
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 43, December 2021

40

Root Causes and Reduction Techniques for Rework in

Global Software Development

Ritu Jain
Professor, Saraswati College of Engineering

Navi Mumbai, Maharashtra, India

Ugrasen Suman
Professor, SCSIT, Devi Ahilya University

Indore, MP, India

ABSTRACT

Global software development (GSD) is a trend adopted by

numerous software companies to reduce development cost

and time. However, potential cost and time savings are

seldom realized due to unprecedented challenges in GSD

environment. These challenges often hamper software

development and project management activities. Moreover,

they led to confusions, misinterpretations and conflicting

perceptions regarding the software to be built, which in turn

induce excessive rework. This rework significantly wastes lots

of time as well as resources and may doom projects to fail.

Rework in GSD setting can be reduced, if root causes of

rework can be identified and thus avoided for GSD. However,

there is paucity of research on this aspect. Thus, in this paper,

root causes of rework in GSD are investigated. Techniques to

reduce rework for GSD are also suggested. A metric for

verifying the understanding score of distributed teams is also

proposed. This study would aware practitioners and

researchers about the causes of rework and its reduction

techniques for GSD setting.

General Terms

Software Engineering, Global Software development,

Distributed Software Development

Keywords

Global Software development, Rework, Causes, Reduction

Techniques

1. INTRODUCTION
GSD is a software development approach in which

practitioners residing in different countries work as a team to

develop a software. Most of the software companies are

adapting this approach to realize cost and time benefits

associated with it. However, these benefits are seldom

achieved due to geographical, temporal, socio-cultural,

linguistic and organizational distances. These distances are

collectively termed as GSD distances [1, 2]. Due to these

distances, GSD projects often suffer from communication,

coordination and collaboration challenges as depicted in

Table1.

These communication, coordination, and collaboration

challenges often led to misunderstandings, confusions,

inconsistent perceptions, and defects; which in turn induce

excessive rework. This rework significantly wastes lots of

time, resources and thus, increases risk of project failure [3,

4]. A substantial amount of time and resources can be saved,

if practitioners can reduce the rework incurred during GSD.

Thus, in order to reduce rework in GSD projects, practitioners

need to be aware of the root causes of rework in projects.

Also, they should be well verse with the techniques which can

be used for reducing rework. Thus, in this paper, root causes

of reworkin GSD have been identified. Rework reduction

techniques are also suggested. It would subsequently aid in

improving the effectiveness of global software development

process [8].

Table 1. Challenges associated with GSD Distances

Distance Challenges

Geographical Restricts formal as well as informal

communication, project awareness,

coordination and knowledge management

[1].

Temporal

Increases response time, decreases

synchronous communication, hampers

effective coordination and collaboration [2]

Socio-cultural Different frame of references, incompatible

work ethics, inadequate cohesiveness,

distrust and frustration among members

belonging to different countries [3].

Linguistic Difference in native language and linguistic

accent limits communication and increases

the probability of misunderstanding [3].

Organizational Mismatch in processes, tools and work

culture [1].

The paper is organized as follows. Section 2 presents a brief

overview of rework in global software development and

summarizes the related work. Section 3 presents the root

causes of rework in GSD. Section 4 discusses rework

reduction techniques. Finally, section 5 concludes the paper.

2. BACKGROUND AND RELATED

WORK
All In software development setting, reimplementing or

modifying a previously completed work is considered as

rework. In software development, eliminating or preventing

rework completely is not possible, but excessive rework

signifies anomalies in development process or project

management techniques [5]. However, excessively low

rework

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 43, December 2021

41

Fig 1: Root Causes of Rework in GSD

could be due to insufficient quality assurance or defect

detection activities [5]. Excessive rework increases the cost of

development, deteriorates product quality and demotivates

team members, which in turn increases the risk of project

failure [6]. Boehm et al has advocated avoidance of rework as

one of the major approaches for enhancing productivity,

decreasing development time and effort of a software project

[8].

It has also been reported that approximately 40-50% of

software development effort is wasted in rework. However,

little research has been performed on investigating the root

causes of rework in GSD [9]. A software development

process can be effectively improved, if rework can be reduced

or avoided [8]. Thus, strategies to reduce rework in GSD

setting are also explored.

Few researchers have investigated rework in software

development. Ramdoo et al. has identified root causes of

rework in software development. According to their study,

ambiguous requirements, misunderstanding among

stakeholders, insufficient testing, inadequate maintenance of

history and versioning are root causes of rework in software

development [6]. However, they have not explicitly

investigated rework causes as well as solution strategies for

GSD projects.

Gopal et al. have investigated the impact of key process areas

(requirements engineering, training, project planning, product

engineering, software configuration management, peer

reviews, and defect prevention) on project performance

measured in terms of effort, elapsed time, and software

rework in GSD projects. They found that requirement

instability, rework stage, prior experience, and quality

processes strongly affect rework [10]. However, the study

basically investigated performance of projects measured in

terms of effort, elapsed

time and software rework and have not dedicatedly

investigated causes of rework specifically in GSD setting.

Alahyari et al. has performed exploratory research to identify

different types of wastes that are confronted in agile/lean

software development organizations. They have discerned that

rework is one of the software development wastes that need to

be eliminated. According to this study, poorly specified

requirements and ineffective architectural design and lack of

common design pattern are considered as major sources of

rework [11]. However, the study investigated all the sources

of waste in agile/lean organizations and have not pinpointedly

explored causes of rework in GSD. In GSD, additional rework

is generated due to GSD distances. However, none of the

research study has explicitly investigated rework for GSD

setting. Thus, this paper attempts to explore this aspect for

GSD. This study would aware practitioners about the probable

causes of rework in GSD in order to avoid them. It would also

draw attention of researchers to further investigate this

software waste to improve the effectiveness of GSD process.

3. ROOT CAUSES OF REWORK IN GSD
Rework can hamper effective software development and

project management [8]. To reduce the software development

rework, underlying causes of rework need to be investigated.

Thus, in this research work, root causes of rework in GSD

setting have been explored as illustrated in Fig. 1. Major

causes of rework in GSD are inadequate understanding of

remote team members about project, ineffective global

software development process, inadequate vendor

management and ineffective GSD project management.

3.1 Inadequate Understanding
In GSD projects, low involvement of remotely located client,

incomplete or poorly specified requirements and indirect

communication between offshore developers and onsite

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 43, December 2021

42

customers usually result into misinterpreted requirements

which often lead to confusion and rework [1, 12]. Single

communication link between onshore and offshore teams

sometimes causes communication bottleneck [1].

Geographical, temporal and socio-cultural distances often

cause insufficient or delayed resolution of doubts of offshore

members [1]. Incomplete interface specifications also induce

misinterpretations about other stories being implemented

remotely [1]. Offshore developers have inadequate

understanding about requirements, architecture and their

rationale. In addition to this, inadequate domain knowledge

often leads to conflicting modules [13]. Diverse teams, tools,

processes, terminologies, different communication styles and

lack of training often hamper understanding of remote

developers. Lack of common understanding about project’s

vision, process policies, coding standards, design standards as

well as cultural and organizational unawareness may also

induce rework [13, 14]. Unawareness in offshore team about

expected quality, process, and schedule adherence can further

induce misunderstandings and rework [13]. Due to these

incompatibilities, remote team members lack unified

understanding about project.

3.2 Ineffective GSD Process
There is no silver bullet for GSD projects due to its varied

characteristics. Different tools, processes and teams often

restricts requirement traceability and could lead to

synchronization and integration problems [3]. Requirement

change management is difficult aspect of software

development. Thus, in GSD when requirements keep on

changing, remote members sometimes have to work on the

basis of assumptions as information about changes in

requirements is often not communicated timely and

effectively to distant team members [1]. Also, conflicting

changes in requirements are difficult to manage when team is

dispersed [1]. Insufficient unit testing performed by client

developers, before transferring code to vendor for testing and

unavailability of real-life data at vendor site increases effort of

testing [1]. Remote developers usually are unable to interpret

long and unreadable defect report [1]. Test engineers

belonging to different organizations sometimes quick fix the

bugs, in order to save service level agreement (SLA) [1]. Due

to lack of training and awareness, offshore developers do not

comply to the decided design and coding standards which can

induce misinterpretation [13].

3.3 Inadequate Vendor Management
Vendor team have insufficient domain knowledge due to lack

of communication and cooperation. Insufficient competence

transfer, process, culture, and language training for vendor

team can induce rework [1]. Impractical deadlines force

offshore members to finish work without focusing on quality

[12]. It results in burnt out of offshore team members, high

attrition rate of offshore members, reduced productivity and

loss of tacit knowledge [1, 13]. Abrupt changes in team

composition (shrinking and expansion) during project

execution also induces rework [8]. Vendor team sometimes

get demotivated due to biased attitude of client and inadequate

senior management support [13]. Unfamiliarity with client’s

tools and switching to new tools and technology during

project life cycle may create confusions and misinterpretation

at vendor site [14].

3.4 Ineffective GSD Project Management
GSD projects encounter several challenges due to hampered

communication, coordination and collaboration. Insufficient

budget for collaboration establishment factors, such as travel

expenses, 3C tools. Underestimated schedule due to

inconsideration of GSD distances and inadequate time,

resource allocation for quality management processes may

force the team to finish work without focusing on quality

Additional rework due to not allocating time for rework

during schedule planning and management [17]. Inadequate

planning and ineffective task allocation can lead to

incompatible components [13]. Dependent or interdependent

activities if accomplished concurrently at different locations

as well as high dispersion of team members working on a

single module can induce rework [15]. Insufficient feasibility

study for GSD appropriateness, technically incompetent

developers or inexperienced/ incompetent project manager

can induce rework [6,13]. Inadequate conflict management

between client and vendor and inadequate conflict

management between customer and developers may create

confusions [13]. Poor risk identification and management can

also induce rework in GSD [16].

4. GSD REWORK REDUCTION

TECHNIQUES
Rework is a major risk encountered during execution of GSD

projects. It can be reduced with the help of the proposed

techniques:

4.1 Architecture and Dependencies Need to

be Effectively Managed
 It is difficult to handle dependencies between user stories

being developed at different locations. Thus, dependencies

between user stories need to be identified as soon as possible

to avoid rework. Stories having high dependencies need to be

developed at same location and same iteration. Any change in

dependencies need to be monitored continuously [14].

Software architecture need to be planned and designed

cautiously, because it would influence quality,

communication, and coordination requirements of distributed

team; and can lead to high rework, if not handled cautiously.

Architect and offshore project manager can continuously

monitor the compliance of defined architecture and process

used in development [18].

4.2 Proactive Management of Rework
Some inevitable rework should be completed on regular basis.

It would reduce generation of new rework. During project

planning and estimation, ample time need to be allocated for

rework activities to avoid excessive schedule pressure, slipped

deadline, and further rework. Probable causes of rework need

to be identified during project planning as well as iteration

planning. These causes of rework should be monitored and

mitigated during project execution. Weekly retrospective

meetings can be organized to evaluate amount of rework

which have been avoided and could have been avoided [19,

20].

4.3 Adaptive Agile Approach to Reduce

Rework
In agile, higher priority is assigned to tasks having high

customer value, which can lead to negligence of quality

preserving tasks (managing backlogs, architecting, updating

documentation, and refactoring) having zero customer value.

Thus, balance of work needs to be maintained between quality

oriented and high customer valued tasks which could maintain

quality and reduce rework [21]. Agile practices, such as test-

driven development, pair programming, refactoring, software

craftsmanship, iteration management, and mindfulness about

technical debt help in avoiding rework [19, 21, 22]. Customer

awareness as well as involvement need to be improved to

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 43, December 2021

43

reduce rework. It would help the team to better understand

their needs, reduce requirement volatility, ambiguous and

incomplete requirements [7].

4.4 Validation and Verification Activities
Greater emphasis is required on verification and validation

activities in GSD projects. Rework can be reduced by

emphasizing quality assurance activities, such as inspections,

technical reviews, and walkthroughs in early phases of

software development. Reviews which can verify

requirements, design, architecture, code, and test scenario

must be performed throughout software development.

Documentation stored in repositories also need to be reviewed

and updated periodically to avoid ambiguities. Root-cause

analysis of the errors detected during these activities need to

be performed and subsequently preventive actions need to be

taken [14].

4.5 Disciplined Software Engineering

Practices
Disciplined as well as mature software development process,

robust requirement engineering mechanism, systematic

software configuration management, and mindful interface

design aid in avoiding rework. Adequate knowledge

management, competent, trained, and experienced project

manager as well as practitioners would reduce rework in GSD

[5, 14].

4.6 Project Management Practices to

Reduce Rework
Team having members with cross functional skills at each site

would aid in reducing rework. High turnover rate swipe off

tacit knowledge from the project thus, increases rework. Pair

programming, updated documentation, and cross training are

some of the ways to preserve tacit knowledge in teams with

high attrition rate [14, 20]. Vendor’s inexperience or

incompetence regarding GSD projects can be pretested before

commencement of project by conducting economic, technical,

and behavioral feasibility. Freedom of expression, conflict

management between onshore, offshore team and customer,

and appropriate task allocation can reduce rework. Proper

scope, cost, and time estimation as well as resource allocation

need to be performed with consideration to GSD distances

[13].

4.7 Team Understanding Score Metric for

Improving Understanding of Remote Team

Members
One of the major causes of rework in GSD is reduced

understanding and awareness about requirements,

architecture, project, culture, tools, and technology in remote

team. In this research work, a metric that indicates

understanding score of offshore members to verify sufficient

understanding about these aspects has been proposed. The

formulae for the proposed metric is as follows:

Team Understanding Score = Ud + Uo + Ut + Uc (1)

where,

Ud: understanding about domain, requirement, architecture,

and their rationale.

Uo: understanding about organizational processes, policies,

vision, and work culture of onshore site.

Ut: developer’s expertise about usage of tools and technology.

Uc: understanding about cultural values, language of remote

counterparts, and temporal distance.

Team members can be asked to provide score for values of

Ud, Uo, Ut, Uc individually in the range of 0 to 5, according

to their understanding level. A team having individual Ud,

Uo, Ut, Uc score greater than 3 and average score greater than

12 has good understanding of these aspects and possesses

capability to work in GSD environment.

Work overlapping hours would increase synchronous

communication, facilitate timely feedback, and enable early

doubt resolution. Previous working relationship, collocated

design phase, regular meetings, and globally accessible

repositories would improve domain knowledge, rationale

behind decisions, and team’s understanding about the project

and organization. Descriptive user story comprises clear

interface specifications which would reduce the problem of

insufficiently detailed and misunderstood requirements. Short

cultural and language training, frequent visits, relocation of

offshore representative at onshore location, and tools related

to communication, coordination and collaboration would

increase cultural awareness, improve team cohesiveness, and

reduce linguistic distance [13, 14].

5. CONCLUSION
Global software development is an approach which is being

adopted by numerous software companies across the globe

whereas, rework is a software development waste which

impedes the effectiveness of software development. In this

paper, root causes of rework in GSD have been investigated.

Major causes of rework in GSD are inadequate understanding

of remote team members about project, ineffective software

development process, inadequate vendor management and

ineffective GSD project management. Several techniques to

reduce rework have been discussed. A team understanding

metric to monitor and improve the unified understanding

about the project has been proposed. This study would aware

practitioners about the causes of rework in GSD. It would also

draw attention of researchers to further investigate this

software waste to improve the effectiveness of GSD process.

6. REFERENCES
[1] Jain, R., Suman, U. 2015. A Systematic Literature

Review on Global Software Development Life Cycle.

ACM SIGSOFT Softw. Eng. Notes 40(2), (2015), 1-14.

[2] Espinosa, J.A., Carmel, E. 2003. The Impact of Time

Separation on Coordination in Global Software Teams: A

Conceptual Foundation. Softw. Process Improv. Pract.

8(4), (2003), 249-266.

[3] Babar, M. A., Zahedi, M.2012. Global Software

Development: A Review of the State-Of The-Art (2007-

2011). IT University Technical Report Series. IT

University of Copenhagen.

[4] Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.

2001. An Empirical Study of Global Software

Development: Distance and Speed. In: Proceedings of

the 23rd International Conference on Software

Engineering (ICSE '01), pp. 81-90. IEEE Computer

Society, Washington, DC, USA.

[5] Fairley, R.E., Willshire, M.J. 2005. Iterative Rework:

The Good, the Bad, and the Ugly. Ieee Computer. 38(9),

(Sep. 2005), 34-41.

[6] Ramdoo, V., Huzooree, G. 2015. Strategies to Reduce

Rework in Software Development on an Organisation in

Mauritius. International Journal of Software Engineering

& Applications. 6(5), (2015), 9-20.

[7] Schwalbe, K. 2015. Information Technology Project

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 43, December 2021

44

Management. 8th edn. Cengage Learning.

[8] Boehm, B.W., Papaccio, P.N.1988. Understanding and

Controlling Software Costs. IEEE Trans. Softw. Eng.

14(10), (1988), 1462-1477.

[9] Boehm, B., Basili, V.R. 2001. Software Defect Reduction

Top 10 List. Ieee Software. 34(1), (2001), 135-137.

[10] Gopal, A., Mukhopadhyay T., Krishnan, M.S. 2002. The

role of software processes and communication in

offshore software development. Commun. ACM. 45(4),

(2002), 193-200.

[11] Alahyari, H., Gorschek, T.,Svensson, R. B. 2019. An

exploratory study of waste in software development

organizations using agile or lean approaches: A multiple

case study at 14 organizations. Information and Software

Technology, 105, (2019), 78-94.

[12] Hoda, R., Murugesan, L. K.2016. Multi-level agile

project management challenges: A self-organizing team

perspective. J. Syst. Softw. 117, (2016), 245-257.

[13] Jain, R., Suman, U. 2018. A Project Management

Framework for Global Software Development. ACM

SIGSOFT Softw. Eng. Notes 43(1), (2018), 1-10.

[14] Jain, R., Suman, U. 2017. An Adaptive Agile Process

Model for Global Software Development. International

Journal on Computer Science and Engineering. 9(6),

(2017), 436-445.

[15] Browning, T.R., Eppinger, S.D. 2002. Modeling the

Impact of Process Architecture on Cost and Schedule

Risk in Product Development. IEEE Trans. Eng. Manag.

49(4), (2002), 428-442.

[16] Verner, J.M., Brereton, O.P., Kitchenham, B.A., Turner,

M., and Niazi, M. 2014. Risks and Risk Mitigation in

Global Software Development: A Tertiary Study. Inf.

Softw. Technol. 56 (1), (2014), 54-78.

[17] Coram, M., Bohner, S. 2005. The Impact of Agile

Methods on Software Project Management. In:

Proceedings of the 12th IEEE International Conference

and Workshops on Engineering of Computer-Based

Systems, IEEE Computer Society, Washington, DC,

USA (2005), 363-370.

[18] Nord, R.L., Ozkaya, I., and Sangwan, R.S. 2012. Making

Architecture Visible to Improve Flow Management in

Lean Software Development. IEEE Softw. 29(5), (2012),

33-39.

[19] Fairley, R.E., and Willshire, M.J. 2017. Better Now Than

Later: Managing Technical Debt in Systems

Development. Ieee Computer, 50(5), (2017), 80-87.

[20] Nelson, R.R. 2007. IT Project Management: Infamous

Failures, Classic Mistakes, and Best Practices. MIS

Quart Exec. 6(2), (2007), 67-78.

[21] Nord, R.L., Ozkaya, I., Kruchten, P., and Gonzalez-

Rojas, M. 2012. In Search of a Metric for Managing

Architectural Technical Debt. In Proceedings of the Joint

Working IEEE/IFIP Conference on Software

Architecture and European Conference on Software

Architecture. WICSA-ECSA '12, IEEE Computer

Society, Washington, DC, USA (2012), 91-100.

[22] Brown, N., Cai, Y., Guo, Y. et al. 2010. Managing

technical debt in software-reliant systems. InProceedings

of the FSE/SDP workshop on Future of software

engineering research FoSER '10, ACM, NY, USA, Santa

Fe, New Mexico, USA (2010), 47-52.

IJCATM : www.ijcaonline.org

