
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

20

HPDDRR: Optimized Scheduler Shaper for Bandwidth

Management and Traffic Shaping in Internet Protocol

Storage Area Networks

Kithinji Joseph
Computer Science Department,
Meru University of Science and

Technology
Meru, Kenya

Makau S. Mutua, PhD
Computer Science Department,
Meru University of Science and

Technology
Meru, Kenya

Gitonga D. Mwathi, PhD
Department of Computer Science,

Chuka University
Chuka, Kenya

ABSTRACT

Providing QOS (quality of service) is a vital problem in storage

area networks. In this paper a technique known as

HPDDRR(hierarchical priority based dynamic deficit round

robin) which is scheduler shaper that uses hit ration for flow

prioritization and a dynamic quantum calculated based on the

priority for scheduling is presented. Based on the applications

used, packets may vary in sizes and belonging to different

priority classes. To ensure that big low priority packets don‟t

delay small high priority packets this study uses hierarchical

priority queues instead of FIFO (first in first out) queues for

scheduling. This allows for performance isolation as well as

resource sharing. The evaluation results proof that HPDDRR is

able to optimize bandwidth utilization as well as latency for

competing traffic flows under Service level objectives

constraints.

Keywords
Dynamic Bandwidth management, Burst Handling, ISCSI, IP

SAN, Quantum, Policing.

1. INTRODUCTION
With the ever increasing demand for storage, IP SANs (Internet

protocol storage area networks) are becoming popular option

due to operational and hardware cost savings[1][4]. An IP SAN

is a storage area network that uses the ISCSI(internet small

computer system interface) to transport storage data in a

network[2].ISCSI is an internet protocol based standard for

transporting storage commands over the IP network. The reads

and writes are encapsulated in ISCSI then transported through

the TCP/IP (Transmission control/Internet Protocol) network.

However the TCP/IP does not provide mechanism for

regulating the bandwidth allocated to a particular user[4][8]. In

addition, compared to other SANs, in IP SANs the storage

traffic mixes with other types of traffic. These presents a new

challenge and opportunity for bandwidth management for

storage users. The challenge is network traffic as well as storage

traffic are bursty, and therefore a mechanism for managing the

link is required. The opportunity is that it‟s possible to adopt the

existing bandwidth management techniques developed over the

years for data network to IP SANs[3][7].

IP SANs have two resources that need to be managed, that is

the storage and the network. In this study the resource under

contention and which requires management is the bandwidth

between the initiator and the target. The amount of available

bandwidth determines the amount of data that can be

transmitted[5]. This amount of data is known as throughput[6].

In the traditional network setup the amount of bandwidth is

fixed and provides best effort which does not provide any

resources guarantees to any users on the network[3]. Future

traffic patterns are unknown which makes bandwidth

management and burst handling a challenge. For efficient use of

IP SAN the network bandwidth among the clients must be

distributed dynamically depending on the client‟s

workload.QOS solutions such as interserve, diffserve, RSVP

are not effective while applied directly in the storage system[9].

Dynamic bandwidth management is the ability of a bandwidth

management scheme to adjust bandwidth allocations based on

network conditions[10][3].In most routers we have two main

algorithms for dynamic bandwidth management that is the per

connection queue (PCQ) and hierarchical token bucket

(HTB)[11].PCQ is a non priority class based queuing algorithm

used to throttle bandwidth. Due to the lack of prioritization

PCQ is not able to differentiate traffic. For this case of IP SANs

it is important to provide better services for high hitting classes

which are assigned higher priority. Because of these fact

HTB[9] is used. However HTB uses DRR scheduling

mechanism.[15]DRR is known to have high latency and also

leads to low bandwidth utilization of resources especially when

there are flows in the same queue with different rates[12].

On the other hand burst handling is implemented using traffic

shaping. Traffic shaping is a congestion control technique that

delays traffic of less important classes in an attempt to optimize

network performance[13]. This is done by limiting the burst

size so that it does not exceed the network limit. Two

architectures are available for traffic shaping. These include;

direct exact sorting and rate based grouping[14]. Direct exact

sorting operate on the basis of per virtual connection queue at

the input port. After the per virtual connection queue there are

timing queues which are formed considering the incoming

flows departure time[11]. The shortcomings of these technique

is that the implementation complexity increases linearly as the

number of connections increases. This follows from the fact

that the complexity of direct exact sorting architectures is O

(pmax/pmin).

 On the other hand rate based architecture for traffic shaping

allows for grouping of traffic based on rates, however the

groups become many when the number of connections

increases[18]. This increases the complexity and delays in

packet processing. In addition both direct and rate based

techniques for traffic shaping employs the FIFO queues which

makes it difficult to differentiate traffic[16].

To solve the above mentioned problem on bandwidth

management and traffic shaping the study adopts a

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

21

scheduler/shaper named hierarchical priority based dynamic

deficit round robin (HPDDRR) that employs the technique of

hierarchy structure of flows to reduce the number classes

queues, uses priority calculated from hit ratio of flows to

calculate the deficit quantum which ensures that the quantum is

dynamic based on network statistics. The proposed solution

uses a hierarchy to queue packets instead of the FIFO

queues[17]. The hierarchical structure allows for isolation of

traffic between flows. In addition so as to retain the complexity

of O (1), the hierarchical structure will have one level[14]. The

complexity of a hierarchical structure was found to be O

(L).Where L is the number of levels of hierarchy structure.

Consequently proposed solution implements only one level

hence retaining O (1) complexity of DRR.This is expected to

improve on latency compared to the conventional rate based

scheduler shaper using the conventional DRR[19].The property

of dynamic counter is meant to ensure packets get transmitted

as much as possible in every round robin as the deficit will be

calculated based on highest rate of the highest priority queue.

Thisis expected to improve on bandwidth utilization since a

class will be allocated bandwidth based on the current network

requirements. The feature of traffic classification further

improves on latency as packets of similar rates are grouped in

the same queue which reduces the waiting time which might be

high for low rate packets when mixed with high rate packets.

2. PREVIOUS WORK
[20] QOS in SANS have been researched for years with

solutions such as Façade, chameleon, triage and Stonehenge

being proposed. Facade uses the technique of throttling I/O

requests to the storage to achieve the required SLO.However

façade earliest deadline is not effective when we have burst

workloads. Chameleon leaky bucket is not efficient since it is

not work conserving as it reserves bandwidth to support each

client‟s storage QOS requirements sharing of resources

proportionally. Solutions such as YFQ and cello balance user

requirements[21]. Stonehenge uses a disc scheduler to

guarantee bandwidth between the storage server and the client.

[8] Looked at the integration of storage QOS and network QOS.

Other solutions mentioned above looked at storage QOS and

network QOS separately. [1] Proposed a priority based greedy

algorithm for allocating storage server link network bandwidth

to clients. Formulated mathematical models to calculate the

required bandwidth. Solution implemented on object based

storage system. Object based storage does not use file system

instead it uses object attribute mechanism. The authors of [1]

implemented a solution to calculate the needed network

bandwidth for clients based on their SLO.Then in [1] they

designed a priority based greedy bandwidth allocation to

allocate the link network bandwidth. [8].

[22] Implemented a dynamic mechanism for providing

resources on demand. The system uses Q-learning multi agent

for managing each client access to the cloud resources. The

authors of [22] Use throughput and CPU usage to measure

bandwidth usage. Results shows reduction in idle bandwidth

allowing low priority clients to use bandwidth while there is

idle capacity.

[23] Developed SLED which is able to throttle very bursty

workloads responsible for performance degradation. SLED is

decentralized and therefore can be used to manage large storage

systems. SLED main aim is to ensure effectiveness of storage

systems by directing resources to those flows that do not have.

However this approach may cause poor performance in high

priority classes. In addition SLED is implemented on an FC

SAN. Authors of [24] developed pTrans a framework for

reservation guarantees based on directed acyclic graphs.

However pTrans was found not to give accurate estimates for

resource demand and available resources during run time which

is crucial for dynamic resource allocation.[7] Developed

bQueue which is framework for providing reservations and

limits on storage systems. However Bqueue uses a simple round

robin scheduler which has an advantage of low overhead but as

determined in literature simple round robin end up causing

delay especially in environments where there are packets of

varied sizes and priorities.[25] Developed pShift which is a

framework for providing I/O reservations and limits.Pshift uses

estimates to provide optimal token distribution however it was

found to be less scalable.

Motivated by the above discussion this study integrates a

scheduler shaper that achieves better bandwidth utilization and

achieves lower latencies better than the conventional solutions

available[26].A NUM mathematical model for the optimal

utilization of network bandwidth is formulated. The NUM

mathematical model is solved using the Lagrange multiplier to

find the optimal allocation value for each class of user. The

study demonstrate through simulation that the proposed model

is efficient in the utilization bandwidth and reducing latency.

The proposed solution is implemented on a router positioned

between the initiator and the target where the algorithm runs to

avoid multiple copies of the same algorithm running in the

network. This is expected to reduce overhead of processing

multiple copies of the algorithm and eventually increase

network performance.

3.DYNAMICBANDWDITH

MANAGEMENT

3.1 Hierarchical Token Bucket Algorithm
In this section a description is made of the main features of

hierarchical token bucket (HTB) specifically the

implementation available in Linux traffic control[27]. HTB falls

into the category of class based queuing disciplines[31][37]. A

queuing discipline is a mechanism for queuing and dequeueing

packets under the influence of an algorithm[29].HTB operates

between the IP layer and the mac layer. In HTB flows are

structured in a hierarchy of classes namely root, inner and leaf

classes. All traffic goes through the root classes which is

situated at the top. Inner classes are below the root classes with

child classes as leaf classes. The leaf classes have no child

classes however they have parent classes. Figure 1 illustrates

the functioning of HTB.Flows control in each class is achieved

by an internal token bucket which is populated with tokens

limited by the rate a particular class is permitted to

transmit[32].When a packet is transmitted belonging to a

particular class its bucket subtracted with the number equal to

the rate[15].

Each class configured with two rates that is rate bucket with

tokens and a ceil bucket which contains ctokens (ceil

tokens)[33].Tokens and ctokens is a measure of the amount of

time a class occupies the scheduler output line. During

transmission a class could either be in green, yellow or red

states[34][36]. In the green state the class has sent less data than

its allocated rate and therefore it can send more[35][33].In the

yellow state the class has exceeded its guarantees rate but not

ceil rate. In the red rate the class has sent more the ceil and

cannot send any data.HTB uses DRR for sheduling.The class

deficit is decremented based on the size of the packet.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

22

Ctokens decrease by a ratio equal to
𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔𝑡 𝑕

𝑟𝑎𝑡𝑒
. This is the

amount time a packet is in the scheduler queue. Ctokesn is

added to the time elapsed after transmission .To take into

account the time that elapsed since the last transmission in the

same queue ctokens[12].To explain this further we use an

example. Let 𝑡2 be the current time and 𝑡1be the last time since

the last transmission.

ctokens 𝑡2 = 𝑐𝑡𝑜𝑘𝑒𝑛𝑠 𝑡2 + 𝑡2 − 𝑡1 −
𝑝𝑎𝑐𝑘𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡 𝑕

𝑟𝑎𝑡𝑒
 (1)

Given that C is the capacity of the network in bps, any rate

assigned to class r<C.Therefore
𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔𝑡 𝑕

𝑟𝑎𝑡𝑒
>
𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔𝑡 𝑕

𝐶
. (2)

Equation 1 shows that when there is consecutive transmission

from the same class the tokens constantly decrease

[33][28].This is because the transmission is done at rate r

therefore the value of t2-t1 is added to the C pool which is equal

to packetlenght /r which is less than packetlenght/rate[12].

If the expiration of the deficient for the current green class

expires the scheduler might switch to the next green class. This

is the case due to the working of DRR algorithm which is used

in HTB as a scheduling algorithm[30].Scheduling algorithms

are algorithms that determine the order in which packets are

processed[28]. The DRR scheduling algorithm decrements the

deficit after every transmission and in some cases it becomes

zero or negative. In the mentioned cases 1/10 of rate is added to

the deficit by default and then the scheduler can switch to the

next green class if any. If there are no green classes the current

one will continue to send until it is red or other become

green[15]

Another case is when there is a bucket underflow[37].Bucket

underflow is when ctokens bucket becomes empty which is an

indication to the scheduler that the class is exceeding its ceil

and therefore should switch to the next class.Ctokens takes the

values in the interval [-cburst, cburst] where cburst is the peak

rate[34].

When cburst is negative an underflow happens and the class

status becomes red.On the other hand if ctokens goes above

cburst the excess ctokesn are discarded. Since underflow has

got a high priority, thedeficit expiration occursand the class

stops sending data without putting into consideration the deficit.

However if the deficit expires and other classes are red, the

current transmitting class continues to send by adding a

quantum value to deficit. It is important to configure a high

cburst to ensure all the classes are green so as to allow

transmission of all bytes from the current class before switching

to the next one[12]. When a class has reached its ceil rate it

queues packets until new tokens are available in a process

known as policing. The working of the HTB is summarized in

Figure1.

The key strength of HTB is bandwidth borrowing which

ensures maximum utilization of the available bandwidth.

Configurations for bandwidth borrowing is based on priority,

high priority classes can borrow more bandwidth[32].

In HTB each class is configured with allowed rate(R),burst

rate(BR) ,Guaranteed rate(GR) and rate that the class can

borrow(BW).Therefore for any class i,in HTB we can define its

allowed rate(R) as follows[15].

𝑅𝑖 = min 𝐵𝑅𝑖,𝐺𝑅𝑖 + 𝐵𝑊𝑖

 (3)

Each class is configured with priority p and a quantum Leaf

classes borrow bandwidth from their parents. If a leaf class has

no parent then BW=0.For any class I with parent p and quantum

I and priority p then the following equation holds[28].

𝐵𝑊𝑖 =
𝑄𝑖𝑅𝑝

 𝑄𝑖 𝑤𝑕𝑒𝑟𝑒 𝑝 𝑗=𝑝𝑖
𝑗∈𝐷

 𝑖𝑓 min 𝑗 ∈ 𝐷(𝑝) 𝑝𝑖 ≥ 𝑝𝑖

 (4)

From Equation 4 it is clear that rate is borrowed from parent

and decided among all descendants levels based on priority

according to quantum 𝑄𝑖[15]

HTB cannot alone provide fairness and utilization, since it

relies on prediction of output capacity of a link. We therefore

need to include the current network statistics. Commercial

routers do not provide optimization of bandwidth sharing for

QOS by dynamically assigning bandwidth based on priority and

network conditions [33].therefore this study proposes the

traffic aware HTB for QOS provisioning based on

priority[15].The proposed solution has been analyzed with a

series of systematic experiments. The experiments have verified

that the proposed HTB offers optimized bandwidth utilization

and low latencies.

3.2 Limitation of Hierarchical Token Bucket

Algorithm
A major component of providing QOS in a network is the

scheduler. Packet schedulers are necessary in providing or

ensuring bounded delay guaranteed bit rate and fair service

allocation to all flows[38]. This can be achieved by solving the

contention problem of a given resource and deciding on the

sequence in which packets are transmitted from the node[31].

The router requires scheduling mechanisms to output packets

arriving and ensure differentiated QOS[34]. The selection of an

appropriate scheduling algorithm is key to providing QOS. A

good scheduling mechanism should avoid unfairness between

Figure1: Functioning of HTB

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

23

packets[39]. Low priority packets should not be starved. In

addition a good scheduler should provide good utilization

constantly adjust the laws of their operation based on network

statistics[28].

Packet schedulers are classified as either time stamped or frame

based. Time stamped include the weighted fair

queueing,worstcase fair queuing, virtual lock and self-clocked

fair queueing.The advantage of time stamped scheduling

algorithm is that they provide tight latency bounds and provide

good fairness. However they have high complexity[34].

Frame based schedulers operate by rounds. Where each flow is

served in a given round. Weighted round robin, deficit round

robin and elastic round robin are frame based schedulers. These

schedulers are easy to implement, however they have high

latencies. This study considers specifically at DRR which is

implemented in HTB.

 DRR services flows in a round robin and succeeds in

eliminating the unfairness of pure packet based round robin.

However DRR latency become high when we have two flows

with higher rate than the other. A good scheduling algorithm

should have low computation cost, easy to implement, efficient

and good fairness. DRR has a computation cost of O (1) though

it does not have optimal fairness. This is because a flow

continuously sends packets up to an amount of its deficit

quantum which increases delay for smaller packets. Based on

the deficiency of the DRR this study has put forward

Hierarchical Priority Dynamic Deficit Round Robin scheduling

algorithm (HPDDRR) technique that integrates traffic shaping

and scheduling. HPDDRR uses a dynamic deficit counter that is

generated based on the current network statistics for a given

round. By using a quantum for the highest rate priority queue

ensures high priority traffic is given preference hence achieving

reduced delays. The hierarchy further ensures that flows are

grouped based on classes which prevents interference.

4. BURST HANDLING
Storage I/O workloads are bursty in nature due to the device

and application statistics and the location from where the device

is being accessed from. These nature of I/O workloads

burstiness makes it a challenge to achieve low latency as well as

proportionate bandwidth allocation. In IP networks traffic

shaping is the technique used to handle traffic by delaying low

priority traffic in favor of high priority traffic. To implement

traffic shaping two architectures are used that id direct exact

sorting and rate based grouping. Direct exact sorting operates

on per virtual connection queue at the input port. After the per

virtual connection queue there are timing queues which are

formed considering the incoming flows departure time. At the

output port there aredeparture queue (DT) which sorts packets

that conform or do not conform. Let the minimum rate of a

connection be noted by iX and the maximum rate be donated

by *
iX .Then the rate of a flow takes the range [iX , *

iX].For

high speed connections let
*

1

iX
 be the timing queue

granularity. Let m be the number of timing queues, this

follows that

*
i

i

X
m

X
 .The short comings of this technique is that m

increases linearly if in the network we have flows with wide

range rates. This makes the complexity of the architecture to be

*

()i

i

X
O

X
.Therefore the direct exact sorting is not suitable for

large networks with very wide range of rates.

With the rate based grouping architectures flows with similar

rate are grouped together to reduce the range of rates. This

means that each group can choose its own granularity. High

granularity introduce jitter for high speed networks. Again the

FIFO service in existing architectures does not control the

interference between competing connections when multiple

conforming cells await service. We need to handle large

number of connections with wide range of bandwidth

parameters. Handling large number of connections rate requires

a large number of sorting queues.

To explain this further consider a shaping mechanism with

flows varying from iX to *
iX ,where 1m  being the rate

differences factor between connections. As a result we have
*

{ }i
m

i

X
n Log

X
 groups. For example give that 16m  ,

1 / eciX Kilobit S and * 1 / SeciX gigabit this means that

the number of groups will be
30

16 10

2
{ } 5

2
Log Groups .A large

bin granularity can introduce significant shaping delay and jitter

to high rate connections.

To solve this connections can be grouped based on their

bandwidth requirements allowing each sorting unit to select a

different grain. With hierarchical architecture the shaper can

select same sorting granularity for high rate connections to

reduce delay.

5. METHODS AND MATERIALS

5.1 Materials
The implemented test bed includes five nodes three initiators, a

target and a router. The router machine is equipped with two

Ethernet ports. The three initiators are Virtual Machines each

running a windows server 2016, with 4GB Ram and 26 GB

target capacity. The target runs windows server 2016 with an

8GB RAM and 500 GB disk capacity. The router run Ubuntu

20.04 with a 4 GB RAM and a 500GB disk capacity.Parkdale

disk benchmarking tool was used to simulate the reads and

writes. In all the experiments a File size of 50MB was used

unless otherwise stated.

5.2 Methodology
In achieving bandwidth management and traffic shaping the

study adopted an experimental research design. Experiment is a

research instrument that involves finding causal relationships

between variables through the effect of manipulating one

variable on another[42]. It is suitable for phenomenon with

known variables or initial hypothesis that aimed at testing or

manipulating a theory [41].It is also used to test and answer

„how‟ and „why‟ research questions and lies in the deductive

approach and positivism philosophy domain.

Experiments were set up to evaluate the proposed system on

bandwidth allocation, bandwidth borrowing and burst handling.

The proposed optimization of bandwidth management and

traffic shaping was evaluated using the throughput and latency

QOS metrics.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

24

5.3 Model Formulation
Let I be a set of users for whom we want to allocate bandwidth

to. A definition three QOS attributes that comprise the SLO for

each class of user is made. These attributes are IO size, IOPs

and response time.

The meaning of these attributes are as follows.

1. IOPs-I/O commands per second

2. Response time-time it takes for a request to receive a

response.Constitues total latency

3. IO size-the amount of data read/written at a given

instance.

Si is defined to denote the SLO associated with a particular

class of users where i<=1<=n

Si={IOsize,IOPs, Response time} (4)

Let rszi denote the I/O request size of class i,IOPirepresent IOPs

for class i and rtirepresent response time for class i.

Table 1.Estimated Storage Level Objective per user

C
la

ss
 o

f
u

se
r

IO
P

S

T
h

ro
u

g
h

p
u

t

fo
r

B
lo

ck

si
ze

 4
K

B

T
h

ro
u

g
h

p
u

t

B
lo

ck
 s

iz
e

6
4

K
B

T
h

ro
u

g
h

p
u

t

B
lo

ck
 s

iz
e

1
M

B

R
es

p
o

n
se

ti
m

e
fo

r

Q
D

3
2

Task user 5

IOPS

20kb/s 320kb/s 5000kb/s 6.4 ms

Knowledg

e user

10-20

IOPS

40-

80kbs

640-

1280kbs

10240-

20480kb/s

1.6-3.2

ms

Power

user

25

IOPS

100kb/s 1600kb/s 25000kb/s 1.3 ms

Let BR
ibe the total request bandwidth by class i based on the

SLO.

The QOS attribute rszi,IOPiand rti have got the following

relationship

𝐵𝑅
𝑖 = 𝐼𝑂𝑃𝑖 ∗ 𝑟𝑠𝑧𝑖 (5)

𝐼𝑂𝑃𝑖 =
𝑞𝑢𝑒𝑢𝑑𝑒𝑝𝑡 𝑕

𝑟𝑡 𝑖
 (6)

Therefore total bandwidth required by all the classes can be

described as

𝐵𝑇𝑅 = (𝐼𝑂𝑃𝑖 ∗ 𝑟𝑠𝑧𝑖)𝑛
𝑖=1 ∀𝑖 ∈ 𝐼 (7)

Let 𝐵𝑅𝑊
𝑖 represent the amount of bandwidth that configured for

the class i to borrow. The total bandwidth to be borrowed 𝐵𝑅𝑊
𝑇

can be described as

𝐵𝑅𝑊
𝑇 = 𝐵𝑅𝑊 ∀ 𝑖∈𝐼

𝑖𝑛
𝑖=1 (8)

We describe the total bandwidth capacity of the network as 𝐵𝐶

as

𝐵𝐶 = 𝐵𝑇𝑅 + 𝐵𝑅𝑊
𝑇 (9)

Let 𝑥𝑖 the rate assigned to class 𝑖.Then the utility rate of class 𝑖

is can be expressed as (𝑥𝑖)𝑖 which is a concave differentiable

function. This means that if we increase an allocation to a given

class it increases the total bandwidth allocate but it has no effect

to the one class that has more resources already. This

characteristic makes the utility function to be logarithmic in

nature.

The study assumes that the network has a fixed capacity and

therefore the goal is to maximize the collective utility o users in

the network subject to network capacity constraints.

Therefore from the above narrative a maximization problem is

formulated as follows

𝑚𝑎𝑥 𝑈𝑖(
𝑛
𝑖 𝑥𝑖) (10)

Subject to 𝑥𝑖
𝑛
𝑖 ≤ 𝐵𝑅𝑊

𝑇 (11)

𝑥𝑖 ≥ 0,∀𝑖 ∈ 𝐼 (12)

In the above equations (𝑥𝑖)𝑖 is the utility function of class 𝑖
at rate𝑥𝑖 .𝐼 is the set of classes of users in the network. User 𝑖 is

identified with flow rate𝑥𝑖 .𝐵𝑅𝑊
𝑇 is the total excess bandwidth

available. The study seeks to maximize to maximize the

concave objective subject to linear constraints.

Based on proportional fairness the utility function we have

 (𝑥𝑖)𝑖 = Log 𝑥𝑖 (13)

Let P be a set of priority that is P= {𝑝𝑖 ,𝑖 ∈ 𝐼}.

By introducing priority 𝑝𝑖 we have

 (𝑥𝑖)𝑖 = 𝑝𝑖Log 𝑥𝑖 (14)

Let 𝑥𝑖
∗ be the optimal rate and 𝑥𝑖 be the minimal rate.

Then for any allocation vector 𝑥𝑖 =

𝑥1

𝑥2

𝑥𝑛
 we have an

allocation equation as follows

𝑥𝑖−𝑥𝑖

∗

𝑥𝑖
∗𝑖 ≤ 0 (15)

From equation 12 we note that for any allocation the sum of

changes in the utilities will be less than zero[43]. That is if the

rate of a given class 𝑖 increases there is some rate of another

class of users that decreases. The sum of this increases and

decreases totals to a negative value[44].

If we assign the excess bandwidth based on priority

proportional fairness the corresponding inequality is as follows

 𝑝𝑖
𝑥𝑖−𝑥𝑖

∗

𝑥𝑖
∗𝑖 ≤ 0 (16)

The α(alpha) fairness is used to investigate the different fairness

criteria of max-min, minimum delay fairness and proportional

fairness. The parameter α takes values in the interval (0, ∞)[45].

We define the α fair utility function as

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

25

 (𝑥𝑖)𝑖 =
𝑝𝑖𝑥𝑖

1−𝛼

1−𝛼
 Where α≥0,α≠1

(17)

Different values of 𝛼𝑖 yield different fairness criteria

Case one of fairness we have α→1[46].

In this case maximizing the sum of

𝑥𝑖
1−𝛼−1

1−𝛼
 Provides the optimum value. (18)

The utility function for this case is

 (𝑥𝑖)𝑖 = 𝑝𝑖Log 𝑥𝑖 (19)

Case two of α fairness we have delay fairness where α=2[46].

Therefore the utility function for our case is:-

 (𝑥𝑖)𝑖 =
𝑝𝑖

𝑥𝑖
 (20)

If a class i is trying to transmit a file of size rszi and the rate

allocated to this class is 𝑥𝑖 ,then the result is
𝑟𝑠𝑧 𝑖

𝑥𝑖
 as the time

taken to transfer the file. Case three is that of 𝛼 fairness is that

of minimum maximum fairness where α→∞[47].From the three

cases of α fairness discussed above we can summarize the α

fairness as follows

 (𝑥𝑖)𝑖 =
𝑝𝑖

𝑥𝑖
1−𝛼

1−𝛼
, 𝛼 > 0, 𝛼 ≠ 1

𝑝𝑖Log 𝑥𝑖 , 𝛼 = 1

 (21)

Equation 10 represents the priority proportional fairness. From

this the study models a solution for priority based fairness

utility maximization as follows

Max 𝑝𝑖 log 𝑥𝑖+𝑝1log 𝑥1 + 𝑝2log 𝑥2 + 𝑝3log 𝑥3 (22)

Subject to

𝑥1 + 𝑥2 + 𝑥3 ≤ 𝐵𝑅𝑊
𝑇 ,𝑥1 , 𝑥2 , 𝑥3 ≥ 0 (23)

In order to solve the optimization problem, it is necessary to

find the optimal allocations𝑥1
∗,𝑥2

∗, 𝑥3
∗.To get the optimal

allocations Langrage Multiplier on equation 8 is formulated.

The variables 𝑥1 , 𝑥2, 𝑥3 are strictly positive. Again since the

theory of convex optimization holds if the complementary

slackness is satisfied, this means the Langrage multiplies to be

used has to be positive. The Langrangian multiplier in this case

is

𝐿 𝑥, 𝜆 = 𝑝1log 𝑥1 + 𝑝2log 𝑥2 + 𝑝3log 𝑥3 + 𝞴(𝐵𝑅𝑊
𝑇 − 𝑥1 −

𝑥2 − 𝑥3) (24)

𝑑𝐿

𝑑𝑥𝑖
,𝑥1 =

𝑝1

𝜆
,𝑥2 =

𝑝2

𝜆
, and 𝑥3 =

𝑝3

𝜆
 (25)

Using the constraint

𝑥1 + 𝑥2 + 𝑥3 ≤ 𝐵𝑅𝑊
𝑇 (26)

𝐵𝑅𝑊
𝑇 =

𝑝1

𝜆
+

𝑝2

𝜆
+

𝑝3

𝜆
 (27)

𝜆 =
𝑝1+𝑝2+𝑝3

𝐵𝑅𝑊
𝑇 (28)

Therefore

𝑥1
∗ =

𝑝1𝐵𝑅𝑊
𝑇

𝑝1+𝑝2+𝑝3
 (29)

𝑥2
∗ =

𝑝2𝐵𝑅𝑊
𝑇

𝑝1+𝑝2+𝑝3
 (30)

𝑥3
∗ =

𝑝3𝐵𝑅𝑊
𝑇

𝑝1+𝑝2+𝑝3
 (31)

In general

𝑥𝑖
∗ =

𝑝𝑖 𝐵𝑅𝑊
𝑖𝑛

𝑖=1

 𝑝𝑖
𝑛
𝑖

 (32)

6. PROPOSED ALGORITHM

DESCRIPTION
In this section the proposed HPDDRR which is a scheduler

shaper is described which is meant to improve on latency and

bandwidth utilization for flows.HPDDRR is a two stage

mechanism which employs a single level hierarchy to aggregate

flows into classes with similar priority and packet size. The key

idea that enables the HPDDRR to alleviate the latency problem

of DRR is the grouping of flows into classes with similar

priority and almost similar packet sizes. This is an important

since DRR is optimal when it acts with flows with similar

packet sizes. The grouping of flows is so as to balance packet

size per flow which will solve the problem of delays caused by

large packets to small packets. The proposed algorithm begins

by calculating the hit ration for each class of flows which is

used to determine the priority of the flows. The priority of the

classes is established using the equation 𝑝
𝑖=

𝑕𝑖
𝑁

 . Where hi is the

hit count of class i and N is the total number of hits.

Use of hit ratio is meant to ensure optimal utilization of

bandwidth since the flows are allocated bandwidth proportional

to their priority which is derived from their need. This reduces

the chances of idle bandwidth or under allocation. Classification

is done based on priority with flows of the same priority being

put in the same class. From the classification the flows proceed

to the shaper where packets that do conform to rates allocated

are forwarded to the scheduler while those that do not conform

are queued as they await bandwidth to be available.

During shaping, a flow is accepted if and only if the flow

capacity is less than the guaranteed rate plus borrowing rate.

Each classes/flow can be in one of the following states. Can

borrow-bandwidth is sufficient and the number of packets sent

is less than rate. May borrow-there are no tokens but it can be

borrowed from parent class and the number of packets sent is

greater than rate and less than ciel.Can‟t borrow-no bandwidth

is available for borrowing that is the capacity of packets sent

are more than ceil. Packets are classified using the u32 filter

putting them into corresponding leaf classes. Bandwidth

allocation is done using the HTB algorithim.HTB starts from

the bottom of the class tree to find the class in the can send state

until the class of the can send sate is found. If there are many

flows in the can send state the algorithm will select the high

priority classes. Each class sends its own quantum bytes by the

means of poling until it‟s in the may borrow state. When the

leaf classes is in May-borrow state it will borrow tokens from

its parent‟s class until it is in can‟t send state.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

26

To ensure the drop rates are low when bandwidth to be

borrowed is not enough the lower priority classes releases some

bandwidth at the same time ensuring that the users that releases

the bandwidth their allocations do not fall below acceptable

levels. Low priority classes are the ones that release bandwidth

to ensure the high priority classes do not suffer from quality

degradation. When there is enough free bandwidth available the

proposed scheme gives the amount close to the maxima 𝑥𝑖
∗

otherwise if the available bandwidth is lower 𝐵𝑅𝑊
𝑇 then the

bandwidth allocation adjstments will be performed and the

allocations for some low priority classes will be adjusted

downwards and allocated the bandwidth of 𝑋𝑖 .Flows are put

into priority grades based on the SLO. When there is a need free

the excess bandwidth the algorithm looks up at the low priority

classes and checks the one that has bandwidth greater than the

minima. If its finds that the current low priority class bandwidth

is greater than the maxima the look up stops and the flow

releases bandwidth to the high priority needy flow. If all the

low priority flows cannot release enough bandwidth to satisfy

the new flow, the high priority flows are queued.

A node with priority is assigned a bandwidth
𝑝𝑖 𝐵𝑅𝑊

𝑖𝑛
𝑖=1

 𝑝𝑖
𝑛
𝑖

where

𝐵𝑅𝑊
𝑖 is the total available bandwidth. The higher the priority

the more the bandwidth a flow receives.

At the scheduler the quantum for each round is calculated based

on the rates of the highest priority class. Fig 2.illustrates the

working of the proposed scheduler shaper.

Algorithim1: HPDDRR

INPUT: hi, H,𝐵
𝑇𝑅
𝑖 ,𝐵

𝑅𝑊
𝑖

OUTPUT:𝑝𝑘𝑡𝑖 ,𝑄𝑖

Qmax: the biggest quantum size Possible. (Constant integer)

Qi: Quantum the ideal rate a flow should receive in each round

service (integer)

𝐵
𝑇𝑅
𝑖 :Total available bandwidth

DCi-Deficit from the previous round (integer)

Pi: Priority of class i

𝑝𝑘𝑡𝑖 : Packet belonging to queue i

𝐵
𝑇𝑅
𝑖 : is total bandwidth allowed to class i

*
iX : is the maximum rate that a class can request

Step1: Calculate the priority

𝑝
𝑖=

𝑕𝑖
𝐻

 //𝑕𝑖 total hits for class i,H is thetotal number of hits

Step2: Aggregate traffic into queues based on size and priority

//shaping

Step 3: Shape traffic

𝐵𝑇𝑅
𝑖 = 𝑝𝑖 𝐵𝑅𝑊

𝑖
𝑛

𝑖=1

Shaping

F8p8=3

F7p7=2

F6p6=3

F5p5=2

F4p4=1

F3p3=3

F2p2=1

F0 po=1

F1p1=2

Outgoing

flows

𝑄𝑖 = 𝑝𝑖𝑄𝑀𝑎𝑥

 pi=hi/H

Incoming

flows

Cla

ssif

ica

tio

n

Scheduling

Figure 2: Architecture of the HPDDRR

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

27

For each node

If
* i
i TRX B Then

Forward packets for scheduling

Else

Queue packets (delay packets)

//scheduling

Step4: Calculate the deficit counter based on priority

DCi=0;

𝑄𝑖 = 𝑝𝑖𝑄𝑀𝑎𝑥

For each node do

While Qi>0 and queue i is not empty do

Packet size=size (head (queuei))

If packet size<=Qithen

Send (dequeue (queue i))

NQi=Qi-packet size

If packet size <=NQi then

Transmit packet and set NQi=NQi-packet size

Else

DCi=NQi

Queuei ++

End if

End if

End for

Step 5: If(empty(queuei)) then

DCi=0; repeat

The algorithm starts by shaping traffic. The maximum rate 𝑋𝑖
∗ is

the maximum allowed rate for class i. 𝐵
𝑇𝑅
𝑖 is the total

bandwidth allocated to class i.If the class rate is less than or

equal to the available bandwidth the flows are forwarded to the

scheduler otherwise they are delayed.

Next the packets arrive at the scheduler .In the scheduler there

are n queues running from 1 to n that are served in a round

robin fashion. Queue i belongs to class i.Deficit counter

DCistores bytes that a queue belonging to class i did not use in

the previous round. At the beginning the DCi is set to zero.

Quantum Qi represents the amount of capacity that each queue

can use at each round of service. Each queue i belonging to

class i has a different QOS requirement. For each queue i there

is an associated priority. The requirements of flows belonging

to a class i are established by calculating the priority i.The

priority is used as the performance measure. Based on the

priority which is dynamic, the quantum Qi is calculated using

formula

𝑄𝑖 =
𝑕 𝑖

𝐻
𝑄𝑀𝑎𝑥 and allocated to each queue based on network

statistics. 𝑄𝑚𝑎𝑥 is the maximum packet size that for any packet

in an Ethernet network.

If the quantum size Qi>= to packet size, then the packet is

transmitted, else the algorithm moves to the next queue. Once a

packet is transmitted its size in bytes is subtracted from the

quantum Qi to form NQi.If the NQi is not sufficient to transmit

the packet in the head of the queue then the NQi is stored in DCi

to be used in the next round. Then the algorithm moves to the

next round. In the end the total bandwidth receive by a queue i

is the total quanta received by the queue. That is

𝐵𝑇𝑅
𝑖 = 𝑄𝑖

𝑛
𝑖=1 (33)

The difference between DDRR and DRR is that in DDRR the

quantum is dynamic whereas in DRR the quantum is static.

7. EXPERIMENTAL SETUP
A real tested was implemented to show feasibility of the

proposed approach. The evaluation was based on three service

classes that is task users, knowledge users and super users. The

implemented tested includes five nodes three initiators, target

and a router. The router machine is equipped with two Ethernet

ports. The three initiators are hosts each running a windows

server 2016, with 4GB Ram and 26 GB target capacity. The

proposed system was evaluated in terms of throughput and

latency. Throughput was measured at the receiver‟s side. The

bandwidth is allocated based on source destination IP addresses

to assure a particular node generates traffic belonging to a

particular class therefore having the same priority[48].

Whenever a node generates a flow, a request is sent to the

router which includes required bandwidth and flow priority.

Once the request reaches the router bandwidth management and

burst handling is done based on the proposed algorithm. All

experiments were run three times and the average value

recorded.

8. RESULTS AND DISCUSSIONS
Experiments were performed to establish the performance of

HPDDRR on bandwidth management and burst handling.

Bandwidth management was implemented using the techniques

of bandwidth allocation and bandwidth borrowing. For burst

handling the technique used is traffic shaping.

6.1 Bandwidth Allocation
This experiment was performed to establish if HPDDRR is able

to enforce proportional bandwidth allocation. An essential

feature is that HPDDRR should allocate each class of users

bandwidth proportional to their share in the range [𝑋𝑖

,𝑋𝑖
∗].Three hosts running Parkdale and generating 64KB

read/writes IO sizes were used. In addition DDRR was used for

the host level scheduler. The proposed solution was run in the

router with Hosts priority given allocations based on priority pi

set according to shares 1:2:3 for Hosts 1 to 3.Tabel 2 illustrates

bandwidth utilization and latencies achieved when HPDDRR

implements strict resource allocation. Figure 3 further depicts

these results.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

28

From Figure 3 (a) it is observed that between time t=0 to t=20

all the classes of users seem hove equal utilization of bandwidth

when HPDDRR is not activated. At t=20 HPDDRR is activated

and the results shows that it takes 10 seconds for the system

converge to each class of users SLO.This convergence time is

better than that of PARDA[49] and mClock[50] of 30 seconds.

It with activation of HPDDRR that bandwidth utilized by each

class of users is proportional to the overall Pi values in

proportion to its shares. Power users received a percentage ratio

of 60% throughput, Knowledge users received an average

percentage ratio of 33% and task users attained an average

percentage ratio of 16%, each matching their 3:2:1 ratio. From

it is evidence that HPDDRR is able to maintain bandwidth

allocation in proportion to the allocations based or their priority

.Secondly it is observed that latencies achieved are consistent

with the expected relationship between bandwidth allocation

and latency. Higher bandwidth allocation results in smaller

latency[5].

Figure 3 confirms the effectiveness of HPDDRR in bandwidth

allocation where bandwidth is distributed based on priority.

These results are similar to those obtained in Solutions like

Stonehenge[49], Argon[51] and Aqua[52] support proportional

allocation where users get a disk time share proportional to their

weights.

Figure 4: (a) Bandwidth utilization adaptation (b) Latency adaptation based on the share ratio 1:2:3

Figure 3 :(a)Bandwidth Utilization and (b) Latency received for three Classes of users with 1:2:3 share ratio.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

29

Table 2: Bandwidth Utilization and Latency observed when

Strict Priority allocation is used.
Class of User % Utilization Average

Latency(MS)

Task users 16 6.2

Knowledge

users

33 3.1

Power users 60 1.2

6.2 Bandwidth Borrowing
Table 3: Bandwidth Utilization and Latency observed when

Bandwidth Sharing is implemented.

Class of User % Utilization) Average

Latency(MS)

Task users 17 5.8

Knowledge

users

37 1.8

Power users 48 0.8

In this case the experiment intended to test the HPDDRR ability

to implement bandwidth borrowing. It is expected that the

proposed algorithm needs to be aware of changing bandwidth

requirements and adopt accordingly based on priority.

Experiments were carried out using a 1: 2: 3 share ratio. The

three Hosts were used each generating a work load

corresponding to the classes of task users, knowledge user and

power users. Each host run a 64Kb random read/write IO size.

All the Hosts are started at the same time with each hosts

corresponding to power users stopped at between times t=100

to t=120 seconds. Table 3 illustrates an increase in average

bandwidth utilization for task users and knowledge users as

power users host was stopped at t=100 seconds. The same is

observed for latency as each class of user‟s experiences

decreased latency.

Between times t=0 and t=20 HPDDRR is not activated and all

users seem to utilize equal share of bandwidth as well as

experience the same latencies. However at t=20 HPDDRR is

started. Figure 4 plots the bandwidthutilization and average

latency observed by the three classes of users for a period of

200 seconds.

Note that in Figure 4, all flows get utilization proportional to

their priority form t=20 to t=100. Note that when the host for

power users was stopped at t=100 seconds, the now available

capacity is distributed in a proportional manner. Note that the

power users did not receive any extra share when restarted at

t=140 seconds since its arrival rate is the same to its SLO rate.

These results are similar to those achieved in [53] where they

were able to optimize throughput and latencies for consolidated

hosts under SLO constraints. In addition there is a clear

reduction in latency for knowledge users and task users when

the power users host was stopped. This affirms the claim by[54]

that when throughput increases latency reduces. The results in

[53][7] demonstrated the same pattern where an increase in

throughput caused a corresponding decrease in latency.

Throughput optimization in [53] was also achieved through

bandwidth borrowing so that when particular host is not using

its share, the excess bandwidth is distributed to those Hosts that

need it.This has been achieved by determining maximum

bandwidth distribution based on demands. Optimization of

bandwidth usage increases the throughput as it reduces the

latency. Similar patterns were observed in results obtained in

[7]

In conclusion of this section it is noted that latency can be

reduced by managing bandwidth for each class of users, an

observation supported by results obtained in[5][55].It also

observed that with HPDDRR it takes 10 seconds to converge

after power users host was stopped and then started . The

convergence time is better than that obtained in PARDA[56]

where the convergence time was 30 seconds. The results

obtained in this section demonstrate the HPDDRR algorithm

capability of supporting bandwidth borrowing as a feature of

supporting bandwidth management in IP SANs.

6.3 Handling Bursts
Table 4: Throughput and Latency observed when Priority

based Burst Handling is Implemented.

Class of

User

Average

Throughput(KB/s)

Average

Latency(MS)

Task users 21223 6.1

Knowledge

users

4500 3.4

Power users 25135 1.3

As mentioned earlier storage traffic is busty in nature due to

application characteristics among other factors discussed in

section 4 of this paper. This bursty nature of IO workload

makes it difficult to implement proportionate bandwidth

allocation as well as low latency. Experiments were run to

establish how HPDDRR behaves when we have large bursts‟

busty arrival scenario is simulated when a class cases tries to

send more that allowed burst value. A busty flow is most likely

to miss deadline due to high delays. It is expected that the

algorithm should be able to absorb bursts for other flows that

send bursts equal or less than the allowed value. Solutions like

PARDA[49] and mClock[50] use the idle credits to handle

bursts. The flow with the greatest idle value is given the

preference. Contrary to that, HPDDRR uses priority Pito

allocated idle bandwidthfor handling bursts. This ensures the

high priority traffic always gets best of service

In the experiments three Hosts each running windows server

2016 configured with a 26GB data disk were used. Each host

run a 1MB read/write workload. A 1MB IO size was used so as

to generate more traffic compared to 64KB used in the previous

experiments of this paper.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

30

To test how the system handles bursts, the following SLO

parameters were used;

<IMB,25000KB/s,1.4MS>,<IMB,20000KB/s,2.4MS>,<IMB,50

00KB/s,6.4MS>,for power users, knowledge users and super

users respectively. Figure 5 plots the results for 200 seconds.

Table 4 illustrates the bandwidth and latencies attained when

doing burst handling.

From Figure5 demonstrates how the system behaves before

HPDDRR is enabled and after it is enabled. It also

demonstrated how the system adapts when HPDDRR is enabled

to adhere to each class of users as specified in Table 1.From

Figure 5 it is noted that for the first 20 seconds knowledge users

send bursts of 1200 KB every 5 seconds. This is seen to reduce

the throughput of task users and powers users as well as

increase their latency. In this case all the class of users SLO is

violated. At t=20 HPDDRR is enabled and takes 10 seconds to

converge to the SLO.This convergence time is better than that

of PARDA[49] and mClock[54] of 30 seconds. At t=60 the

knowledge users send again send spikes of 1200KB/s each 5

seconds however this time other users are not affected. This can

be attributed to the capability of HPDDRR to shape traffic. At

t=140 both power users and knowledge users send spikes of

2000KB every five seconds. However it is evident that the

throughput for power user‟s increases but the latency does not

unlike for knowledge users. This is due to the fact that

HPDDRR uses priority to assign extra bandwidth for handling

bursts unlike the knowledge users whose latency increase

significantly due to lack of extra bandwidth for handling bursts

which has been allocated to power users who have higher

priority. This phenomena proves that HPDDRR uses priority to

handled bursts. High priority flows will be given priority when

it comes to allocation of spare bandwidth required for

transmitting bursts of traffic.

From Figure 5 it is further evident that HPDDRR is able to

absorb burst if the burst value is not higher that the burst size

parameter and therefore able to handle burst for well behaving

flows. These results are similar to those achieved in

[54][25][24] where the authors were able to guarantee latencies

based on SLO by shaping workloads. This was made possible

by ensuring bursty and non-busty flows are smoothed in order

to avoid head of line congestion.

9. CONCLUSION AND FUTURE WORK
In this paper the problem of bandwidth management and traffic

shaping was studied. The paper proposes HPDDRR which uses

hierarchical structure and a dynamic quantum to increase

bandwidth utilization as well as reduce latencies experienced by

flows in IP SANs.

Evaluation done on HPDDRR shows that it is able to provide

proportional allocation of bandwidth to classes of users based

on priority and adopt the utilization experienced by traffic

classes of users based on network conditions .HPDDRR has

also been proven through experiments that it is able to absorb

bursts from classes of user‟s flows.

A hierarchical shaper can support more precise scheduling for

the high rate traffic, this can significantly reduce cell shaping

and jitter relative to existing approaches. With the hierarchical

structure the sorting granularity for connection is reduced due to

grouping. This reduces the implementation overhead and

interference between competing connections.

As future work the research would like to test the performance

of HPDDRR on non-storage systems.

10. ACKNOWLEDGMENTS
Special thanks goes to my supervisors Dr. Stephen Mutua and

Dr. David Mwathi for their invaluable counsel during the entire

research.

11. REFERENCES
[1] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage:

Performance Differentiation for Storage Systems Using

Adaptive Control,” ACM Trans. Storage, vol. 1, no. 4, pp.

457–480, 2005.

[2] X. Xuedong, “Research and Implementation of iSCSI-

based SAN Static Data Encryption System,” pp. 257–260,

2012.

Figure5:(a)Knowledge users sends burst more than allowed values Power users and Task users send bursts

equivalent to allowed value(b) Knowledge users don’t meet the deadline whereas power and task users meet the

deadlines.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

31

[3] M. A. L. I. Imran, “Incast Mitigation in a Data Center

Storage Cluster Through a Dynamic Fair-Share Buffer

Policy,” IEEE Access, vol. 7, pp. 10718–10733, 2019.

[4] M. B. P. Martins and W. L. Zucch, “FCo oE an d iSC SI

Per rforma ance Analys sis in T Tape irtualiz zation n

Syste ems,” vol. 13, no. 7, pp. 2372–2378, 2015.

[5] Y. Cui et al., “TailCutter: Wisely cutting tail latency in

cloud CDNs under cost constraints,” IEEE/ACM Trans.

Netw., vol. 27, no. 4, pp. 1612–1628, 2019.

[6] V. Jaiman, S. Ben Mokhtar, V. Quéma, L. Y. Chen, and E.

Rivière, “Héron: Taming tail latencies in key-value stores

under heterogeneous workloads,” Proc. IEEE Symp.

Reliab. Distrib. Syst., vol. 2019-Octob, pp. 191–200, 2019.

[7] Y. Peng and P. Varman, “BQueue: A coarse-grained

bucket QoS scheduler,” Proc. - 18th IEEE/ACM Int.

Symp. Clust. Cloud Grid Comput. CCGRID 2018, pp. 93–

102, 2018.

[8] Y. Lu, D. H. C. Du, and T. Ruwart, “QoS provisioning

framework for an OSD-based storage system,” Proc. -

Twenty -second IEEE/Thirteenth NASA Goddard Conf.

Mass Storage Syst. Technol., pp. 28–35, 2005.

[9] S. Sarmah and S. K. Sarma, “A Novel Approach to

Prioritized Bandwidth Management in 802.11e WLAN,”

2019 IEEE 5th Int. Conf. Converg. Technol. I2CT 2019,

pp. 1–5, 2019.

[10] J. L. Valenzuela, A. Monleon, I. San Esteban, M. Portoles,

and O. Salient, “A hierarchical token bucket algorithm to

enhance QoS in IEEE 802.11:Proposal, implementation

and evaluation,” IEEE Veh. Technol. Conf., vol. 60, no. 4,

pp. 2659–2662, 2004.

[11] D. Iswadi, R. Adriman, and R. Munadi, “Adaptive

Switching PCQ-HTB Algorithms for Bandwidth

Management in RouterOS,” Proc. Cybern. 2019 - 2019

IEEE Int. Conf. Cybern. Comput. Intell. Towar. a Smart

Human-Centered Cyber World, pp. 61–65, 2019.

[12] Garroppo, Rosario Giuseppe, et al. "The wireless

hierarchical token bucket: a channel aware scheduler for

802.11 networks." Sixth IEEE International Symposium on

a World of Wireless Mobile and Multimedia Networks.

IEEE, 2005.

[13] Y. Wang, F. Xu, Z. Chen, Y. Sun, and H. Zhang, “An

Application-Level QoS Control Method Based on Local

Bandwidth Scheduling,” vol. 2018, pp. 1–10, 2018.

[14] Z. Zhou, Y. Yan, M. Berger, and S. Ruepp, “Analysis and

Modeling of Asynchronous TrafficShaping in Time

Sensitive Networks,” 2018 14th IEEE Int. Work. Fact.

Commun. Syst., pp. 1–4, 2018.

[15] C. H. Lee and Y. T. Kim, “QoS-aware hierarchical token

bucket (QHTB) queuing disciplines for QoS-guaranteed

Diffserv provisioning with optimized bandwidth utilization

and priority-based preemption,” Int. Conf. Inf. Netw., pp.

351–358, 2013.

[16] W. M. Zuberek and D. Strzeciwilk, “Modeling Traffic

Shaping and Traffic Policing in Packet-Switched

Networks,” vol. 6, no. 2, pp. 75–81, 2018.

[17] A. Elgabli, A. Elghariani, V. Aggarwal, and M. Bell,

“QoE-Aware Resource Allocation for Small Cells,” 2018

IEEE Glob. Commun. Conf., pp. 1–6, 2018.

[18] B. Wu, B. Wu, H. Yin, A. Liu, C. Liu, and F. Xing,

“Investigation and System Implementation of Flexible

Bandwidth Switching for a Software-Defined Space

Information Network,” IEEE Photonics J., vol. 9, no. 3, pp.

1–14, 2017.

[19] M. Song, “Minimizing Power Consumption in Video

Servers by the Combined Use of Solid-State Disks and

Multi-Speed Disks,” IEEE Access, vol. 6, pp. 25737–

25746, 2018.

[20] H. Guo, “A Dynamic and Adaptive Bandwidth

Management Scheme for QoS Support in Wireless

Multimedia Networks,” vol. 00, no. c, 2005.

[21] P. Ramaswamy, “PROVISIONING TASK BASED

SYMMETRIC QoS IN iSCSI SAN,” no. December, 2008.

[22] F. Uff, “A Lightweight Reinforcement-Learning-Based

Multitenant Data Center,” pp. 331–336, 2020.

[23] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, and

T. P. L. Ý, “Performance virtualization for large-scale

storage systems,” 2003.

[24] Y. Peng and P. Varman, “PTrans: A Scalable Algorithm

for Reservation Guarantees in Distributed Systems,” Annu.

ACM Symp. Parallelism Algorithms Archit., pp. 441–452,

2020.

[25] Y. Peng, Q. Liu, and P. Varman, “Scalable QoS for

Distributed Storage Clusters using Dynamic Token

Allocation,” IEEE Symp. Mass Storage Syst. Technol.,

vol. 2019-May, pp. 14–27, 2019.

[26] E. Micha and N. Shah, “Proportionally fair clustering

revisited,” Leibniz Int. Proc. Informatics, LIPIcs, vol. 168,

2020.

[27] B. Siregar, A. Fadli, and A. Hizriadi, “Controlling of

Quality of Service in Campus Area Network Using

OpenDaylight with Hierarchical Token Bucket Method,”

7th Int. Conf. ICT Smart Soc. AIoT Smart Soc. ICISS

2020 - Proceeding, pp. 8–12, 2020.

[28] D. Iswadi, R. Adriman, and R. Munadi, “Adaptive

Switching PCQ-HTB Algorithms for Bandwidth

Management in RouterOS,” Proc. Cybern. 2019 - 2019

IEEE Int. Conf. Cybern. Comput. Intell. Towar. a Smart

Human-Centered Cyber World, pp. 61–65, 2019.

[29] K. Mathews, C. Kramer, and R. Gotzhein, “Token bucket

based traffic shaping and monitoring for WLAN-based

control systems,” IEEE Int. Symp. Pers. Indoor Mob.

Radio Commun. PIMRC, vol. 2017-Octob, pp. 1–7, 2018.

[30] D. Iswadi, “Adaptive Switching PCQ-HTB Algorithms for

Bandwidth Management in RouterOS,” pp. 61–65, 2019.

[31] Y. Qian et al., “A configurable rule based classful token

bucket filter network request scheduler for the lustre file

system,” Proc. Int. Conf. High Perform. Comput.

Networking, Storage Anal. SC 2017, 2017.

[32] Sarmah, Satyajit, and Shikhar Kumar Sarma. "A novel

approach to prioritized bandwidth management in 802.11 e

WLAN." 2019 IEEE 5th International Conference for

Convergence in Technology (I2CT). IEEE, 2019.

[33] S. Ren, Q. Feng, and W. Dou, “An end-to-end qos routing

on software defined network based on hierarchical token

bucket queuing discipline,” ACM Int. Conf. Proceeding

Ser., vol. Part F1287, pp. 0–4, 2017.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 36, November 2021

32

[34] B. Siregar, A. Fadli, and A. Hizriadi, “Controlling of

Quality of Service in Campus Area Network Using

OpenDaylight with Hierarchical Token Bucket Method,”

7th Int. Conf. ICT Smart Soc. AIoT Smart Soc. ICISS

2020 - Proceeding, pp. 1–5, 2020.

[35] W. Aljoby, X. Wang, T. Z. J. Fu, and R. T. B. Ma, “On

SDN-enabled online and dynamic bandwidth allocation for

stream analytics,” arXiv, vol. 37, no. 8, pp. 1688–1702,

2018.

[36] Valenzuela, Jose Luis, et al. "A hierarchical token bucket

algorithm to enhance QoS in IEEE 802.11: proposal,

implementation and evaluation." IEEE 60th Vehicular

Technology Conference, 2004. VTC2004-Fall. 2004. Vol.

4. IEEE, 2004.

[37] S. Ren, “A Service Curve of Hierarchical Token Bucket

Queue Discipline on Soft-Ware Defined Networks Based

on Deterministic Network Calculus: An Analysis and

Simulation,” J. Adv. Comput. Networks, vol. 5, no. 1, pp.

8–12, 2017.

[38] A. N. Sanyoto, D. Perdana, and G. Bisono, “Performance

Evaluation of Round Robin and Proportional Fair

Scheduling Algorithm on 5G Milimeter Wave Network for

Node Density Scenarios,” Int. J. Simul. Syst. Sci.

Technol., pp. 1–6, 2019.

[39] A. B. Mathews and G. Glandevadhas, “Improved

Proportional Fair Algorithm for Transportation of 5G

Signals in Internet of Medical Things,” Int. J. Innov.

Technol. Explor. Eng., vol. 9, no. 2, pp. 1810–1814, 2020.

[40] M. Saunders, P. Lewis, and A. Thornhill, Research for

business students fifth edition,Pearson Education,2009. .

[41] Greener S. Business Research Methods.[e-book] Dr. Sue

Greener and Ventus Publishing ApS. Available through:<

http://www. bookbon. com>[Accessed 9 May 2011]. 2008.

[42] Winterton J. Business Research Methods ALAN

BRYMAN and EMMA BELL. Oxford: Oxford University

Press, 2007. xxxii+ 786 pp.£ 34.99 (pbk). ISBN

9780199284986. Management Learning. 2008

Nov;39(5):628-32.

[43] I. Guo, N. Langrené, G. Loeper, and W. Ning, “Robust

utility maximization under model uncertainty via a

penalization approach,” Math. Financ. Econ., no. 2013, pp.

1–33, 2021.

[44] L. Vigneri, G. Paschos, and P. Mertikopoulos, “Large-

Scale Network Utility Maximization: Countering

Exponential Growth with Exponentiated Gradients,” Proc.

- IEEE INFOCOM, vol. 2019-April, pp. 1630–1638, 2019.

[45] Y. Wang, W. Wang, Y. Cui, K. G. Shin, and Z. Zhang,

“Distributed Packet Forwarding and Caching Based on

Stochastic Network Utility Maximization,” IEEE/ACM

Trans. Netw., vol. 26, no. 3, pp. 1264–1277, 2018.

[46] F. Zhang, R. Deng, and H. Liang, “An Optimal Real-Time

Distributed Algorithm for Utility Maximization of Mobile

Ad Hoc Cloud,” IEEE Commun. Lett., vol. 22, no. 4, pp.

824–827, 2018.

[47] L. Gu et al., “Fairness-Aware Dynamic Rate Control and

Flow Scheduling for Network Utility Maximization in

Network Service Chain,” IEEE J. Sel. Areas Commun.,

vol. 37, no. 5, pp. 1059–1071, 2019.

[48] L. Leonardi, L. Lo Bello, and S. Aglianò, “Priority-based

bandwidth management in virtualized software-defined

networks,” Electron., vol. 9, no. 6, pp. 1–21, 2020.

[49] A. Gulati, G. Shanmuganathan, X. Zhang, and P. Varman,

“Demand based hierarchical QoS using storage resource

pools,” Proc. 2012 USENIX Annu. Tech. Conf. USENIX

ATC 2012, pp. 1–13, 2019.

[50] J, Lee E, Noh SH. I/O Schedulers for Proportionality and

Stability on Flash-Based SSDs in Multi-Tenant

Environments. IEEE Access. 2019 Dec 30;8:4451-65.

[51] Wachs, Matthew, Michael Abd-El-Malek, Eno Thereska,

and Gregory R. Ganger. "Argon: Performance Insulation

for Shared Storage Servers." In FAST, vol. 7, pp. 5-5.

2007.

[52] Wu, Joel C., and Scott A. Brandt. "The design and

implementation of AQuA: an adaptive quality of service

aware object-based storage device." In Proceedings of the

23rd IEEE/14th NASA Goddard Conference on Mass

Storage Systems and Technologies, pp. 209-218. 2006.

[53] Li N, Jiang H, Feng D, Shi Z. Pslo: Enforcing the xth

percentile latency and throughput slos for consolidated vm

storage. InProceedings of the Eleventh European

Conference on Computer Systems 2016,pp. 1-14.

[54] Y. Peng, “Latency Fairness Scheduling for Shared Storage

Systems,” 2019 IEEE Int. Conf. Networking, Archit.

Storage, pp. 1–8.

[55] Wong, Theodore M., Richard A. Golding, Caixue Lin, and

Ralph A. Becker-Szendy. "Zygaria: Storage performance

as a managed resource." In 12th IEEE Real-Time and

Embedded Technology and Applications Symposium

(RTAS'06), pp. 125-134. IEEE, 2006.

[56] Gulati, Ajay, Irfan Ahmad, and Carl A. Waldspurger.

"PARDA: Proportional Allocation of Resources for

Distributed Storage Access." FAST. Vol. 9. 2009.

IJCATM : www.ijcaonline.org

