
International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.42, December 2021

GPU Implementation of Faber Schauder Discrete
Wavelet Transform using CUDA

Assma Azeroual
Computer Science Department

Higher School of Education and Training
Ibn Zohr University

Karim Afdel
Computer Science Department

College of Sciences
Ibn Zohr University

ABSTRACT
Faber Schauder discrete wavelet transform (FSDWT) has many in-
teresting advantages in image and video processing owing to its
simplicity and its multiscale-based theory. It preserves the pixel
ranges, has arithmetic operations, and detects edges in multiscale
representation. With the increase of image size and the real-time
requirement of many applications, the FSDWT computation be-
comes complex and needs other techniques to deal with it. To solve
this problem, the FSDWT is implemented in parallel on a Graphics
Processing Unit (GPU) using Compute Unified Device Architec-
ture (CUDA) code. The results demonstrate that the GPU-based
FSDWT exceedingly outperforms the CPU FSDWT.

Keywords
Image processing, FSDWT, GPU, CUDA, Multiscale transform

1. INTRODUCTION
Wavelets are the foundation of powerful approaches in signal pro-
cessing and multi-resolution the [1, 2, 3, 4]. This later includes
techniques from a variety of disciplines such as subband cod-
ing from signal processing, quadratic mirror filtering from digital
speech, and image processing. The appeal of the multi-resolution
theory is the detection of features at many levels of resolution [5].
Various generalizations of wavelets were introduced in [6, 7], many
techniques for constructing wavelet transforms were proposed such
as the lifting scheme [8, 9]. Since computers have just finite preci-
sion, floating point transforms are less interesting from the view-
point of numerical computation. That is why integer wavelets have
been widely used in image processing. Faber Schauder wavelet
transform (FSWT) is a simple multiscale transformation that has
many interesting properties in image processing such as preserva-
tion of pixel ranges, arithmetic operations, multiscale edge detec-
tion.
A Faber Schauder discrete wavelet transform (FSDWT) was pro-
posed by Douzi et al. [10] for image characterization and edge de-
tection, Amar et al. [11] had proposed similarly a FSDWT tech-
nique for edge detection. Furthermore, FSDWT was used in multi-
ple techniques of image watermarking [12, 13, 14, 15, 16, 17]. In
[18, 19] FSDWT was used for video processing and may also be
used for image and video compression [20].

With the growth of technologies, computers operate on large data
sets such as HD images or videos and real-time requirement be-
comes more demanded in many image and video processing tasks.
Thus, the use of parallel processing becomes necessary to provide
high-performance with a reasonable cost. As discussed before, var-
ious techniques used and defined the FSDWT, however, we are not
aware of any work addressing the FSDWT optimization in Graph-
ics Processing Unit (GPU).
In this paper, the work on implementing FSDWT in GPU using
Compute Unified Device Architecture (CUDA) code is presented,
the obtained performance is shown, and the execution time to find
the optimal number of threads per block is analyzed. In addition,
a results comparison between CPU and GPU is done. The rest of
the paper is organized as follows. A small introduction of GPU is
presented in section 2, then the FSDWT is detailed in section 3.
The proposed method is described in section 4. The experimental
results are described in details in section 5. Conclusions and future
perspectives are drawn in section 6.

2. GPU
GPUs have been widely used in recent years as tools to process a
large amount of information in parallel. As opposed to CPUs, GPUs
execute multiple concurrent threads slowly, instead of executing a
single thread very quickly. The GPU is especially well-suited to ap-
plications having data-parallel computations with high arithmetic
intensity, hence, GPU is designed such that more transistors are de-
voted to data processing rather than data caching and flow control
as illustrated by figure fig.1. In other words, the ratio of arithmetic
operations must be higher than the memory operations. Otherwise,
these applications might run slower on GPU than on CPU [21].
CUDA was introduced by NVIDIA as a general purpose parallel
computing platform and programming model to solve efficiently
various complex computational problems compared with CPU. The
CUDA parallel programming model partitions a task into many
sub-tasks that can be solved independently in parallel and each sub-
task into finer pieces that can be solved cooperatively in parallel.
Every elemental task is running by a thread and all cooperating
threads run parallelly in a thread block, which allows many blocks
to run in parallel. Blocks are organized into one dimensional, two
dimensional, or three dimensional grid of thread blocks as shown in
figure fig.2. Like C functions, CUDA has its own functions called

1

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.42, December 2021

Fig. 1. More transistors are devoted to data Processing in GPU.

kernels, that, when launched, are executed N times in parallel by
N different CUDA threads.
CUDA threads can access data from different memory spaces dur-
ing their execution as shown in figure fig.3. Local and global mem-
ories are expensive to access compared with shared memory, the
use of these three kinds of memory depends on the application
needs. To obtain optimal results from GPU based computing, the
data transfer between Host and Device must be minimized [22].

3. FSDWT
The algorithm of Faber Schauder transform is more simple to ex-
press based on lifting scheme [9].
Let f0 = (f0

k)k∈Z be a real sequence of a one dimensional signal.
The transform can be done in three steps:

—Splitting : the sequence f0 is decomposed into two disjoint sets
of samples
f1,0 = (f0

2k)k∈Z and g1,0 = (f0
2k+1)k∈Z

—Predicting: to use the correlation between odd and even coeffi-
cients (f1,0 and g1,0), the odd coefficients are predicted from a
linear combination of the neighboring even coefficients, and the
prediction residual is token as the sequence g1:
g1k = g1,0k − 1

2
(f1,0

k + f1,0
k+1)

—Updating: the aim of this step is to preserve some original signal
properties in the sequence f1, for Faber Schauder transform the
updating is a simple interpolation of:
f1 = f1,0

The advantage of the lifting scheme is the possibility to construct
an integer version of the Faber Schauder transform by rounding
off the prediction and updating operations. In addition, the range
of pixel values is preserved. Moreover, Faber wavelet transform
can be generalized easily to two dimensional signals. The lifting
scheme of the transformation with n scales is given by:



f0 = fij for i, j ∈ Z

for 1 ≤ k ≤ n

fk
ij = fk−1

2i,2j

gkij = (gk1ij , g
k2
ij , g

k3
ij)

gk1ij = fk−1
2i+1,2j − 1

2
(fk−1

2i,2j + fk−1
2i+2,2j)

gk2ij = fk−1
2i,2j+1 − 1

2
(fk−1

2i,2j + fk−1
2i+2,2j+2)

gk3ij = fk−1
2i+1,2j+1 − 1

4
(fk−1

2i,2j + fk−1
2i,2j+2+

fk−1
2i+2,2j + fk−1

2i+2,2j+2)

(1)

3.1 Implementation of FSDWT on CPU
In the case of discrete signals such as images, the FSDWT of an im-
age I of dimensions h×w have been implemented by the algorithm
1.
where fsdwt is the FSDWT of image I , nbScales is the number
of scales and m is an intermediate matrix for calculation. This al-
gorithm gives a mixed-scales representation of an image and for
each scale k it computes the FSDWT coefficients mi,j by adding
2k to i and j in every iteration. Inside the first loop, there are three
loops, the first one represents the gk1 vector, the second one rep-
resents gk2 vector and the third one represents the vector gk3. The
computation of fk is done by dividing the sample by 2.
The FSDWT contains simple arithmetic operations, however, it be-
comes more complex when the image has a high resolution, and
when we deal with videos.

4. THE PROPOSED APPROACH
The implementation of our proposed method consists of Host part
and Device part. In the Host part, the image is just uploaded, copy
it to Device and call the function FSDWT host that will launch the
Device computation. The result is then copied back to Host after
the Device has completed its work. In the Device part, all the com-
putations are done in three levels of parallelization. As mentioned
before, the Host function FSDWT host is responsible for launchin

2

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.42, December 2021

Fig. 2. Grid of thread blocks.

g the Device computation, which is done by starting the kernel FS-
DWT and executing it in parallel by nbScales threads. Every in-
stance of the kernel FSDWT launch three child kernels gk1i , gk2i ,
and gk3i which are executed by b × t threads in parallel for each
child kernel. Finally, each instance of these child kernels launch
other kernels gk1ij , gk2ij , and gk3ij using b× t threads for every kernel.
The figure fig.4 shows an overview of the proposed method.

4.1 Host part
The Host part runs sequentially on the main CPU. All the basic
information required are defined and fetched here. This includes
reading the image, getting its height and width, then compute the
image number of scales. After that, the image is copied from Host
to Device as one dimensional vector. The next step is to launch the
device first kernel and give it all the required information. As a last
step, after the device computation, the Host get the image Faber
Shauder discrete wavelet transform from the Device.

Fig. 3. Hierarchy of Memory.

4.2 Device part
let X be an image of dimensions h×w . To simplify the description
of this part the example h = w = 9 is token, the image X is shown
in figure fig.5, where fij are the image pixels values in gray scale
representation.
The number of scales for X is already computed in Host and is
equal to nbScales, where nbScales is the maximum integer ver-
ifying 2nbScales < min(h − 1, w − 1), hence in our example
nbScales = 2. Let us consider the equations system (1). In the
first scale k = 1, the positions of the vectors g11, g12, g13, f1 el-
ements are shown in figure fig. 6, the vector f1 will have the form
shown in figure fig. 7 and will be considered as the input data for
the next scale. In the second scale k = 2, the positions of the vec-
tors g21, g22, g23, f2 elements are shown in figure fig. 8. The mixed
scales representation of all the coefficients is given in the figure fig.
9. By these examples, it is clear that the positions of scales coef-
ficients do not coincide with each other, and the computation of a
scale coefficients depends just on the original image pixels values
and does not depend on the previous scales coefficients. Hence the
FSDWT can be performed in parallel.
The first kernel which is called in the Device part is FSDWT, it is
executed by nbScales threads in parallel. The role of this kernel
is to launch for each scale the child kernels gk1i , gk2i , gk3i that will
compute the corresponding coefficients. Let us consider the previ-
ous example of the matrix X and let us take the figure fig. 9. Here,

3

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.42, December 2021

Fig. 4. Overview of the proposed method.

1: dim←max(h,w)
2: nbScales← 0
3: while 2nbScales ≤ min(h− 1, w − 1) do
4: nbScales← nbScales+ 1
5: end while
6: m← Initialize with I values
7: for each k from 1 to nbScales do
8: for each i from 1 + 2k−1 to dim− 2k−1 do
9: for each j from 1 to dim do

10: mi−1,j−1 ←
mi−1,j−1 −

[
1
2
(mi−2k−1−1,j−1 +mi+2k−1−1,j−1)

]
11: j ← j + 2k

12: end for
13: i← i+ 2k

14: end for
15: for each i from 1 to dim do
16: for each j from 1 + 2k−1 to dim− 2k−1 do
17: mi−1,j−1 ←

mi−1,j−1 −
[
1
2
(mi−1,j−2k−1−1 +mi−1,j+2k−1−1)

]
18: j ← j + 2k

19: end for
20: i← i+ 2k

21: end for
22: for each i from 1 + 2k−1 to dim− 2k−1 do
23: for each j from 1 + 2k−1 to dim− 2k−1 do
24: mi−1,j−1 ← mi−1,j−1 − [1

4
(mi−2k−1−1,j−2k−1−1+

25: mi+2k−1−1,j−2k−1−1 +mi−2k−1−1,j+2k−1−1 +
mi+2k−1−1,j+2k−1−1]

26: j ← j + 2k

27: end for
28: i← i+ 2k

29: end for
30: fsdwt←m
31: end for

the FSDWT will be executed by two threads in parallel, one will
compute the first scale coefficients colored in yellow and the sec-
ond one will compute the second coefficients colored in brown.
The kernels gk1i , gk2i , and gk3i will be run in parallel by b×t threads
for each one of them, b and t correspond respectively to the number
of blocks per grid and the number of threads per block. The role of
these kernels is to compute the coefficients for each line of a given
matrix by launching other kernels gk1ij , gk2ij , and gk3ij respectively.

Fig. 5. The example of a 9× 9 image.

Fig. 6. The first scale coefficients in the example of a 9× 9 image.

The role of these later kernels is to calculate the coefficients in a
given column in the line where the parent kernel launched the call.
Let us consider again the example of the matrix X , and the figure
fig. 6 for the first scale, here gk1i will be executed by four threads
each one will take the computation of a blue line (ie a line of g11
by launching another kernel g11ij wich will compute -in the specified
blue line- every coefficient by using one thread for it, the figure fig.
10 shows the application of our proposed approach on the example
of the matrix X .

4

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.42, December 2021

Fig. 7. The form of f1 in the example of a 9× 9 image.

Fig. 8. The second scale coefficients in the example of a 9× 9 image.

Fig. 9. The mixed scales representation of FSDWT coefficients in the ex-
ample of a 9× 9 image.

5. EXPERIMENTAL RESULTS
We analyze in this section the results obtained with the GPU imple-
mentation of FSDWT and compare them with the results obtained
with the CPU implementation.
The experimental results are obtained using an Intel Core i7-4510U
CPU and 2GB RAM with an NVIDIA GeForce 840M graphics
card. These results have been fully implemented and optimized in
OpenCV C++ and for the parallelized FSDWT using CUDA C++.
We used one dimensional structure of grids and blocks of threads.
We used five different images for the results performance, these im-
ages are of size 256×256, 512×512, 1024×1024, 2048×2048,
4096× 4096.

5.1 CUDA implementation of FSDWT
In the CPU part, the image is firstly uploaded , getting its infor-
mation, then copying the image from Host to Device by using the
following code:

int dim = max(h,w);

int size = dim*dim*sizeof(int);

int *h_m, *d_m;

h_m = (int*)malloc(size);

cudaMalloc((void**)&d_m,size);

for(int i=0;i<dim;i++)

for(int j=0;j<dim;j++)

h_m[i*w+j] = image.at<uchar>(i,j);

cudaMemcpy(d_m,h_m,size,cudaMemcpyHostToDevice);

The next step is to launch the FSDWT kernel by calling the function
FSDWT host from Host:

extern "C" void FSDWT_host(int *A,int *B,int h,int w,int

dim, int nbScales)

{

FSDWT <<< 1 , nbScales >>> (A,B, h, w,dim,nbScales);

}

where A presents a pointer to the image in GPU memory, B
presents a pointer to the image FSDWT in GPU memory. The ker-
nel FSDWT has the following code:

__global__ void FSDWT(int *A, int *B ,int h, int w, int

dim, int nbScales)

{

__shared__ int threadsPerBlock;

threadsPerBlock = 256;

int k = threadIdx.x + 1;

float p = powf(2,k-1);

int blocksPerGrid = (dim/(2*p) + threadsPerBlock -1) /

threadsPerBlock;

gk1_i<<<blocksPerGrid,threadsPerBlock>>>(A,B,h,w,dim,p);

gk2_i<<<blocksPerGrid,threadsPerBlock>>>(A,B,h,w,dim,p);

gk3_i<<<blocksPerGrid,threadsPerBlock>>>(A,B,h,w,dim,p);

}

The kernels gk1 i, gk2 i, gk3 i, gk1 ij, gk2 ij, and gk3 ij have the
following code:

__global__ void gk1_ij(int *A,int *B,int h,int w,int dim,

float p,int i)

{

int u = blockDim.x*blockIdx.x + threadIdx.x;

int j=1+2*p*u;

if(j<=dim)

B[(i-1)*w +j-1] = A[(i-1)*w+j-1] - floorf(0.5*(A[(i-(

int)p-1)*w+j-1] + A[(i+(int)p-1)*w+j-1]));

}

__global__ void gk2_ij(int *A,int *B,int h,int w,int dim,

float p,int i)

{

int u = blockDim.x*blockIdx.x + threadIdx.x;

5

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.42, December 2021

Fig. 10. The parallel FSDWT applied on the matrix X .

int j=1+p+2*p*u;

if(j<=dim-p)

B[(i-1)*w +j-1] = A[(i-1)*w+j-1] - floorf(0.5*(A[(i-1)*

w+j-(int)p-1] + A[(i-1)*w+j+(int)p-1]));

}

__global__ void gk3_ij(int *A,int *B,int h,int w,int dim,

float p,int i)

{

int u = blockDim.x*blockIdx.x + threadIdx.x;

int j=1+p+2*p*u;

if(j<=dim-p)

B[(i-1)*w +j-1] = A[(i-1)*w+j-1] - floorf(0.25*(A[(i-(

int)p-1)*w+j-(int)p-1] + A[(i+(int)p-1)*w+j-(int)p

-1]

+ A[(i-(int)p-1)*w+j+(int)p-1] +

A[(i+(int)p-1)*w+j+(int)p

-1]));

}

__global__ void gk1_i(int *A,int *B,int h,int w,int dim,

float p)

{

__shared__ int threadsPerBlock;

__shared__ int blocksPerGrid;

threadsPerBlock = 256;

blocksPerGrid = (dim/(2*p) + threadsPerBlock -1) /

threadsPerBlock;

int v = blockDim.x*blockIdx.x + threadIdx.x;

int i=1+p+2*p*v;

if(i<=dim-p)

gk1_j<<<blocksPerGrid,threadsPerBlock>>>(A,B,h,w,dim,p,

i);

}

__global__ void gk2_i(int *A,int *B,int h,int w,int dim,

float p)

{

__shared__ int threadsPerBlock;

__shared__ int blocksPerGrid;

threadsPerBlock = 256;

blocksPerGrid = (dim/(2*p) + threadsPerBlock -1) /

threadsPerBlock;

int v = blockDim.x*blockIdx.x + threadIdx.x;

int i=1+2*p*v;

if(i<=dim)

gk2_j<<<blocksPerGrid,threadsPerBlock>>>(A,B,h,w,dim,p,

i);

}

__global__ void gk3_i(int *A,int *B,int h,int w,int dim,

float p)

{

__shared__ int threadsPerBlock;

__shared__ int blocksPerGrid;

threadsPerBlock = 256;

6

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.42, December 2021

Table 1. Execution time (ms) for the FSDWT in CPU and in
GPU

Image size CPU time GPU time Speed-up
256× 256 28.12 88.97 -
512× 512 96.70 110.95 -
1024× 1024 329.49 120.74 2.72
2048× 2048 1264.92 180.74 6.99
4096× 4096 5037.70 429.50 11.72

Table 2. Detailed execution time (ms) for FSDWT in CPU and in
GPU

Operation 256× 256 4096× 4096

Copy from Host to Device 83 3244
GPU FSDWT 0.015 0.026
CPU FSDWT 23 4403

Table 3. FSDWT kernel execution time (µs) at various block
threads number for 256× 256 image

threads 32 64 128 256 512 1024
Time 18.66 19.66 19 16 16 18

blocksPerGrid = (dim/(2*p) + threadsPerBlock -1) /

threadsPerBlock;

int v = blockDim.x*blockIdx.x + threadIdx.x;

int i=1+p+2*p*v;

if(i<=dim-p)

gk3_j<<<blocksPerGrid,threadsPerBlock>>>(A,B,h,w,dim,p,

i);

}

5.2 Time evaluation
The comparison between the FSDWT time execution in CPU and
in GPU using our proposed method is given in the following table:
By analyzing the results shown in table tab.1 we noticed that the
proposed method performs well since the image size is large. This
due to the time spent to copy the data from Host to Device and
from Device to Host, which is a normal issue in GPU computing.
The table tab.2 shows the detailed time execution for the images of
size 256× 256, 4096× 4096 on CPU and on GPU.
We have also investigated the optimum number of threads per block
in GPU to implement FSDWT in parallel. Tables tab.3-tab.7 show
the execution time of FSDWT kernel for different image sizes using
a various number of threads per block. As shown in figure fig.11,
threads=256 per block shows the minimum time of execution for
any image size. Hence the use of 256 threads per block provides an
optimal time for the proposed approach. (see Sect. 4.1).

6. CONCLUSIONS AND FUTURE WORK
This paper implements the FSDWT in parallel on GPU using
CUDA code, this implementation outperforms the CPU FSDWT
for large size images. Experimental results indicated that threads =
256 per block provides an optimal execution time.
Future work will include the use of GPU FSDWT in many im-
age and video processing such as edge detection, watermarking,
and compression. Moreover, another GPU FSDWT implementation
will be proposed to work in most GPU architectures using recent
techniques of parallel computing.

Table 4. FSDWT kernel execution time (µs) at various block
threads number for 512× 512 image

threads 32 64 128 256 512 1024
Time 19 20.33 19.33 17.33 20.33 20.4

Table 5. FSDWT kernel execution time (µs) at various block
threads number for 1024× 1024 image

threads 32 64 128 256 512 1024
Time 22.33 23 22.33 21.33 22.33 23.33

Table 6. FSDWT kernel execution time (µs) at various block
threads number for 2048× 2048 image

threads 32 64 128 256 512 1024
Time 24.66 25.33 24.66 24.33 25 26.33

Table 7. FSDWT kernel execution time (µs) at various block
threads number for 4096× 4096 image

threads 32 64 128 256 512 1024
Time 26 28.33 26 24.66 26 31

7. REFERENCES
[1] S.G. Mallat, A theory for multiresolution signal decomposi-

tion: The wavelet representation, (IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 11(7), 1989).

[2] S.G. Mallat, Multifrequency channel decompositions of im-
ages and wavelet models, (IEEE Trans. on Acoustics Speech
and Signal Processing, vol. 37(12), 1989) p. 2091–2110.

[3] S.G. Mallat, A Wavelet Tour of Signal Processing, (Academic
Press, New York, 1998).

[4] S.G. Mallat and S.G., Zhong, Characterization of signals from
multiscale edges, (IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence , vol. 14(7), 1992).

[5] R.C. Gonzalez and R.E. Woods, Digital Image Processing
(Third Edition), (976, Prentice Hall, United States Edition,
2007).

[6] A. Aldroubi and M. Unser Families of multiresolution and
wavelet spaces with optimal properties, (Numerical Functional
Analysis and Optimization, vol. 14(5-6), 1993) p. 417–446.

[7] A. Cohen, I. Daubechies and J. C. Feauveau Biorthogonal
bases of compactly supported wavelets, (Comm. Pure Appl.
Math., vol. 45, 1992) p. 485–560.

[8] W. Sweldens The lifting scheme: A custom-design construc-
tion of biorthogonal wavelets, (Applied and computational har-
monic analysis, vol. 3(2), 1996) p. 186–200.

[9] W. Sweldens The lifting scheme: A construction of second
generation wavelets, (SIAM J. Math. Anal., vol. 29(2), 1997)
p. 511–546.

[10] H. Douzi, D. Mammass and F. Nouboud Faber-Schauder
wavelet transform, application to edge detection and image
characterization, (Journal of Mathematical Imaging and Vi-
sion, vol. 14(2), 2001) p. 91–101.

[11] M. Amar, R. Harba, H. Douzi, F. Ros, M. El Hajji, R. Riad and
K. Gourrame A JND Model Using a Texture-Edge Selector
Based on Faber-Schauder Wavelet Lifting Scheme, (Image and
Signal Processing: 7th International Conference, ICISP 2016,
Trois-Rivières, QC, Canada, May 30 - June 1, 2016, Proceed-
ings, 2016) p.328–336.

[12] M. El hajji, H. Douzi and R. Harba Watermarking Based on
the Density Coefficients of Faber-Schauder Wavelets, (Image

7

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.42, December 2021

Fig. 11. Execution time of FSDWT kernel for different number of threads per block with different image sizes

and Signal Processing: 3rd International Conference, ICISP
2008. Cherbourg-Octeville, France, July 1 - 3, 2008. Proceed-
ings) p. 455–462.

[13] M. El Hajji, H. Douzi, D. Mammass and R. Harba A robust
wavelet-based watermarking algorithm using mixed scales,
(Multimedia Computing and Systems (ICMCS), 2011 Interna-
tional Conference on, 2011) p. 1–5.

[14] A. Azeroual and K. Afdel Low Complexity Image Authen-
tication Based on Singular Value Decomposition and Mixed
Scales Faber Schauder Wavelet, (International Review on
Computers and Software (IRECOS), vol. 10(12), 2015) p.
1209–1215.

[15] A. Azeroual and K. Afdel Image Authentication Based on
Faber Schauder DWT, (2016 13th International Conference on
Computer Graphics, Imaging and Visualization (CGiV), Beni
Mellal), p. 78–83.

[16] A. Azeroual and K. Afdel A Faber Schauder dominant blocks
based fragile watermarking scheme for image tamper detec-
tion, (2016 International Conference on Electrical and Infor-
mation Technologies (ICEIT), Tangiers), p. 380–385.

[17] A. Azeroual and K. Afdel A Fragile Watermarking Scheme
for Image Authentication Using Wavelet Transform, (Interna-
tional Conference on Image and Signal Processing ICISP: Im-
age and Signal Processing, 2016) p. 337–345.

[18] A. Azeroual, K. Afdel, M. El Hajji and H. Douzi, On line Key
Frame Extraction and Video Boundary Detection using Mixed
Scales Wavelets and SVD, (International Journal of Circuits,
Systems and Signal Processing, 9, 2015) p. 420–426.

[19] A. Azeroual and K. Afdel Key Frames Based Video Au-
thentication Using Fragile Watermarking and Singular Value
Decomposition, (International Review on Computers and Soft-
ware (IRECOS), vol. 11(5), 2016) p. 420–426.

[20] M. Benabdellah, M. Gharbi, F. Regragui and E. H. Bouyakhf,
Choice of reference images for video compression, (Applied
Mathematical Sciences, vol. 1(44), 2007) p. 2187–2201.

[21] CUDA C Programming Guide, PG-02829-001 v8.0, Septem-
ber 2016.

[22] CUDA C Best Practices Guide, DG-05603-001 v8.0, Septem-
ber 2016.

8

	Introduction
	GPU
	FSDWT
	Implementation of FSDWT on CPU

	The proposed Approach
	Host part
	Device part

	Experimental results
	CUDA implementation of FSDWT
	Time evaluation

	Conclusions and Future Work
	References

