
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 34, October 2021

1

Transformer based Neural Joke Generator

Taaha Kazi
Don Bosco Institute of Technology

Mumbai
Maharashtra, India

Sameer Joshi
Don Bosco Institute of Technology

Mumbai
Maharashtra, India

Steeve Kaitharath
Don Bosco Institute of Technology

Mumbai,
Maharashtra, India

Imran Ali Mirza

Don Bosco Institute of Technology
Mumbai,

Maharashtra, India

ABSTRACT

Humor is a complex and intrinsic part of human conversation,

which involves a deep understanding of grammatical structure

and knowledge of the world. Building computational models

that can identify and generate humor remains a challenging

field. This work presents a neural network based joke

generator that employs a transformer-based architecture. To

improve the generator's performance, the model was further

trained with Proximal Policy Optimization (PPO), a

reinforcement learning algorithm. The model's performance

was evaluated by human ratings by conductingqualitative

analysis.

General Terms

Natural Language Processing, Reinforcement Learning,

Transformers

Keywords

Natural Language Generation, Humor

1. INTRODUCTION
Humor is one of the most evolved characteristics we possess.

While it is a complex linguistic tool, it is instinctive and

straightforward to understand and create. The exact reasons

why we laugh and what makes us laugh are still relatively

unknown. The ability to understand and write jokes requires

an understanding of different concepts. One must be aware of

the world and the relationship between ideas and objects and

be aware of linguistic structures that make a sentence funny,

i.e., a strong understanding of semantics and syntax is

required to understand and generate a joke.

Even though understanding humor or any aspect of language

is complex, advances in natural language processing and

neural network architecture have led to success in tasks such

as text classification, generation and summarization. Also,

pre-trained language models such as BERT[1]and GPT[2]

trained on a large corpus have shown comprehensible

knowledge about the world.

This paper proposes a method to leverage the capabilities of

pre-trained language models to build a joke generator. The

proposed approach is first to fine-tune a pre-trained generative

model on a dataset of jokes. This is followed by building a

joke identifier that can identify whether a given sentence is a

joke or not. Then, additionally train the generator with the

identifier to improve the quality of the joke. This additional

training of the generator with the identifier is done with

Proximal Policy Optimization,[3] a reinforcement learning

algorithm.

2. RELATED WORK
This work focuses on building a joke generator, which

involves building a joke identifier, a joke generator, and a

training mechanism to train them together. Some of the

existing literature in humor identification is presented,

followed by work in text generation and methods to train a

generator.

For humor recognition, experiments have been carried out

with different methods. Yang et al. [4] experimented with

Word2Vec combined with K-NN Human Centric Features for

humor recognition. Weller and Sippi [5] proposed a

transformer-based architecture for identifying jokes.

Annamoradnejad and Zoghi [6] employed BERT sentence

embedding for humor detection. They used BERT to generate

embeddings for sentences of a given text and input these

embeddings to a neural network that processes sentences

separately in parallel hidden layers.

Ziegler et al. [7] fine-tuned pre-trained language models with

reinforcement learning, which used a reward model trained

from human preferences to improve performance. They used

this method for text completion tasks, which led to an

improvement in performance.

3. METHODOLOGY
The joke generator was built in three steps. First, the generator

model is trained on a dataset of jokes. Then the joke identifier

is trained to identify if a given sentence is a joke or not.

Finally, the generator is trained with the joke identifier to

improve the quality of the jokes generated. This process is

depicted in figure 1.

Fig 1: Training flow

3.1 Joke Generator
For conducting experiments, GPT-2 small was used as the

base model. GPT-2 model can be fine-tuned with a dataset to

mimic the style and logic of the given dataset. GPT-2 is

anauto-regressive generative language model built using

transformer decoder blocks trained on a dataset of 8 million

1.Train the

Generator

2.Train the

Identifier

3. Further train

the joke

generator with

the identifier

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 34, October 2021

2

web pages and imbibes a deep understanding of the world. It

also displays excellent capability in both long and short-form

text generation. The model's architecture is based on Vaswani

et al. [8]transformer model, shown in figure 2. The

transformer consists of an encoder stack and a decoder stack.

The input to a transformer first goes through a multi-headed

self-attention layer followed by a feed-forward network. The

output from the encoder is passed to the decoder, which

consists of a similar self-attention mechanism and feed-

forward network, along with a masked attention layer.

The model was fine-tuned on the joke dataset provided by

Weller and Sippi [5]. 173,635 sentences from the dataset

labeled as jokes were used for fine-tuning. This dataset

included jokes with multiple sentences from the Short Jokes

dataset[9] and single sentences from Pun of the Day[4]

dataset. Preprocessing on the dataset was carried out, which

included removing sentences shorter than 10 characters and

dropping the duplicate ones. The sentences were then

tokenized using the GPT-2 tokenizer. The model was trained

with a learning rate of 5e-4 for 5 epochs.

3.2 Joke Identifier
For the joke identifier, BERT-base model was used, a causal

language model is built using transformer encoder blocks.

BERT base consists of 12 Encoders with 12 bidirectional self-

attention heads and is trained on a dataset extracted from the.

It excels in tasks related to natural language understanding.

When it was released, it achieved state-of-the-art results in

tasks such as GLUE (General Language Understanding

Evaluation) and SQuAD (Stanford Question Answering

Dataset). The model's architecture is based on Vaswani et al.

[8]Transformer model but only consists of the encoder blocks.

The model was fine-tuned on the downstream task of

classifying a given sentence as either a joke or not a joke. The

same dataset that was used for training the generator is used to

train the identifier to avoid domain mismatch. A balanced

dataset of 173,635 jokes and 173,851 non-joke sentences was

used. This dataset included jokes with multiple sentences

from the Short Jokes dataset[9] and single sentences from Pun

of the Day [4] dataset. The dataset was then split with 80

percent reserved for training and the remaining 20 percent for

validation. For preprocessing, sentences shorter than 10

characters were removed, and duplicate sentences were

dropped. Punctuation marks were removed as they were easy

lexical indicators of jokes, such as a question mark at the end

of knock-knock jokes. The sentences were then tokenized

using the BERT tokenizer. The model was trained with a

learning rate of 2e-5 for 2 epochs.

Fig 2: Transformer Architecture

3.3 Proximal Policy Optimization
To improve the quality of the generator, the output of the joke

identifier was incorporated while training. Ziegler et al.[7]

applied Proximal Policy Optimization for fine-tuning pre-

trained language models. This paper adopts a similar

methodology to improve the generator by further fine-tuning

it with the joke identifier.Before optimizing the generator, we

create a replica of the generator, which will be helpful during

optimization. This step is carried out in three steps

3.3.1 Generation
The joke generator will generate a joke.

3.3.2 Joke Evaluation
The joke generated is evaluated by the joke identifier, and it

generates a score denoted by ‘r’.

3.3.3 Optimization
It is further divided into three steps, shown in figure 3.

3.3.3.1 Calculating KL Divergence
Log probabilities of the generated joke are calculated with the

original generator and the replica. The KL-divergence

between the log probabilities is calculated and denoted as

‘KL’.

3.3.3.2 Updating Reward Score
The updated reward score R considers the KL Divergence

score, i.e., R = r − βKL, where β is the KL divergence

coefficient.

3.3.3.3 Model Update
The generator is trained via PPO with an updated reward R.

The KL divergence is used for optimization as it measures the

difference in the log probability distribution, which ensures

the generator does not deviate far from its original form. A

similar approach by Kazi [10] for detoxifying language

models

Fig 3: Optimization Step

Joke

 KL Divergence

Generator

Replica

Log Probabilities KL Divergence

Log Probabilities Reward Function

PPO

 KL Divergence

Policy gradients

βKL

r

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 34, October 2021

3

We further trained the model in the proximal policy setting for

1 epoch with KL coefficientβ=0.2 and a batch size of 256.

4. RESULTS
The qualitative and quantitative impact of fine-tuning the

generator with Proximal Policy Optimization were carried out.

The analysis of the results show that the generator model was

able to understand the fundamental concepts and phrases of

humor and was able to replicate human language patterns to

some degree. Although it wasn’t coherent all the time, it was

able to generate humorous fragments.

4.1 Quantitative Results
For measuring the quantitative impact, the ratio of the score

the joke identifier assigns to the model before the

optimization and after the optimization was calculated. Plot of

the graph over the training steps is shown in figure 4.

Fig 4: Reward ratio over training steps

The graph shows a clear increase in the value of the ratio,

which indicates that Proximal Policy Optimization leads to

measurable improvement in the quality of the jokes generated.

For testing, the identifier classified a random set of 200

sentences generated by the model. The identifier classified

145 sentences as funny and the remaining as non-funny.

4.2 Qualitative Results
Like other natural language generation models, the model did

not always perform as intended. It occasionally suffered from

overfitting, i.e., it would repeat the same joke that it had been

trained and barely changed the words in the joke. It also

would generate gibberish sentences from time to time. Apart

from this, the model was able to learn the styles of jokes it

was trained on and generated some hilarious jokes.

Some examples of the above-mentioned observations:

Example of the model overfitting and almost copying a joke:

Joke Generator: I used to be addicted to soap... i am clean

now

Example of the model generating normal sentences, i.e.

something that was not funny:

Joke Generator: I have kids and i have to go home

Example of the model generating a gibberish sentence:

Joke Generator: the first rule of fight club is do not talk to

each other. i heard it was a jam

Example of the model generating a joke:

Joke Generator: What do you call a communist animal, a

moscow.

Here, the model displays a deep understanding of words and

the world. It is able to connect the concepts of communism,

the city of moscow, and the name of an animal.

4.3 Joke Identifier Accuracy
Different approachs for joke identification were tested. The

BERT based joke identifier performed better than all other

techniques and achieved a competitive accuracy. The

accuracy scores for all the approaches are mentioned in the

table 1.

Table 1. Comparison of different methods for joke

identification

Approach Accuracy

Decision Tree 77.84

CNN 85.44

BERT base 95.83

4.5 Joke Generator Scores
A random set of 100 sentences generated by the model were

subject to human evaluation. The evaluators graded the jokes

on a 3 point scale: 0 (Incoherent), 1 (Somewhat funny), and 2

(Funny). The sentences generated were judged by 10 human

evaluators. The aggreate results of all the evaluators are

mentioned in table 2.

Table 2. Human evaluator’s scores for the jokes generated

by the model

Label Percentage

Incoherent 27.1

Somewhat funny 46.2

Funny 26.7

5. CONCLUSION AND FUTURE WORK
In this paper, we showed methods to build models that can

carry out humor identification and generation. The proposed

model for humor identification achieved a competitive score

of 95.83%. We explored training the joke identifier and

generator together to improve the joke generation scores. This

method of training does not require human intervention and

leads to improved scores. The generator, to a great extent, was

able to generate short funny jokes. This model can be used to

assist humans in generating jokes and humorous sentences.

For future work, we can develop this system based on a

business use case. We can fine-tune it to a specific domain

dataset, such as advertising, editing, and the model can

generate funny taglines or creative slogans.

6. REFERENCES
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding.

North American Chapter of the Association for

Computational Linguistics.

[2] Radford, Alec and Wu, Jeff and Child, Rewon and Luan,

David and Amodei, Dario and Sutskever, Ilya. 2019.

Language Models are Unsupervised Multitask Learners.

[3] John Schulman and FilipWolski and PrafullaDhariwal

and Alec Radford and Oleg Klimov 2017. Proximal

Policy Optimization Algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 34, October 2021

4

[4] Diyi Yang, AlonLavie, Chris Dyer, and Eduard Hovy.

2015. Humor recognition and humor anchor extraction.

Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing,

[5] Orion Weller, Kevin Seppi. Humor Detection: A

Transformer Gets the Last Laugh. 2019. Association for

Computational Linguistics

[6] IssaAnnamoradnejad. ColBERT: Using {BERT}

Sentence Embedding for Humor Detection. 2020.

https://arxiv.org/abs/2004.12765

[7] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.

Brown ,Alec Radford, Dario Amodei, Paul Christiano,

and Geoffrey Irving 2020. Fine-Tuning Language

Models from Human Preferences

[8] Ashish Vaswani, Noam Shazeer, NikiParmar,

JakobUszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

Kaiser, and IlliaPolosukhin. 2017. Attention Is All You

Need. 31st Conference on Neural Information Processing

[9] AbhinavMoudgil. Short Jokes. 2016.

https://www.kaggle.com/abhinavmoudgil95/short-joke

[10] Taaha Kazi. Detoxifying Language Models with

Proximal Policy Optimization. 2021. Manuscript in

preparation.

IJCATM : www.ijcaonline.org

