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ABSTRACT 

Humor is a complex and intrinsic part of human conversation, 

which involves a deep understanding of grammatical structure 

and knowledge of the world. Building computational models 

that can identify and generate humor remains a challenging 

field. This work presents a neural network based joke 

generator that employs a transformer-based architecture. To 

improve the generator's performance, the model was further 

trained with Proximal Policy Optimization (PPO), a 

reinforcement learning algorithm. The model's performance 

was evaluated by human ratings by conductingqualitative 

analysis. 
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1. INTRODUCTION 
Humor is one of the most evolved characteristics we possess. 

While it is a complex linguistic tool, it is instinctive and 

straightforward to understand and create. The exact reasons 

why we laugh and what makes us laugh are still relatively 

unknown. The ability to understand and write jokes requires 

an understanding of different concepts. One must be aware of 

the world and the relationship between ideas and objects and 

be aware of linguistic structures that make a sentence funny, 

i.e., a strong understanding of semantics and syntax is 

required to understand and generate a joke. 

Even though understanding humor or any aspect of language 

is complex, advances in natural language processing and 

neural network architecture have led to success in tasks such 

as text classification, generation and summarization. Also, 

pre-trained language models such as BERT[1]and GPT[2] 

trained on a large corpus have shown comprehensible 

knowledge about the world. 

This paper proposes a method to leverage the capabilities of 

pre-trained language models to build a joke generator. The 

proposed approach is first to fine-tune a pre-trained generative 

model on a dataset of jokes. This is followed by building a 

joke identifier that can identify whether a given sentence is a 

joke or not. Then, additionally train the generator with the 

identifier to improve the quality of the joke. This additional 

training of the generator with the identifier is done with 

Proximal Policy Optimization,[3] a reinforcement learning 

algorithm. 

2. RELATED WORK 
This work focuses on building a joke generator, which 

involves building a joke identifier, a joke generator, and a 

training mechanism to train them together.  Some of the 

existing literature in humor identification is presented, 

followed by work in text generation and methods to train a 

generator. 

For humor recognition, experiments have been carried out 

with different methods. Yang et al. [4] experimented with 

Word2Vec combined with K-NN Human Centric Features for 

humor recognition. Weller and Sippi [5] proposed a 

transformer-based architecture for identifying jokes. 

Annamoradnejad and Zoghi [6] employed BERT sentence 

embedding for humor detection. They used BERT to generate 

embeddings for sentences of a given text and input these 

embeddings to a neural network that processes sentences 

separately in parallel hidden layers. 

Ziegler et al. [7] fine-tuned pre-trained language models with 

reinforcement learning, which used a reward model trained 

from human preferences to improve performance. They used 

this method for text completion tasks, which led to an 

improvement in performance. 

3. METHODOLOGY 
The joke generator was built in three steps. First, the generator 

model is trained on a dataset of jokes. Then the joke identifier 

is trained to identify if a given sentence is a joke or not. 

Finally, the generator is trained with the joke identifier to 

improve the quality of the jokes generated. This process is 

depicted in figure 1. 

 

 

 

 

Fig 1: Training flow 

3.1 Joke Generator 
For conducting experiments, GPT-2 small was used as the 

base model. GPT-2 model can be fine-tuned with a dataset to 

mimic the style and logic of the given dataset. GPT-2 is 

anauto-regressive generative language model built using 

transformer decoder blocks trained on a dataset of 8 million 
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web pages and imbibes a deep understanding of the world. It 

also displays excellent capability in both long and short-form 

text generation. The model's architecture is based on Vaswani 

et al. [8]transformer model, shown in figure 2. The 

transformer consists of an encoder stack and a decoder stack. 

The input to a transformer first goes through a multi-headed 

self-attention layer followed by a feed-forward network. The 

output from the encoder is passed to the decoder, which 

consists of a similar self-attention mechanism and feed-

forward network, along with a masked attention layer.  

The model was fine-tuned on the joke dataset provided by 

Weller and Sippi [5]. 173,635 sentences from the dataset 

labeled as jokes were used for fine-tuning. This dataset 

included jokes with multiple sentences from the Short Jokes 

dataset[9] and single sentences from Pun of the Day[4] 

dataset. Preprocessing on the dataset was carried out, which 

included removing sentences shorter than 10 characters and 

dropping the duplicate ones. The sentences were then 

tokenized using the GPT-2 tokenizer. The model was trained 

with a learning rate of 5e-4 for 5 epochs. 

3.2 Joke Identifier 
For the joke identifier, BERT-base model was used, a causal 

language model is built using transformer encoder blocks. 

BERT base consists of 12 Encoders with 12 bidirectional self-

attention heads and is trained on a dataset extracted from the. 

It excels in tasks related to natural language understanding. 

When it was released, it achieved state-of-the-art results in 

tasks such as GLUE (General Language Understanding 

Evaluation) and SQuAD (Stanford Question Answering 

Dataset). The model's architecture is based on Vaswani et al. 

[8]Transformer model but only consists of the encoder blocks. 

The model was fine-tuned on the downstream task of 

classifying a given sentence as either a joke or not a joke. The 

same dataset that was used for training the generator is used to 

train the identifier to avoid domain mismatch. A balanced 

dataset of 173,635 jokes and 173,851 non-joke sentences was 

used. This dataset included jokes with multiple sentences 

from the Short Jokes dataset[9] and single sentences from Pun 

of the Day [4] dataset. The dataset was then split with 80 

percent reserved for training and the remaining 20 percent for 

validation. For preprocessing, sentences shorter than 10 

characters were removed, and duplicate sentences were 

dropped. Punctuation marks were removed as they were easy 

lexical indicators of jokes, such as a question mark at the end 

of knock-knock jokes. The sentences were then tokenized 

using the BERT tokenizer. The model was trained with a 

learning rate of 2e-5 for 2 epochs. 

 

Fig 2: Transformer Architecture 

3.3 Proximal Policy Optimization 
To improve the quality of the generator, the output of the joke 

identifier was incorporated while training. Ziegler et al.[7] 

applied Proximal Policy Optimization for fine-tuning pre-

trained language models. This paper adopts a similar 

methodology to improve the generator by further fine-tuning 

it with the joke identifier.Before optimizing the generator, we 

create a replica of the generator, which will be helpful during 

optimization. This step is carried out in three steps 

3.3.1 Generation 
The joke generator will generate a joke. 

3.3.2 Joke Evaluation 
The joke generated is evaluated by the joke identifier, and it 

generates a score denoted by ‘r’. 

3.3.3 Optimization 
It is further divided into three steps, shown in figure 3. 

3.3.3.1 Calculating KL Divergence 
Log probabilities of the generated joke are calculated with the 

original generator and the replica. The KL-divergence 

between the log probabilities is calculated and denoted as 

‘KL’. 

3.3.3.2 Updating Reward Score 
The updated reward score R considers the KL Divergence 

score, i.e., R = r − βKL, where β is the KL divergence 

coefficient.  

3.3.3.3 Model Update 
The generator is trained via PPO with an updated reward R. 

The KL divergence is used for optimization as it measures the 

difference in the log probability distribution, which ensures 

the generator does not deviate far from its original form. A 

similar approach by Kazi [10] for detoxifying language 

models

 

 

 

 

 

 

Fig 3: Optimization Step 
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We further trained the model in the proximal policy setting for 

1 epoch with KL coefficientβ=0.2 and a batch size of 256. 

4. RESULTS 
The qualitative and quantitative impact of fine-tuning the 

generator with Proximal Policy Optimization were carried out. 

The analysis of the results show that the generator model was 

able to understand the fundamental concepts and phrases of 

humor and was able to replicate human language patterns to 

some degree. Although it wasn’t coherent all the time, it was 

able to generate humorous fragments.  

4.1 Quantitative Results 
For measuring the quantitative impact, the ratio of the score 

the joke identifier assigns to the model before the 

optimization and after the optimization was calculated. Plot of 

the graph over the training steps is shown in figure 4. 

 

 

Fig 4: Reward ratio over training steps 

The graph shows a clear increase in the value of the ratio, 

which indicates that Proximal Policy Optimization leads to 

measurable improvement in the quality of the jokes generated. 

For testing, the identifier classified a random set of 200 

sentences generated by the model. The identifier classified 

145 sentences as funny and the remaining as non-funny. 

4.2 Qualitative Results 
Like other natural language generation models, the model did 

not always perform as intended. It occasionally suffered from 

overfitting, i.e., it would repeat the same joke that it had been 

trained and barely changed the words in the joke. It also 

would generate gibberish sentences from time to time. Apart 

from this, the model was able to learn the styles of jokes it 

was trained on and generated some hilarious jokes.  

Some examples of the above-mentioned observations: 

Example of the model overfitting and almost copying a joke: 

Joke Generator: I used to be addicted to soap... i am clean 

now 

Example of the model generating normal sentences, i.e. 

something that was not funny: 

Joke Generator: I have  kids  and  i have to go home 

Example of the model generating a gibberish sentence: 

Joke Generator: the first rule of fight club is do not talk to 

each other. i heard it was a jam 

Example of the model generating a joke: 

Joke Generator: What do you call a communist animal, a 

moscow. 

Here, the model displays a deep understanding of words and 

the world. It is able to connect the concepts of communism, 

the city of moscow, and the name of an animal. 

4.3 Joke Identifier Accuracy 
Different approachs for joke identification were tested. The 

BERT based joke identifier performed better than all other 

techniques and achieved a competitive accuracy. The 

accuracy scores for all the approaches are mentioned in the 

table 1. 

Table 1. Comparison of different methods for joke 

identification  

Approach Accuracy 

Decision Tree 77.84 

CNN 85.44 

BERT base 95.83 

 

4.5 Joke Generator Scores 
A random set of 100 sentences generated by the model were 

subject to human evaluation. The evaluators graded the jokes 

on a 3 point scale: 0 (Incoherent), 1 (Somewhat funny), and 2 

(Funny). The sentences generated were judged by 10  human 

evaluators. The aggreate results of all the evaluators are 

mentioned in table 2. 

Table 2. Human evaluator’s scores for the jokes generated 

by the model 

Label Percentage 

Incoherent 27.1 

Somewhat funny 46.2 

Funny 26.7 

 

5. CONCLUSION AND FUTURE WORK 
In this paper, we showed methods to build models that can 

carry out humor identification and generation. The proposed 

model for humor identification achieved a competitive score 

of 95.83%. We explored training the joke identifier and 

generator together to improve the joke generation scores. This 

method of training does not require human intervention and 

leads to improved scores. The generator, to a great extent, was 

able to generate short funny jokes. This model can be used to 

assist humans in generating jokes and humorous sentences. 

For future work, we can develop this system based on a 

business use case. We can fine-tune it to a specific domain 

dataset, such as advertising, editing, and the model can 

generate funny taglines or creative slogans. 
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