 standard.

The poll() API has the same performance as the currently

existing select() API. In an application, an IP (Internet

Protocol) datagram can be sent, which is received by a group

of hosts by using IP multicasting [6].

8. CONCLUSION
Socket Programming has multiple applications in computer

technology, wherever computer networks and/or distributed

computing is needed. Many programming languages support

Socket Programming, including Python, Java, C and C++.

Sockets can be created using multiple languages, however the

connection within sockets does not depend upon the

programming language used. That is, a server programmed

using C programming language can communicate and

establish connection with clients programmed in other

languages like Python, Java, C++ and others. There are

multiple designs and ways of creating socket connections

today. Currently plain socket connections are not made for

communications in a network. Many layers are applied on

sockets like HTTP. This is done for increasing the complexity

of connections, thereby increasing the capacity of data

exchanged, making the connection more powerful and

sometimes, enhancing security. There are many types of

sockets, too which are used according to their intended

function.

9. REFERENCES
[1] DebjyotiBhattacharjee, "Which language should I choose

for Socket programming, Python or Java?" May 29, 2015

[online] available: https://www.quora.com/Which-

language-should-I-choose-for-Socket-programming-

Python-or-Java

socket() bind() listen() accept()
signalised
timeout

taken
close()

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 32, October 2021

39

[2] SatishAnnigeri, "Is python a good choice for socket

programming?" February 15, 2019 [online] available:

https://www.quora.com/Is-python-a-good-choice-for-

socket-programming

[3] SouradeepBarua "Socket Programming in Java" February

26, 2018, [online] available:

https://www.geeksforgeeks.org/socket-programming-in-

java

[4] Neha Vaidya "Know all about Socket Programming in

Java" June 17, 2021 [online] available:

https://www.edureka.co/blog/socket-programming-in-

java/

[5] KishlayVerma "Socket Programming in Python" August

31, 2021 [online] available:

https://www.geeksforgeeks.org/socket-programming-

python/

[6] https://www.ibm.com/docs/en/i/7.1?topic=programming-

examples-socket-application-designs

[7] https://www.ibm.com/docs/en/i/7.1?topic=designs-

examples-connection-oriented

[8] https://www.ibm.com/docs/en/i/7.1?topic=designs-

example-using-asynchronous-io

[9] https://www.ibm.com/docs/en/i/7.1?topic=designs-

example-using-signals-blocking-socket-apis

[10] Rolou Lyn R. Maata, Ronald Cordova,

BalajiSudramurthy, AlrenceHalibas, "Design and

Implementation of Client-Server Based Application

using Socket Programming in a Distributed Computing

Environment", IEEE International Conference on

Computational Intelligence and Computing Research,

2017

[11] https://softwareengineering.stackexchange.com/questions

/109442/difference-between-networking-programming-

and-socket-programming

[12] https://docs.oracle.com/cd/E19455-01/806-1017/sockets-

4/index.html

IJCATM : www.ijcaonline.org

