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ABSTRACT 

Current developments in Requirement Engineering methods 

have seen mutation resulting from the use of machine learning 

algorithms to resolve several complex Requirements 

Engineering problems. One of these problems is the 

identification and classification of non-functional 

requirements in the requirements documents. Machine based-

learning techniques for this challenge have been shown 

hopeful outcomes than traditional natural language processing 

approaches. However, there is still lacking of a systematic 

understanding these machine learning approaches. Despite the 

fact that non-functional requirements are critical to a software 

project's success, there is still no accords about what they are 

and how we will elicit, document, and validate them. Thus, 

the important task of Requirements Engineering is to properly 

extract non-functional requirements records from requirement 

files and arrange them into categories. However, this task is 

waste of time and prone to errors. This paper presents non-

functional requirements importance, relates them to the 

process of software development and identifies its challenges 

and current area of research. 
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1. INTRODUCTION 
The software development methods are System Development 

Life Cycle (SDLC), Agile, and Object Oriented Analysis and 

Design (OOAD) methods [1]. Due to the high rate of 

development of software using agile methods relative to other 

methods, it becomes one of the most adopted technologies in 

software projects. Agile method has great value in changing 

requirements, which increases the productivity and quality of 

the final product. 

Requirement engineering is an essential function of the 

software development process. Requirements engineering 

process can be broken down into various stages, such as 

requirements development and analysis, system modeling, 

requirements specifications and validation of requirements 

[2]. Customized software must meet all customer 

requirements in order to be accepted by the customer or user. 

Requirements are categorized into two types: Functional 

Requirements (FRs) and Non-Functional Requirements 

(NFRs). 

Functional requirements (FRs) clarify the function (or service 

statement) that the system must provide. It is a general 

assertion of what the framework should do. Non-Functional 

Requirements (NFRs) describe system properties and 

constraints that must be met by the system in order to be 

accepted by customer [3]. 

Often NFRs are identified and specified in the development 

process relatively late and are barely explicitly managed. This 

implies that developers may fail to appreciate the importance 

of assessing NFRs earlier. The automatic extraction and 

classification of requirements can help developers to identify 

and manage NFRs from text documents earlier. The automatic 

extraction and classification of requirements are the focus of 

several requirements engineering researchers [1], [4]. 

2. BACKGROUND 

2.1 Non Functional Requirements 
Although NFRs have been around since the early days of 

software engineering, there is no consensus on a name or 

definition of a NFR. It's been described as a software 

requirement that doesn't describe what the software will really 

perform, but rather how it will do it [5]. They are also known 

as quality characteristics, technical requirements, or quality of 

provision requirements. NFRs express the software 

requirements and their effects inside the system such as: 

 Performance requirement is concerned with 

resource required, response time, throughput or 

other thing else related to performance. 

 Security is concerned with system or program 

protection, like authentication and authorization. 

 Reliability is regarded to the capacity of the system 

to carry out its appropriate tasks and operations in 

its specific environment without failure or system 

downtime. 

 Usability refers to the ease with which the user can 

learn, operate, prepare inputs and explain outputs by 

interacting with the system. 

 Scalability requirement is the capability of software 

to change with the business environment. 

 Accessibility requirements are related to user 

concerns about how easily the system can be used 

by people with different abilities to fulfill a specific 

goal in a specific use context. 
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 Availability is related to determine how long the 

system runs, how long it takes to fix a fault, and 

how long it takes between lapses. 

 Data integrity: The term "data integrity" refers to 

the process of maintaining, ensuring data accuracy 

and consistency throughout its lifecycle. In case of 

this factor is missing, data is lost because a database 

is fault. 

 Maintainability refers to how easily a software 

system's faults may be identified and fixed. 

 Verifiability refers to the number of tests, analyses, 

and demonstrations required to evidence that the 

system will work as purposed. 

 Interoperability is referred to the ability of a 

software system to join or simplify the interface 

with other systems. 

 Portability is related to the variety of hardware and 

software platforms on which an information system 

can run, as well as the ease with which the system 

can be moved from one environment to another. 

 Reusability is the degree to which components of an 

information system, or its design, can be reused in 

the development of other applications. 

 Flexibility refers to the ability of a user to make 

changes to an information system without having to 

change the software itself in order to adapt to 

diverse environments, configurations, and user 

expectations. 

2.2 Machine learning 
Machine learning [6] is a kind of Artificial Intelligence that 

enables software to act intelligently. Machine learning's main 

goal is to create algorithms that can take in inputs and utilize 

statistical analysis to expect outputs within a reasonable 

range. 

There are two types of machine learning algorithms: 

supervised and unsupervised learning. In supervised learning, 

a person supplies the necessary income and output, as well as 

the accuracy of forecasts during the algorithm's training. The 

algorithm applies what it has learned to new data after it has 

finished learning. But unsupervised learning does not require 

the algorithm to be trained with the required outputs, it relying 

on an iterative process known as deep learning to analyze 

data. 

Fraud detection, spam filtering, network security threat 

identification, predictive maintenance, and creating News feed 

are all examples of machine learning applications[6]. 

2.3 Agile requirements engineering 
Agile requirements engineering [7] differs from conventional 

requirements engineering in that it takes an iterative and 

incremental discovery approach. Unlike traditional 

requirement engineering, agile does not encourage upfront 

detailed planning for the entire project, promotes both quick 

clean delivery and customers’ involvement in the entire 

process of software development. Although agile engineering 

requirements improve the understanding of customer needs 

and the ability to adapt to the evolving needs of the current 

dynamic environment, they present clear challenges 

concerning NFRs. 

3. RELATED WORK 
Kurtanovic et al [8] classified requirements into Functional 

Requirements (FR), Non-Functional Requirements (NFR), 

and subcategories of non-functional requirements using the 

Support Vector Machines (SVM) algorithm. The researchers 

used the PROMISE repository, which is the most commonly 

used requirements database and it is known to present an 

unbalanced set of functional and non-functional requirements. 

However, there are only 625 categorized (labeled) 

specifications written in natural language in this repository, 

which is unbalanced. 

Maalej and Nabil [9] proposed a feature of app store analytics 

that automatically classify user feedback into bug reports, 

feature requests, user impressions, and ratings (i.e. simple 

praise or dispraise repeating the star rating). the authors 

presented a number of results that can be used to help 

designers build review analytic tools. 

The results of this research don't apply to particular stores 

(such as Amazon), other languages with another orientations 

and inferences than English, or other types of reviews, like 

hotel or movie reviews. 

The authors use supervised learning techniques to implement 

automatic classification. the authors did this by manually 

labeling 4,400 reviews using content analysis in order to 

construct a truth set. This is clearly a high overhead, would be 

making scale difficult, using semi-supervised learning can 

avoid this problem. 

Deocadez et al [10] applied SSL techniques in a dataset of 

App Store reviews to demonstrate their feasibility and 

capabilities for both transductive (predicting current instance 

labels during training) and inductive (predicting labels on 

unseen future data) results. 

The results show that only a small amount of data is required 

to achieve comparable results to classical supervised 

techniques, and the trained models can correctly assign labels 

to the collected data as well as identify unseen future reviews. 

But the results may not apply to other app stores, especially 

those with varying quality assurance standards. Furthermore, 

they only considered reviews written in English, so the results 

cannot be applied to reviews written in other languages [10]. 

On the basis of lingual relations, in [11] the authors suggested 

a rule-based technique for classifying non-functional 

requirements from the PROMISE corpus. To automatically 

extract thematic roles from the SRS documents, the 

researchers used text mining preprocessing methods like 

ANNIE, MuNPEx, JAPE, Snowball, and ANNIE POS 

Tagger. This proposal aims to reduce the pressure and effort 

required by designers and analysts in identify NFRs from very 

vast requirement documents, as well as to enhance the quality 

of these documents. The precision and recall of the PROMISE 

corpus classification findings were 97 percent and 96 percent, 

respectively. The researchers, on the other hand, do not go 

into detail on the machine learning techniques employed in 

the classification. 

In [12] the research aims to help analysts extract relevant non-

functional specifications from accessible unconstrained 

natural language documents more efficiently using automated 

natural language processing. The authors developed NFR 

Locator, a tool-based method for classifying and extracting 

sentences from existing natural language texts into their 

relevant NFR categories, to achieve this aim. Despite NFR 

Locator was dealing with textual sentences, it can't extract 

data from images or tables. Also the process and tool cannot 

be applied to other systems or domain. 

Chuanyi Li et al [13] suggest a classification approach that 

uses combined of project-specific and non-project-specific 

keywords, as well as machine learning algorithms. The 
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suggested technique succeeds in attaining high classification 

accuracy by employing keywords as features, decreased 

significant human labor in developing machine learning-based 

classifiers, and obtained steady performance in detecting 

minority groups, regardless of the number of few cases they 

have. The authors found that using the suggested features, 

SVM performed the best, also this method worked 

effectively when working with unbalanced request classes. 

However, User requisitions types that were used as 

categorization goals throughout this paper were manually 

identified by aggregating current requirements categories. 

Different people might have dissimilar thoughts about how to 

categorize and name these groups. Furthermore, Not-specific 

to the project keywords for every kind of client request are 

manually extracted from requirements papers, which 

submissive to researcher prejudice. 

Deocadez et al [14] suggest using semi-supervised learning to 

automatically classify functional and non-functional 

requirements in mobile app reviews published to app stores. 

The authors assessed the performance of the three semi-

supervised learning algorithms that’s chose using the standard 

accuracy metric. For classifying the apps reviews, the authors 

used the FURPS (Functionality, Usability, Reliability, 

Performance, and Supportability) as a basis model. But due to 

differences between app stores in quality assurance standards 

its make it hard to popularize to other app stores. The authors 

only analyzed reviews written in English; therefore their 

outcome cannot be applied to reviews written in other 

languages. The authors used the performance measurements 

for this study F-Score = 2 (P R)/ (P + R) [9], the authors assert 

that this measure is extensively utilized for information 

retrieval tasks, but they don't give the reasons for using it. 

In [15], used a combination of four classification techniques 

BoW, TF-IDF, CHI2, and AUR-BoW to automatically 

classify user reviews into four categories of NFRs (reliability, 

usability, portability, and performance), FRs, and Others with 

three machine learning algorithms Naive Bayes, J48, and 

Bagging[15]. The authors used textual semantics to enrich 

user reviews by using word2vec to classify user reviews 

automatically. The authors compared user reviews from two 

popular Apps: iBooks and WhatsApp, which belong to 

various categories (domains) from different App stores, to the 

combinations of categorization approaches and machine 

learning algorithms (platforms). The authors performed tests 

to compare the F-measure of classification results across all 

combinations and discovered that combining AUR-BoW with 

Bagging results in the highest F-measure. However, the 

machine learning algorithms applied in this study were Naive 

Bayes, J48, and Bagging without providing the reasons for 

applying these algorithms. They picked these algorithms for 

user review categorization since they had previously been 

successfully used for object classification in a number of 

previous studies. 

In [16], the authors used unsupervised machine learning 

algorithms to classify NFRs. The Latent Dirichlet Allocation 

(LDA) algorithm classifies documents dependent on the 

frequency of word co-occurrences[12].The Biterm Topic 

Model (BTM) technique, differently from the LDA approach, 

is dependent on word co-occurrence manner and learns topics 

by looking for word-word (such as biterm) manner. The Naive 

Bayes Classification method is a supervised learning method 

that uses preprocessing to decrease requirement specification 

asymmetry through taking benefit of rich sentence 

characteristics and latent co-occurrence relations. However, 

clustering algorithms used for classifying NFRs had a poor 

performance. This could mean that the dataset under study is 

completely disorganized and subcategories of NFRs aren’t 

separated fully. So, an unsupervised algorithm (like 

Hierarchical or K-Means) will fail to fulfill exactly 

segmentation. 

The aim of [17] is to assist application developers to identify 

and study NFRs in application development by automatically 

classifying user reviews. In order to reduce human efforts and 

to obtain valuable information from user reviews. In this study 

the authors analyze the security requirements descriptions 

existent in the Software Requirements Specification (SRS) 

document and then develop the classification models. By 

Using the J48 decision tree method, the authors analyze the 

descriptions of the security requirements using text mining 

tools, and after that categorized them to four types of security 

requirements: authentication, authorization, access control, 

cryptography-encryption, and data integrity. the authors 

constructed the prediction model in the same way they did for 

any other type of security requirement. However, this study 

adapted ROC value to compute the performance of their 

classifiers. But ROC suffers from less bias compared to other 

measures, such as the F-Score, which skews toward the 

positive class, especially in case of an imbalanced class. the 

authors doing experiments by using Weka3 with different 

machine learning algorithms: Naive Bayes, J48, and Bagging. 

the authors did not explain why this algorithm was used to 

classify user reviews. It is claimed that these techniques were 

chosen because they had previously been successfully used 

for object classification in several previous research [17]. 

4. CHALLENGES OF NFR 

EXTRACTION 
Despite the many advantages offered by considering NFR in 

software developments, however, there are still some 

associated challenges. 

 In traditional software development technology as 

well as in agile software development technology, 

the users and developers spent most of their efforts 

on modeling functional requirements, while non-

functional requirements are often neglected or 

retrofitting late in software development can lead to 

lower quality and errors in later stages of the 

development process[18]which often result in 

projects failing. 

 Despite the fact that non-functional requirements 

are becoming more widely regarded as a vital 

success metric for projects, it receive less attention 

in software development industrial practices than 

functional requirements. There are numerous 

guidelines for sketching and modeling functional 

requirements. Focusing on NFR and specifying 

NFR in conjunction with FR is still an open 

research study, also integrating NFR into the 

different phases of software development is still 

difficult and very much challenging. 

 Typically, People are capable of figuring out what 

they want from the system, but they often don't care 

or realize how to get it. To develop a high-quality 

software product, NFR needs to be extracted from 

the requirements documents to be implemented.  

 Can’t deal with every NFR in the same way, for 

example, usability and security requirements must 

be handled in a different way. As a result, defining 

one solution to deal with all NFRs is problematic. 
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 Different stakeholders have different perspectives 

and preferences when it comes to eliciting 

functional and non-functional requirements. The 

NFR gathered from various stakeholders may be 

conflict with one another. Rarely can NFR be said 

to be fulfilled. Conflict resolution decisions must be 

based on priority. 

 Ambiguous specification of the system’s features is 

usually the most important concerns, and the 

insufficiency in addition to lack of consistency of 

these features usually results in a system where 

customer gratification remains a question mark. 

5. CONCLUSION& FUTURE WORK 
Non Functional requirements (NFRs) play a major function in 

the success of software systems and it is as important as 

Functional requirements. It is necessary to deal with NFRs at 

early stages of agile software developments because its affect 

the database decision, programming language, or operating 

framework. As the absence of NFRs requires a high cost to 

solve the problem. Its offer high quality product that is 

accurate, consistent and reliable. This paper suggests 

developing an efficient approach for automatic extraction of 

NFRs in agile methods in order to prevent the problems that 

are found previously, and try to improve the performance 

through customer satisfaction. The goal is to be able to extract 

NFRs that are embedded in FRs and classify NFRs in 

available documents through automated natural language 

processing and machine learning techniques. 
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