
International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 36, November 2021 

47 

Modern Computer Architecture using different 

Technique 

Jay Pankajkumar Kania 
Surat, Gujarat, 

India

 

 

ABSTRACT 

Computer architecture has been and will always significantly 

influenced by the underlying trends and capability of 

hardware and software technologies. Current computer 

architecture research maintains a bias for the past in focuses to 

desktop and server application. A distinct computer area, 

personal mobile computing, will, in my opinion, play a major 

role in propelling technology in the coming decade. This area 

will have its own set of needs for microprocessors, which may 

shift the focus of computer architecture. The evolution of 

computer architecture from electromechanical relays through 

vacuum tubes to transistors to integrated circuits has resulted 

in fundamentally different trade-offs. Additional software 

advancements include the shift in programming paradigms 

from machine code to assembly language to high-level 

procedural language to object-oriented language. The impact 

on these technology on computer system architecture in past 

and in future will be explored and projected in future. 

General Terms 

Computer Architecture 

Keywords 

Computer Architecture, Computer Organization, Processor 

Architectures, 64-bit Architecture, x86 Architecture, 

Computer Memory Architecture: UMA, NUMA, NORMA, 

HyperTransport (HT) 

1. INTRODUCTION 
We In the nearly 65 years after the first general-purpose 

electronic computer was built, computer technology has 

advanced tremendously. A mobile computer nowadays may 

be purchased for less than $500 and has more performance, 

main memory, and disc storage than a computer purchased for 

$1 million in 1985. This fast advancement is due to 

advancements in computer manufacturing technologies as 

well as breakthroughs in software development. 

Themost common form of computer architecture is von 

Neumann architecture, which is still in use today. John von 

Neumann, a mathematician, suggested this in 1945. It defines 

the arithmetic logic unit, control unit, registers, data and 

instruction memory, an input/output interface, and external 

storage functions of an electronic computer with its CPU.As a 

consequence, computer architecture guides the design of a 

computer and specifies the logical interface that programming 

languages and compilers target.[1] 

Themix of functional units that make up the system, as well as 

the structure of their interconnection, are determined by the 

organization density and speed of digital switches, as well as 

the density and access time of digital storage, are essential 

hardware technologies that influence computer systems. 

Thedesign of the building Semantics refers to the meaning of 

what systems do when they are directed by users, as well as 

how their functional components are coordinated to operate 

together. The system's instruction set architecture (ISA) is an 

essential manifestation of semantics. The ISA is a logical 

(typically binary) representational encoding of the 

fundamental set of different operations that a computer 

architecture may do, and it is used to determine whether a 

computer architecture is capable of performing those 

operations. There are different type of architecture System 

Design, Instruction Set Architecture and Microarchitecture. 

TheProcessors are the most important part of the computer 

architecture systems as it is a component which everything is 

centered around. A processor is an electronic part of device 

which is capable of manipulating the data in a specified way 

by the sequence of instructions which are also known as the 

Machine Codes. The Sequence of instructions may be altered 

to suit the application and computers are programmable. 

Various computer architecture designs have been created to 

accelerate data flow, allowing for more data processing. The 

CPU is at the center of the basic design, with a primary 

memory and an input/output system on each side of the CPU. 

Almost all architectures define fundamental instructions that 

operate on memory or registers, such as add, subtract, and 

branch.[1] 

Theconcept of embedded systems and the different processors 

designs can be known with the help of the ARM Architecture 

concept used for the understanding of the computer systems 

works with different operating systems. Many things depend 

on Computer Architecture and Organization understanding 

like performance analysis, practical software, parallel 

software, embedded systems, game programming, databases, 

accelerators, GPGPU computing, compiler optimization. 

ThisPaper is branched into various parts to explain the process 

and the architecture of the computer systems along with the 

different methodologies and the synopsis and conclusions 

shows the future of computer operating systems. 

2. RELATED WORK 

All Energy dissipation is quickly becoming a major design 

consideration in current microprocessors. Microprocessors 

with a few million transistors and tens of watts of power 

dissipation are common, restricting their utility in portable 

applications and making heat removal in dense structures 

challenging. The portable device market is growing, as is the 

number of gadgets available. 

Developers create generic embedded systems as off-the-shelf 

(OTS) components that can be used in a variety of smart 

products. These designs must integrate both generality and 

completeness due to the unknown nature of their applications. 

In terms of structure and functionality, specialization entails 

departures from both of these qualities. An application-



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 36, November 2021 

48 

specific system or a procedure is the product of extreme 

specialization.[2] 

In spite of the fact that there have been exploratory computer 

architectures, the von Neumann design proceeds to be the 

common engineering for computers. It is critical that in a field 

where innovative changes are so quick that the general 

computer engineering is essentially unaltered since 

1951.Today‘s CISC and RISC designs are consistent with the 

wide characteristics that characterize a von Neumann 

computer. 

Computer architectures describe the methods of 

interconnection for a computer's hardware parts, as well as the 

manner of information flow and process shown. Various 

computer design configurations are being created to speed up 

the transfer of information, allowing for more processing. The 

central processor is at the centre of the basic architecture, with 

a primary memory and an input/output system on each side of 

the central processor. In the future, low-density construction 

will be promoted. Various alternative computing structures 

are projected. Brownian computers enable the flight of 

element particles to follow a stochastic process through the 

device, the speed of computation (and dissipation) being 

proportional to the gradient of Associate in Nursing applied 

force.[3] 

The program in programming language adheres to the one-

line principle for a single command. every instruction will 

incorporate many elements (fields), specifically the Label 

half, the mnemonic half, the quantity half which might be 

over one and therefore the last half is that the comment 

section.To tell apart every of those elements, The subsequent 

partial provisions area unit made:[3] 

 

1. Each half is separated by an area or TAB, particularly for 

quantity‘s that area unit over one each operand separated 

by commas. 

2. These elements don't need to all get on a line, if there's 

one half that's not there, then a space or TAB as a section 

extractor should still be written. 

3. The label half is written ranging from the primary letter 

of the road, if the road doesn't contain label, then the 

label is replaced with an area or TAB, that is, as an 

extractor between the label half and therefore the 

mnemotechnical half. 

 

The label represents the program-memory number of the 

instruction on the corresponding line. At the time of writing 

the JUMP instruction, this label is written in the operand to 

indicate the designated program-memory number. As a result, 

the Label always reflects the program memory number and 

must appear at the start of the instruction line. Besides Label, 

there is also a symbol, which is a name to represent a 

particular value and the value represented can be anything, not 

necessarily a program-memory number. 

Symbol is written in the same way as Label, it must start at 

the first letter of the instruction line. Mnemonic (meaning 

something that is easy to remember) is a command 

abbreviation, there are two kinds of mnemonics, namely 

mnemonics which are used as instructions to control the 

processor, for example ADD, MOV, DJNZ and so on. There 

is also a mnemonic that is used to regulate the work of the 

Assembler program, for example ORG, EQU or DB, the 

mnemonic to regulate the work of the Assembler program is 

called an ‗Assembler Directive‘. 

The operand is the part that lies behind the mnemonic part, 

which is a trap for the mnemonic. If an instruction is likened 

to a command sentence, then the mnemonic is the subject 

(verb)and the operand is the object (noun) of the command 

sentence. Depending on the type of instruction, the operand 

can be any number of things. In the JUMP instruction.[4] 

The operand is in the form of a label representing the memory 

number of the intended program, for example Start, in 

instructions for data transfer / processing, the operand can be 

a symbol that represents the data, for example ADD A, # 

Offset Many instructions whose operands are registers of the 

processor, for example MOV A, R1. There are even 

instructions that don‘t have an operand, for example, RET. 

Comments are part that just as a note, do not affect the 

processor nor affect the work of the Assembler program, but 

this section is very important for documentation purposes. 

3. METHODOLGY 

3.1 Computing Systems Architecture 

A computer system is essentially a machine that automates 

complex operations. It should maximize performance and 

reduce costs also as power consumption. The different 

components within the computing system Architecture are 

Input Unit, Output Unit, Storage Unit, Arithmetic Logic Unit, 

Control Unit etc. 

A microprocessor may be a processor implemented (usually) 

on one, microcircuit. With the exception of certain big 

supercomputers, virtually all current processors are 

microprocessors, and the two names are frequently used 

interchangeably. Common microprocessors in use today are 

the Intel Pentium series, Freescale/IBM PowerPC, MIPS, 

ARM, and therefore the Sun SPARC, among others. A 

microprocessor is usually also referred to as a CPU (Central 

Processing Unit). 

Microcontrollers are integrated circuits with a CPU, memory, 

and specific I/O devices that are designed for use in embedded 

systems. Buses that are part of the same integrated circuit link 

the CPU and its I/O. Microcontrollers are available in a broad 

range of sizes and forms. [5] 

They vary from the tiniest PICs and AVRs to integrated 

PowerPC processors with built-in I/O.[5] 

The data is sent from the input unit to the ALU. The 

calculated data also flows from the ALU to the output unit. 

Data is continually sent from the storage unit to the ALU and 

back. All of the other components, as well as their data, are 

controlled by the control unit. 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 36, November 2021 

49 

 

Figure 1: Block diagram of a basic uniprocessor CPU 

Details about all the computer system units are –[6] 

3.1.1 Input Unit 

The input unit provides data to the pc system from the surface. 

So, basically it links the external environment with the pc. It 

receives data from input devices, transforms it to machine 

language, and feeds it into the computer system. The most 

popular input devices include keyboards, mice. 

3.1.2 Output Unit 

The output unit displays the outcomes of computer processes 

to users, i.e., it connects the computer to the outside world. 

The majority of the output data is in the form of audio or 

video. Monitors, printers, speakers, and headphones are 

examples of output devices. 

3.1.3 Storage Unit 

A storage unit is a collection of computer components that are 

used to store data. It has historically been split into two 

categories: primary storage and secondary storage. Primary 

storage, often known as main memory, is the memory that the 

CPU has direct access to. The CPU does not have direct 

access to secondary or external storage. Before the CPU may 

use data from auxiliary storage, it must be transferred to the 

first storage. Secondary storage retains an enormous quantity 

of knowledge indefinitely. 

3.1.4 Arithmetic Logic Unit 

The arithmetic logic unit performs all computations connected 

with the computer system. It is capable of performing 

operations such as addition, subtraction, multiplication, and 

division. When computations must be done, the control unit 

transmits data from the storage unit to the arithmetic logic 

unit. The central processing unit is made up of the arithmetic 

logic unit and therefore the control unit. 

3.1.5 Control Unit 

This unit, which controls all of the opposing units of the 

computer system, is known as the ―central systema 

nervosum”. It moves data across the computer as needed, 

including from the storage unit to the central processor unit 

and vice versa. 

The control unit also specifies how the memory, 

input/output devices, and arithmetic logic unit should 

operate. 

3.2 Conversionof High-level Language to 

Machine Code 

The procedures for converting a program from a high-level 

language to machine code and then running it. A compiler 

initially converts the high-level code to assembly code. The 

assembler translates assembly code to machine code and 

stores it in an object file. 

 

Figure 2: High level code flow diagram 

To create a full executable program, the linker mixes machine 

code with code from libraries and other files, determining the 

correct branch addresses and variable locations. Most 

compilers, in practice, complete all three phases of 

compilation, assembly, and linking. Finally, the program is 

loaded into memory and executed by the loader.[7] 

 

4. ARCHITECTURE (64-BIT) 

A 32-bit architecture allows an application to access up to 232 

bytes (4 GB) of memory directly. The shift to 64-bit 

architectures, which can access huge quantities of memory, 

was spearheaded by large computer servers. Eventually came 

personal computers, and then mobile gadgets. 64-bit 

architectures can also be quicker in some cases since they can 

transfer more data with a single instruction. 

Many architectures merely increased the size of their general-

purpose registers from 32 to 64 bits, but ARMv8 added a new 

instruction set to help with peculiarities. For complicated 

applications, the traditional instruction set lacks adequate 

general-purpose registers, necessitating expensive data 

transfer between registers and memory.Keeping the PC in 

R15 and the SP in R13 makes the processor implementation 

more difficult, because applications frequently require a 

register with the value 0.[8] 

The ARMv8 instructions are still 32 bits long, and the 

instruction set resembles that of ARMv7, albeit with a few 

flaws fixed. The register file in ARMv8 has been increased to 

31 64-bit registers (named X0–X30), and the PC and SP are 

no longer included in the general-purpose registers. The link 

register is designated by the number X30. 

It's worth noting that there is no X31 register; instead, the zero 

register (ZR) is hardwired to 0. Loads and stores always 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 36, November 2021 

50 

utilize 64-bit addresses, but data-processing instructions can 

work with 32-bit or 64-bit values. The condition field is 

deleted from most instructions to create way for the additional 

bits used to define source and destination registers. 

Branches, on the other hand, can still be conditional. ARMv8 

significantly improves exception handling, increases the 

amount of advanced SIMD registers, and includes 

cryptographic instructions for AES and SHA. The instruction 

encodings are complicated and do not fit neatly into a few 

categories. 

ARMv8 processors start up in 64-bit mode after a reset. By 

changing a bit in a system register and raising an exception, 

the CPU can switch to 32-bit mode. When the exception is 

thrown, it switches back to 64-bit mode.[9] 

Some 64-bit architectures, like x86-64, have more general-

purpose registers than 32-bit ones (although this is not due 

specifically to the word length). Because the processor does 

not have to acquire data from the cache or main memory if the 

data can fit in the available registers, tight loops can run much 

faster. 

64-bit Architecture high level code example: 

int a, b, c, d, e; 

for (a = 0; a < 100; a++) 

{ 

    b = a; 

    c = b; 

    d = c; 

    e = d; 

} 

If a processor can only retain two or three values or variables 

in registers, it will have to transfer some data between 

memory and registers to process variables d and e as well; this 

is a time-consuming operation. A processor with enough 

registers to retain all values and variables can loop over them 

without having to transfer data between registers and memory 

for each iteration. 

The major drawback of 64-bit architectures is that the same 

data takes up more memory space in comparison to 32-bit 

systems (due to longer pointers and possibly other types, and 

alignment padding). This raises a process's memory needs, 

which might have an impact on how efficiently the processor 

cache is used. 

One approach to deal with this is to keep a partly 32-bit 

model, which is often effective. The z/OS operating system, 

for example, follows this strategy by forcing program code to 

be stored in 31-bit address spaces (the high order bit is not 

utilized in address computation on the underlying hardware 

platform), whereas data objects can be stored in 64-bit areas. 

ARMv8 processors start up in 64-bit mode after a reset. By 

changing a bit in a system register and raising an exception, 

the CPU can switch to 32-bit mode. When the exception is 

thrown, it switches back to 64-bit mode. 

5. X86 ARCHITECTURE 

x86 architecture microprocessors are used in almost all 

personal computers nowadays. x86, often known as IA-32, is 

a 32-bit architecture created by Intel. AMD also sells 

microprocessors that are compatible with the x86 architecture. 

The x86 architecture has a complicated history that dates back 

to 1978, when Intel released the 16-bit 8086 CPU. For IBM's 

initial personal computers, the 8086 and its cousin, the 8088, 

were chosen. Intel released the 32-bit 80386 microprocessor 

in 1985, which was backward compatible with the 8086, 

allowing it to execute software designed for older PCs. x86 

processors are CPU architectures that are compatible with the 

80386. x86 processors such as the Pentium, Core, and Athlon 

are well-known. 

Over the years, several departments at Intel and AMD have 

crammed more instructions and capabilities into the outdated 

architecture. The end product is considerably less attractive 

than ARM. However, because software compatibility trumps 

technological beauty, x86 has been the de facto PC standard 

for more than two decades. Every year, over 100 million x86 

processors are sold. This massive market supports more than 

$5 billion in annual research and development to keep the 

processors developing. 

A Complex Instruction Set Computer (CISC) architecture is 

exemplified by the x86 architecture. Unlike RISC systems 

like ARM, each CISC instruction may perform more work. 

CISC architectures often require fewer instructions in 

program. 

When RAM was much more costly than it is now, the 

instruction encodings were chosen to be more compact in 

order to preserve memory; instructions are varying in length 

and are frequently fewer than 32 bits. Complicated 

instructions are more complex to decipher and execute at a 

slower rate as a result. 

 

Figure 3: x86 Architecture[10] 

The x86 architecture is discussed in this section. The objective 

isn't to turn you become an x86 assembly language 

programmer, but to highlight some of the parallels and 

differences between the two architectures. 

6. ALGORITHMIC PARALLELISM 

Task/process parallelism can boost a computer's throughput 

by allowing more tasks/processes to be performed in the same 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 36, November 2021 

51 

amount of time. Algorithmic parallelism aims to reduce the 

time it takes to solve a single issue or job, yet it may actually 

reduce throughput. Algorithmic parallelism entails revisiting 

the underlying methods used to solve a problem on a 

computer in order to devise a new technique that can be 

efficiently divided across multiple separate processors to work 

on the problem simultaneously. 

The degree of sharing necessary between processors is the 

basic limit of parallelism and scalability. Sharing can occur at 

the instruction, data, or I/O levels. Sharing can also occur in 

actual implementations because buses, cache lines, or other 

implementation artefacts are shared across processors but are 

not sharing limitations imposed by the algorithms.[11] 

7. COMPUTER MEMORY 

ARCHITECTURE 

Three techniques are being used in computer system design to 

decrease the amount of sharing at the hardware level while 

still providing an efficient environment for the present state of 

the art in applications and operating systems. Uniform 

memory access (UMA), non-uniform memory access 

(NUMA), and no remote memory access (NoRMA) are the 

names given to these three types of multiprocessors. 

7.1 Uniform Memory Access 

This is the sharing paradigm used by the majority of 

commercially successful symmetric multiprocessors (SMPs). 

They are distinguished by all processors having equal access 

to all memory and I/O. They generally run a single copy of 

the operating system that has been modified to utilize 

parallelism and to offer users and all uniprocessor program 

the impression of a uniprocessor. 

While UMA MP technology is fairly established, it does have 

certain limitations when it comes to using algorithmic 

parallelism. Because memory, I/O, and OS are all shared by 

all CPUs, there is a large degree of implicit sharing, limiting 

the scalability of these systems. This issue simply worsens 

when the speed of each individual CPU increases. Additional 

hardware improvements will be made to speed up instances 

when the algorithms themselves need sharing. Despite these 

heroic attempts, the scalability limit of UMA systems will 

remain in the low double digits.[13] 

UMA MP systems suffer from system dependability issues in 

addition to performance scaling issues. Because memory, I/O, 

and the operating system are shared by all processors, any 

failure in any component has a significant probability of 

bringing the entire system down. As a result, lowering the 

degree of sharing can enhance a system's availability. 

7.2 Non-Uniform Memory Access 

NUMA machines share a shared address space among all 

processors, memory, and I/O; nevertheless, access time from 

any particular processor to parts of the system's memory and 

I/O is noticeably longer. Memory and I/O with the quickest 

access time are sometimes referred to as "local" to that CPU. 

Memory and I/O that is located further away is referred to as 

"global" or "remote." 

NUMA designs will work well as long as most resources can 

be accessed locally. In reality, in NUMA systems, the average 

proportion of distant accesses is the ultimate determinant of 

scalability. As a result, the scalability of NUMA systems is 

heavily dependent on the application's and operating system's 

capacity to decrease sharing. 

Non-shared data (or instructions) exist exclusively locally by 

default. The difficulty is in decreasing the amount of data that 

is updated and read by several processors. This migration 

necessitates the relocation of the related local data. Because 

the operating system and hardware are attempting to control 

this at run time using just run-time data. There are two ways 

to designing an operating system for NUMA systems. The 

initial step is to adapt an operating system built for UMA 

machines to handle memory replication and remote/local 

optimizations. Many operating system functions will 

eventually be replicated to more distributed ways, such as 

having local task dispatch queues coordinated by an 

overarching global task dispatch.[12] 

This method has the advantage of beginning from a design 

position where no sharing occurs and gradually adding 

sharing and collaboration through global services as needed. 

The disadvantage is that because not all services are global, 

migrating from UMA machines is difficult. Furthermore, 

upgrading the operating system to allow it to collaborate on 

global resource control is typically not straightforward. 

7.3 No Remote Memory Access 

Memory, I/O, and operating system copies are not shared 

between NORMA computers. Individual nodes in a NORMA 

machine communicate with one another via transmitting 

messages. High performance NORMA machines concentrate 

on increasing communication bandwidth and latencies 

between nodes, particularly at the application level.[14] 

Global services and resource allocation are supplied by a layer 

of software that coordinates the operations of the many copies 

of the operating system, similar to the second method stated 

for NUMA operating system design. From a hardware 

standpoint, the NORMA method is clearly the most scalable, 

and it has shown this capacity for applications that have been 

designed to have restricted sharing as well. Most apps, 

however, have yet to make this change. NORMA machines 

are beginning to offer "remote memory copy" capabilities to 

aid in this complex process and enhance performance. 

Both machines are made up of nodes having local memory 

and I/O that are linked to other nodes through a fabric. Data is 

transmitted from one node to another in a NUMA computer 

when a cache miss to a distant node occurs. Data is 

transmitted between nodes in a NORMA machine at the 

request of an application (with a PUT or GET command). 

The essential distinction is whether the transfer was started by 

hardware (a NUMA cache miss) or software (a NORMA 

PUT/GET). Because of these commonalities, several current 

research efforts are aiming to develop computers that can 

support both at the same time. 

8. HIGH PERFORMANCE COMPUTING 

SYSTEM ARCHITECTURE 

Initially, most HPC systems were built using specialized 

hardware. By the late 1990s, HPC system designers realized 

that utilizing huge arrays of off-the-shelf processors might 

enhance performance and save time to deployment. HPC 

system designs, as well as some of the most recent HPC 

system architectures based on huge compute arrays, 

sometimes known as massively parallel computing, are 

discussed.[15] 

8.1 Large Compute Nodes 

Cray computers were built in the shape of a circular rack, with 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 36, November 2021 

52 

the circuit board connectors near to each other in the middle 

of the ring to decrease cable lengths and, hence, signal 

propagation delays. Rather than the bigger high-density 

CMOS processor chips that were available in the early 1980s. 

Throughout the 1990s, other firms, such as Convex Computer 

Corporation, were creating high-performance computers 

employing huge processor boards constructed with various 

types of GaAs gate arrays. 

These high-performance processors were assembled on a huge 

board to create the functional components of a computing 

node, with each system having several racks of these boards. 

However, the days of building supercomputers from a few big 

high-performance computing nodes came to an end in the late 

1990s, as new techniques based on massive arrays of off-the-

shelf CPUs came to the fore.[18] 

9. HYPER TRANSPORT 

In 2001, numerous firms, including AMD, Apple, and 

NVIDIA, created the Hyper Transport (HT) Consortium, and 

by 2003, many new products, including devices from AMD 

and others, had appeared implementing this new interface 

standard. 

The same year, the HT Consortium published a standard for 

multiprocessor communication on a CPU board through an 

interconnect mechanism known as a system bus. This HT bus 

is a point-to-point connection that uses 2-32 bits per link and 

has a throughput of up to 51.2G data per second. 

 

Figure 4: Hyper transport links for data transport 

between CPU set and I/O devices[17] 

To transport data between devices, HT employs packets, 

which are made up of several 32-bit words. Packets are tiny 

and contain a command field as well as additional optional 

fields such as address information and data. Because the 

packet overhead is kept minimal, the connection bandwidth 

may be effectively utilized.[16] 

Software is a critical component of HPC. Massive parallel 

processing necessitates close coordination between all of the 

computing capabilities in the array, and it is here that software 

programmers spend the most of their effort optimizing code. 

One important aspect of their work is to maximize data 

transmission between computer nodes via the switch fabric. 

MPI offers an application programming interface (API) that 

contains the syntax and semantics for core library functions 

that allow various forms of communications between routines 

running on individual processors or processor cores. Although 

communication can take place between process pairs, MPI 

also enables gather and reduce operations, as well as graph-

like logical procedures and other monitoring and control 

activities.[17] 

OEMs creating big parallel computers can use MPI to give 

their customers with higher level distributed communication 

procedures. MPI is a higher layer protocol that operates on top 

of lower layer protocols like sockets and TCP/IP. 

10. CONCLUSION 

The challenges related to building higher and higher 

architectures are continuously there. The ever-increasing 

performance and decreasing prices, make computers a lot and 

more cost-effective and, in turn, accelerates extra software 

system and hardware developments that fuel this method even 

a lot. As new architectures come up, a lot of refined 

algorithms are run on them, and these algorithms keep 

stringent a lot of, and the method continues. 

Computer designs have developed to maximize the use of 

underlying hardware and software technologies to attain 

higher levels of performance. By leveraging the growth in 

density of digital switches and storage, computer performance 

has improved faster than the underlying improvement in 

performance of the digital switches from which they are 

constructed. 

Parallelism at three levels has been used: instruction-level 

parallelism, task/process-level parallelism, and algorithmic 

parallelism. These three levels of parallelism are not mutually 

exclusive and will most likely be utilized in tandem to 

increase system performance in the future. 

Assembly language may be a low-level artificial language 

employed in programming computers, microprocessors, small 

controllers, and different programmable devices. Assembly 

language implements the illustration of code within the kind 

of symbols that area unit relatively more graspable to humans. 

programming language typically supports specifically for one 

or several specific sorts of pc architectures. As such, the 

movability of the assembly language cannot match different 

high-level programming languages.  

The Computer Architecture helps the operating systems to 

work accordingly and manages the system architecture of the 

various kind of methodologies which are used for the 

betterment of the Work-Flow for different combinational 

optimization scenarios and the use of higher-level operating 

systems. The different scenarios are explained in the 

methodology of the research paper. 

11. FUTURE WORK 

Computer Architecture is the field that designs computers, 

which sets the establishment for the whole IT industry. One 

space of huge freedom in computer design is the manycore 

challenge. The objective is to connect computers that make it 

simple to compose programs that are productive, convenient, 

right, and scale as the quantity of centers per microchip 

increments – as simple as it has been to compose programs for 

conventional PCs. On the off chance that this innovation 

permits programming to utilize numerous straightforward 

force productive centers rather than a solitary force hungry 

center, this will reset the establishment for the IT business for 

basically the following 30 years. 

A new opportunity has been created for a new computer 

architecture that improves computer security and privacy, 

which causes error in the IT field. Computer engineers could 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 36, November 2021 

53 

remove many of the vulnerabilities of today‘s computers if 

they were not bound by the old requirements of compatibility 

with today‘s computers. They could also provide and upgrade 

it to new features to make it easier to build fast, secure, 

efficient virtual machines which can make it easier and safer 

for software to migrate between various operating systems. 

A third opportunity can be created about the computers that 

will remove the performance hindrances from new, highly 

productive programming environments such Ruby or Python. 

For instance, the Ruby on Rails allows software engineers to 

concoct astounding new computer applications in only 1000 

to 2000 lines of code—components of 10 to 100 not exactly 

ordinary methodologies.[19] 

12. ACKNOWLEDGEMENTS 

The author wishes to thank the IJCA for the content and 

support for authors. Also, the editor for handling the 

submission during the pandemic,and the anonymous referees 

for the diligent reading. 

13. REFERENCES 
[1] Vieri, C. J., 1995. Pendulum: A Reversible Computer 

Architecture. Thesis in Massachusetts Institute of 

Technology, Cambridge, MA. 

[2] Rau, B. R., Schlansker, M. S.: ―Embedded computer 

architecture and automation‖; Computer, Vol. 34, No. 4 

(2001), pp. 75–83. http://doi.org/10.1109/2.917544 

[3] I. R. V. ENGLANDER, Architecture of computer 

hardware, Systems Software, and networking: An 

information technology approach: JOHN WILEY, 2020.  

[4] P. J. Fortier and H. E. Michel, Computer Systems 

Performance Evaluation and prediction. Burlington, 

MA: Digital Press, 2003.  

[5] A. N. Napitupulu, I. E. Simorangkir, N. Brahmana, L. 

Sitorus, S. U. A. Togatorop, and D. Sitompul, 

―LITERATURE STUDY OF THE LANGUAGE 

PROGRAMMING ASSEMBLY ON COMPUTER 

ARCHITECTURE,‖ Academia, 2021. [Online]. 

Available: 

https://www.academia.edu/49257248/LITERATURE_ST

UDY_OF_THE_LANGUAGE_PROGRAMMING_ASS

EMBLY_ON_COMPUTER_ARCHITECTURE. 

[Accessed: 2021]. 

[6] ―Assembly language,‖ Cleverism, 11-Aug-2016. 

[Online]. Available: https://www.cleverism.com/skills-

and-tools/assembly-language/. [Accessed: 2021]. 

[7] P. Prakash, ―Low level vs high level language - 

difference between lowand high level 

language,‖ Codeforwin, 13-Oct-2018. [Online]. 

Available: https://codeforwin.org/2017/05/low-level-vs-

high-level-language-difference-low-high-level-

language.html. [Accessed: 2021]. 

[8] R. Dajan, ―Chapter 7 introduction to LC-3 assembly 

language,‖ SlideServe, 18-Sep-2014. [Online]. Available: 

https://www.slideserve.com/ramla/chapter-7-

introduction-to-lc-3-assembly-language. [Accessed: 

2021].  

[9] P. Knaggs, ARM Book: ARM Assembly Language 

Programming. 2016.  

[10] Assembly programming tutorial. [Online]. Available: 

https://www.tutorialspoint.com/assembly_programming/i

ndex.htm. [Accessed: 2021].  

[11] R. E. Gonzalez, ―XTENSA: A configurable and 

Extensible Processor,‖ IEEE Micro, vol. 20, no. 2, pp. 

60–70, March-April 2000, doi: 10.1109/40.848473. 

[12] A. K. Sharma, Programmable logic handbook: Plds, 

CPLDs, and fpgas. New York, NY: MacGraw-Hill, 

1998.  

[13] D. W. Knapp, Behavioral synthesis: Digital System 

design using the synopsys behavioral compiler. Upper 

Saddle River, NJ: Prentice Hall, 1996.  

[14] J. P. Elliott, Understanding behavioral synthesis: A 

practical guide to high-level design. Boston, MA: 

Springer US, 2012.  

[15] W. F. Lee, VHDL: Coding and logic synthesis with 

Synopsys. San Diego, CA: Academic Press, 2000.  

[16] R. F. Sechler and G. F. Grohoski, ―Design at the system 

level with VLSI CMOS,‖ IBM Journal of Research and 

Development, vol. 39, no. 1.2, pp. 5–22, Jan. 1995.  

[17] R. Groves, ―18th CERN School of Computing,‖ in 1995 

CERN school of computing: Arles, France, 20 August - 2 

September 1995: Proceedings, 1995, vol. 18, pp. 147–

159.  

[18] G. Lee, ―High-Performance 

ComputingNetworks,‖ Cloud Networking, pp. 179–189, 

Jun. 2014. 

[19] S. Furst, ―System/ software architecture for Autonomous 

Driving Systems,‖ 2019 IEEE International Conference 

on Software Architecture Companion (ICSA-C), pp. 31–

32, May 2019.  

 

IJCATM : www.ijcaonline.org 

http://doi.org/10.1109/2.917544

