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ABSTRACT 

To improve the problem of poor generalization ability of 

image deblurring model in real scenes, this paper proposes a 

model named AS-CycleGAN (Cycle Generative Adversarial 

Network based on Asymmetric Samples). The model trains on 

unpaired images by using two “dual form” Conditional 

Generation Adversarial Networks, adopting global residual 

connection and ResNetv2 residual module. To enhance the 

texture effect, the SFT layer is integrated. The experimental 

results on the data set of Gopro show that the SSIM and 

PSNR values of our algorithm are 15.97% and 0.75% higher 

than those of the benchmark model CycleGAN, respectively. 

By improving the residual structure and adding the SFT layer, 

the effect is even better. AS-CycleGAN provides a powerful 

help to solve the motion blur problem in the actual scene. 

General Terms 

Image Processing, Deep Learning 

Keywords 

Motion image deblurring, cycle generative adversarial 

networks, unpaired data sets, residual network 

1. INTRODUCTION 
Due to many factors, such as light, shooting angle and object 

movement, moving images are more easily blurred. To 

recover high-quality clear images, image deblurring 

technology is needed. Whyte et al. [1] proposed a non- 

uniform blind deblurring algorithm. It is based on a 

geometrically consistent model of rotation speed during 

camera exposure to deal with non-uniform image blur. Yet, 

the effect is not excellent in the actual scene because of the 

excessive assumptions made in the modeling. 

With the development of deep learning, many methods of 

image deblurring based on neural networks have been 

proposed. Chakrabarti et al. [2] proposed a method of using 

CNN to predict the Fourier coefficients of a deconvolution 

filter and deblurring in the frequency domain. Kupyn et al. [3] 

proposed the DeblurGAN model based on residual networks, 

it is able to deal with blurred images generated by objects 

moving at high speeds. Subsequently, Kupyn et al. [4] also 

proposed DeblurGANv2 which uses downsampling and 

Features Pyramid Network (FPN) model to deal with general 

image restoration. Tencent Youtu [5] proposed Scale- 

recurrent Network (SRN) based on Recurrent Neural Network 

(RNN). Dai et al. [6] proposed Deep Multi-Patch Hierarchical 

Network (DMPHN), this model uses residual learning method 
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to train more data and enhance migration ability. The above 

methods all use synthetic paired data sets for training, but 

synthetic paired data will not be available in the real scene for 

many tasks. 

Mirza et al. [7] proposed Conditional Generative Adversarial 

Networks (CGAN), the core idea is to allow images to be 

transformed between different domains. Isola et al. [8] 

proposed pix2pix framework to provide a general framework 

for processing different image domain conversions. Zhu et al. 

[9] proposed CycleGAN to solve the problem of image 

translation on unpaired data. Such methods can use unpaired 

data sets for training to enhance the generalization ability of 

the model. 

This paper reconstructs the image deblurring as a sample 

conversion between the blurred image domain and the clear 

image domain. This paper proposes a model named AS-

CycleGAN which combines CGAN and image translation 

based on Generative Adversarial Networks (GAN) [10, 11]. 

To realize image conversion, AS-CycleGAN adopts WGAN-

GP [12, 13] and two symmetric CGAN based on CycleGAN 

[11]. Meanwhile, the conversion of images between the 

blurred domain and clear domain by using a deep residual 

network structure. To improve the training speed and reducing 

the number of parameters, the optimized ResNetv2 is used as 

residual module instead of the ResNet [14]. To deal with the 

edges and textures of the restored image, the SFT layer [15] is 

integrated. To ensure the diversity of generated samples and 

the stability of training, the improved PatchGAN structure 

[16] is used for the discriminator. By improving the 

correlation structure and using real images to train the 

network model, a better deblurring effect is achieved in real 

scenes. 

2. MODEL ARCHITECTURE 

2.1 General structure of model 
When the deblurring algorithm is trained on unpaired data 

sets, the content loss function cannot be directly calculated. 

The model cannot be trained because of the lack of blur-clear 

image pairs. Therefore, this paper adda a reverse GAN based 

on the CycleGAN [9] framework to remap the generated 

target domain images to the source domain. The computation 

of content loss is performed indirectly by constraining the 

distance between the reconstructed source domain images and 

the input source domain images. The overall framework of the 

model consists of two generative confrontation networks, as 

shown in Figure1. 

To constrain the content of the generated samples, the training 

process consists of forward and reverse loops: the forward 

loop is blurry→clear→blurry, and the reverse loop is 

clear→blurry→clear, the two loop systems work together to 

achieve the constraint purpose. Specifically, a blurred image 

𝐼𝐵  passes through the generator 𝐺𝐴 to generate a reconstructed 

clear image 𝐼S_𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 , and then passes through 𝐺𝐵  to get the 

reconstructed blurred image 𝐼𝐵_𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 . To constrain the 

contents of 𝐼𝐵  and 𝐼S_𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑  to be consistent by constraining 

𝐼𝐵  and 𝐼𝐵_𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑  as close as possible. Similarly, for the 

reverse loop, this paper indirectly constrains the 𝐼𝑆  and 

𝐼𝐵_𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑  by constraining the clear image 𝐼𝑆  and the 

reconstructed clear image 𝐼S_𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑  to be as close as possible 

to calculate the content loss under unpaired data. The loss 

function is usually called cyclic consistency loss, the structure 

is shown in the two boxes on the left and right of Figure 1 

Fig 1: General structure of model 

2.2 Generator 
This paperincorporates deep residual network and global 

residual connection on the basis of GAN, connect the input 

and output of the network. The intermediate network layer 

only needs to learn the residual between output, input and 

hidden layers, which reduces the learning volume and training 

difficulty. The generated network (Figure2) consists of 2 

convolutional layers, 9 residual modules and 2 

deconvolutional layers. We adopt ReLu activation with the 

Tanh function at the end. In addition, we add a random 

deactivation layer (DropOut) and an instance normalization 

layer (IN). The residual module uses ResNetv2 to realize 

input and output direct connection. The activation function is 

placed on the branch for residuals. Each cell is before the 

affine transformation, so that the information propagates 

faster in the reverse and forward propagation and prevents the 

vanishing gradient, as shown in the dashed box below. By 

using the DropOut layer, the model increases the generated 

sample diversity, prevents overfitting, and improves the 

generalization ability. The network structure of generators 𝐺𝐴 

and 𝐺𝐵  are shown in Figure2. 

Fig 2: Generators 𝑮𝑨 and 𝑮𝑩 
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2.3 Discriminator 
The discriminator is based on PatchGAN [16]. the original 

Batch Normalization (BN) layer is replaced with an Instance 

Normalization (IN) layer. Meanwhile, the loss function in the 

original GAN is replaced with the RaGAN-LS [4] loss 

function. Accordingly, the Sigmoid function activation layer 

is removed from the original PatchGAN. The discriminant 

network contains five convolutional layers with the Leaky 

Relu function as activation function. The discriminators 𝐷𝐴 

and 𝐷𝐵  are shown in Figure3. 

 

Fig 3: Discriminators 𝑫𝑨 and 𝑫𝑩 

2.4 SFTGAN 
The goal of Spatial Feature Transform Generative Adversarial 

Networks (SFTGAN) [15] is to recover natural and realistic 

textures in super-resolution results. This paper proposes a 

spatial feature modulation (SFT) layer to combine the 

semantic category prior to the network. The SFT layer is 

based on the parameters of affine transformation and 

translation obtained from the prior, then the affine 

transformation operation is performed on the intermediate 

features. The loss function contains perceptual loss and 

adversarial loss. The two inputs are the low-resolution image 

and the segmentation semantic map. The segmentation 

semantic map is passed through the Condition Network to 

generate the Conditions Feature Map, which is shared by each 

layer, but the SFT layer is not shared. Every other Conv layer 

has a SFT layer corresponding to the conditions. The 

SFTGAN super-resolution reconstruction network [15] is 

incorporated in the GAN_A and GAN_B to enhance the edge 

and texture effects of the images.The SFT layer is added to 

the GAN structure of ResNetv2. The Conditional 

Normalization (CN) is to use a function learned under certain 

conditions, which replaces the affine transformation in the 

original BN. The specific implementation process of the 

network is shown in Figure4, the SFT layer is shown in the 

dashed box. 

Fig 4: SFTGAN structure 

3. LOSS FUNCTION 
Overall loss function:The overall loss function includes the 

adversarial loss and the content loss. In this paper, X denotes 

the samples in the clear image domain, Y denotes the samples 

in the blurred image domain, and N denotes the number of 

samples: 

𝐿 𝐺𝐴 , 𝐺𝐵 , 𝐷𝐴 , 𝐷𝐵 , 𝑋, 𝑌 = 𝐿𝐺𝐴𝑁 𝐺𝐴 , 𝐷𝐴 , 𝑋, 𝑌 + 𝐿𝐺𝐴𝑁 𝐺𝐵 , 𝐷𝐵 , 𝑌, 𝑋 +
𝜆1𝐿𝑐𝑦𝑐𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛

 𝐺𝐴 , 𝐺𝐵 , 𝑋, 𝑌 + 𝜆2𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  𝐺𝐴 , 𝐺𝐵 , 𝑌, 𝑋   (1) 

In the above equation, 𝜆1 refers to the weight of the cyclic 

consistency loss and 𝜆2  refers to the weight of the same 

mapping loss. Both generators 𝐺𝐴  and 𝐺𝐵  need to minimize 

the above equation, while both discriminators 𝐷𝐴 and 𝐷𝐵  need 

to maximize the above equation. The final optimal generators 

obtained are shown in the following equation: 

𝐺∗
𝐴 , 𝐺∗

𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐺𝐴 ,𝐺𝐵
𝑚𝑎𝑥𝐷𝐴 ,𝐷𝐵

𝐿 𝐺𝐴 , 𝐺𝐵 , 𝐷𝐴 , 𝐷𝐵 , 𝑋, 𝑌  (2) 

Adversarial Loss:This paper adopts the adversarial loss 

function of the two CGAN as adversarial loss. The role of 𝐺𝐴 

is to make the generated image as natural and clear as 

possible, close to the original image. 𝐺𝐵  is to make the motion 

blur in the generated image exist as much as possible in the 

real scene. Because WGAN [12] has the problems of slow 

convergence and difficult training in a real experimental 

environment, the improved WGAN-GP [15, 16] is used in this 

paper. WGAN-GP satisfies the Lipschitz continuum condition 

by adding a gradient penalty term, and directly adopts 

“Weight Clipping” when dealing with the Lipschitz restriction 

to stabilize the training effect. The RaGAN-LS loss [4] is used 

as the adversarial loss function. The specific adversarial loss 

calculation is shown in equation (3)(4) below, and the penalty 

term is omitted here for the convenience of writing. 

𝐿𝐺𝐴𝑁 𝐺𝐴 , 𝐷𝐴 , 𝑋, 𝑌 =
1

𝑁
 [𝐷𝐴 𝑌 − 𝐷𝐴(𝐺𝐴 𝑋 )]𝑁

𝑛=1   (3) 

𝐿𝐺𝐴𝑁 𝐺𝐵 , 𝐷𝐵 , 𝑌, 𝑋 =
1

𝑁
 [𝐷𝐵 𝑋 − 𝐷𝐵(𝐺𝐵 𝑌 )]𝑁

𝑛=1   (4) 

Content loss: The content loss guides the generator to 

generate images with appropriate content. This paper uses 

cyclic consistency loss and the same mapping loss. The cyclic 

consistency loss is the core part of unpaired data set training. 

It mainly calculates the loss value between the value of the 

sample after forward and reverse loops and the value of the 

original sample. The content loss includes the following main 

contents:  

a) Cycle Consistent Loss: The circular consistency loss 

function adopts the form of perceptual loss. Com- pared with 

other forms of loss functions, perceptual loss is closely related 

to human senses and is closer to the visual perception of 

human eyes. By constraining the perceptual loss function, the 
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generated images are more natural and realistic afterwards. 

Perceptual loss is generally difficult to calculate directly and 

requires additional help from a pre-trained VGG network. The 

feature map output from the seventh convolutional layer, 

which is the conv3_3 layer in the VGG-19 network, is 

selected to calculate the perceptual loss. As shown in equation 

(5), where ∅ denotes the output feature map of the seventh 

convolutional layer of VGG-19 is taken, while C, H, and W 

denote the number of channels, height, and width of the 

feature map. 

𝐿𝑐𝑦𝑐 _𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛  𝐺𝐴 , 𝐺𝐵 , 𝑋, 𝑌 =

1

𝑁
 

[
1

𝐶𝐻𝑊
  ∅(𝐺𝐵 𝐺𝐴 𝑋  ) − ∅ 𝑋   

2

2

+
1

𝐶𝐻𝑊
  ∅(𝐺𝐴 𝐺𝐵 𝑌  ) − ∅(𝑌)  

2

2

]

𝑁
𝑛=1    (5) 

b) Same mapping loss: The same mapping loss [17] 

complements the cyclic consistency loss by further 

constraining the content consistency of the generated and 

input images based on the perceptual loss. The same mapping 

loss requires that the samples in the target domain do not 

change after passing through the generator, thus facilitating 

the full and complete “transformation” of the samples in the 

source domain by the generator. The same mapping loss is 

sensitive to color, which can effectively ensure the 

consistency of color style between the input image and the 

generated image to avoid color difference. The L1 distance is 

used to calculate the same mapping loss, and the calculation 

procedure is shown in the left and right boxes in Figure1 

above, where 𝐼𝑆  is mapped to 𝐼𝑆_𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑  through 𝐺𝐴  and 𝐼𝐵  is 

mapped to 𝐼𝐵_𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑  through 𝐺𝐵 . The expressions are as 

follows: 

𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  𝐺𝐴 , 𝐺𝐵 , 𝑌, 𝑋 =
1

𝑁
 [||𝐺𝐴 𝑌 − 𝑌||1 + ||𝐺𝐵 𝑋 − 𝑋||1]𝑁

𝑛=1  (6) 

4. EXPERIMENT ANALYSIS 

4.1 Experimental environment 

configuration and data preprocessing 
The experimental environment in this paper uses a 1660Ti6G 

discrete graphics card, a hexa-core CPU (Intel core i7-9750H) 

at 2.6GHz, and 16GB RAM. The operating system is Win10 

and Ubuntu-Server linux16.04, and the deep learning 

framework is TensorFlow-GPU 13.1 and PyTorch 1.2.0. 

In this paper, only the blurred images of data set of Gopro 

[18] is used for training, the corresponding clear images are 

removed, so this paper uses the aforementioned method on the 

unpaired dataset for training process. In the testing phase, the 

quantitative evaluation metrics can be calculated using the 

information from the paired dataset. It is also convenient to 

compare the algorithms from other paired datasets, so as to 

the effect of model restoration can be evaluated objectively. 

We need to pre-process the image size, bit depth, and channel 

values according to the experimental requirements. In 

thispaper, the number of samples N is taken as 60, and the 

loss functionλ1is taken as 10 andλ2is taken as 0.5. This paper 

uses peak signal-to-noise ratio (PSNR) and structural 

similarity index (SSIM) as the evaluation criteria. PSNR is 

widely used for objective evaluation of images, expressed as: 

𝑓𝑀𝑆𝐸 =
 𝑖𝑀

0  𝑗𝑀
0  𝑓𝑖𝑗 −𝑔𝑖𝑗  

𝑀×𝑁
  (7) 

𝑓𝑃𝑆𝑁𝑅 = 10 × lg  
 2𝑏𝑖𝑡𝑠 −1 

2

𝑓𝑀𝑆𝐸
   (8) 

SSIM mainly compares the structural information of different 

images, expressed as: 

𝑓𝑆𝑆𝐼𝑀 𝑓𝑖𝑗 , 𝑔𝑖𝑗  =
 2𝜇𝑓𝜇𝑔+𝑐1  2𝜎𝑓𝑔 +𝑐2 

 𝜇𝑓
2+𝜇𝑔

2 +𝑐1  𝜎𝑓
2+𝜎𝑔

2+𝑐2 
 (9) 

 

4.2 Analysis of experimental results 
As can be seen from Figure5, the algorithm achieved good 

results on the data set of Gopro [18], the image restoration is 

realistic and natural, basically retaining the structural features 

of the original image without obvious chromatic aberration 

and local distortion. The slight shortcomings are the lack of 

edge and texture effects and poor restoration of parts with 

serious blurring. According to the box marks in the Figure5, 

the generated images using the improved ResNetv2 residual 

module model are more detailed and the texture effect is 

better than that of the generated images using the ResNet 

model. 

 

Fig 5: Effect of different network structures on 

experimental results. Blurred images−first column, AS-

CycleGAN (ResNet) −second column, AS-CycleGAN 

(ResNetv2) -third column, Clear Image −last column. 

Our model is trained based on the method of unpaired 

datasets, as in Figure6, the results of deblurring in the Gopro 

dataset have been basically close to the model DeblurGANv2 

[4] algorithm, especially in images with relatively low 

blurring degree. By improving the residual module, the 

deblurring ability has been enhanced. There is no obvious 

chromatic aberration and distortion, it also improves the 

unnatural visual sensory effectssuch as over-sharpening, grid 

effect and edge distortion of the generated images, the 

reconstructed images are natural and realistic, specifically 

from the detailed information of the boxes and elliptical boxes 

in the Figure6 can be more clearly seen the change. After 

integrating the SFT layer into the original structure, the image 

details and texture effects are improved, as shown in the third 

row of Figure6. The composition of the car surface, tree form, 

stone bench appearance, slogan content and pedestrian posture 

are more detailed, the details of the edges and textures are 

handled more effectively and the visual effects are more 

natural, especially the effect is more obvious when the picture 

is enlarged, as shown in Figure7. 

The results of this paper proposed method and other methods 

are shown in Table1, where SSIM and PSNR are taken as the 

mean values of multiple experiments. DeblurGAN(Wild) 

refers to the results obtained by training the DeblurGAN [3] 

model on the Gopro dataset, while DeblurGAN(Comb) refers 

to the results obtained by mixing the synthetic dataset 

proposed by Kupyn et al. with the Gopro dataset in a 2:1 ratio 

and training the model on this mixed dataset. In addition, this 
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paper also selects DeblurGANv2 [4] algorithm model for 

comparison. 

 

Fig 6: Experimental results of the model in this paper 

compared with other models. Blurred images−top row, 

DeblurGAN −second row, AS-CycleGAN(Add STF 

layer)−third row, Clear Image− bottom row. 

 

Fig 7: Partial effect diagram of incorporating SFTGAN 

structure. Without SFTGAN−top row, Integration 

SFTGAN−bottom row. 

From Table1, the PSNR and SSIM in the results were 

significantly improved compared to the benchmark model 

CycleGAN. The improved ResNetv2 has improved by 

18.91% and 0.75%, respectively. The results are even better 

after incorporating the SFT layer, with 21.01% and 1.08% 

improvement in the two metrics, respectively. Compared with 

the well-known DeblurGAN algorithm on paired datasets, the 

method in this paper achieves experimental results similar to 

them. The PSNR value exceeds that of DeblurGAN (Wild) 

and is basically close to other algorithms. The SSIM value 

only differs from DeblurGAN by about 0.2 and is 

slightlyhigher than that of DeblurGANv2 algorithm. The 

ResNetv2 model with the improved residual module and the 

model with the SFT layer performs even better. They are 

basically close to or even better than other algorithms on 

paired datasets. SSIM values are also higher than those of 

some algorithms on paired datasets 

Table 1. Comparison of the effects of the model in this paper and other models 

Model PSNR SSIM Time 

 

Unpaired data sets 

CycleGAN 23.8 0.928 1.73s 

ResNet(AS-CycleGAN) 27.6 0.935 0.92s 

ResNetv2（AS-CycleGAN） 28.3 0.935 0.96s 

Add STF layer（AS-CycleGAN） 28.8 0.938 1.04s 

 

Paired data sets 

DeblurGAN(Wild) 27.2 0.954 0.85s 

DeblurGAN(Comb) 28.7 0.958 0.87s 

DeblurGANv2 29.5 0.934 0.35s 

 

5. CONCLUSION 
This paper proposes an algorithmic model trained with real 

images on unpaired datasets. This paper adopts the WGAN-

GP, in which global residual connectivity is used in the 

generator, as well as a modified ResNetv2 residual module. In 

addition, the super-resolution repair network SFTGAN is 

incorporated into the structure to improve the edge and texture 

effects. PatchGAN is used as the discriminator, and its 

parameters were improved. Finally, the loss function is 

determined to accord to the adversarial loss and content loss 

to build the model to constrain the whole training process to 

achieve the comprehensive improvement of the deblurring 

effect. Experiments show that the results of this paper are 

significantly better than the benchmark model CycleGAN, 

with the PSNR and SSIM values improving by 15.97% and 

0.75%, respectively, by improving the residual structure and 

adding of SFT layer, the results are better. This paper achieves 

experimental results similar to or even superior to other 

algorithmic models on paired datasets. To a certain extent, the 

problem of poor generalization ability of the model in real 

scenes is solved. 
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