
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 43, December 2021

23

Challenges of Non-functional Requirements Extraction

in Agile Software Development using Machine Learning

Hoda Mohamed Abd El
Sameaa

Department of Information Systems
and Technology

Faculty of Graduate Studies for
Statistical Research, Cairo

University, Egypt

Nesrine Ali abd el Azim
Assistant Professor

Department of Information Systems
and Technology

Faculty of Graduate Studies for
Statistical Research

Cairo University, Egypt

Nagy Ramadan
Associate Professor

Department of Information Systems
and Technology

Faculty of Graduate Studies for
Statistical Research

Cairo University, Egypt

ABSTRACT

Current developments in Requirement Engineering methods

have seen mutation resulting from the use of machine learning

algorithms to resolve several complex Requirements

Engineering problems. One of these problems is the

identification and classification of non-functional

requirements in the requirements documents. Machine based-

learning techniques for this challenge have been shown

hopeful outcomes than traditional natural language processing

approaches. However, there is still lacking of a systematic

understanding these machine learning approaches. Despite the

fact that non-functional requirements are critical to a software

project's success, there is still no accords about what they are

and how we will elicit, document, and validate them. Thus,

the important task of Requirements Engineering is to properly

extract non-functional requirements records from requirement

files and arrange them into categories. However, this task is

waste of time and prone to errors. This paper presents non-

functional requirements importance, relates them to the

process of software development and identifies its challenges

and current area of research.

General Terms
Requirement specifications, machine learning

Keywords
Requirement Engineering, Non-Functional Requirements,

Machine learning

1. INTRODUCTION
The software development methods are System Development

Life Cycle (SDLC), Agile, and Object Oriented Analysis and

Design (OOAD) methods [1]. Due to the high rate of

development of software using agile methods relative to other

methods, it becomes one of the most adopted technologies in

software projects. Agile method has great value in changing

requirements, which increases the productivity and quality of

the final product.

Requirement engineering is an essential function of the

software development process. Requirements engineering

process can be broken down into various stages, such as

requirements development and analysis, system modeling,

requirements specifications and validation of requirements

[2]. Customized software must meet all customer

requirements in order to be accepted by the customer or user.

Requirements are categorized into two types: Functional

Requirements (FRs) and Non-Functional Requirements

(NFRs).

Functional requirements (FRs) clarify the function (or service

statement) that the system must provide. It is a general

assertion of what the framework should do. Non-Functional

Requirements (NFRs) describe system properties and

constraints that must be met by the system in order to be

accepted by customer [3].

Often NFRs are identified and specified in the development

process relatively late and are barely explicitly managed. This

implies that developers may fail to appreciate the importance

of assessing NFRs earlier. The automatic extraction and

classification of requirements can help developers to identify

and manage NFRs from text documents earlier. The automatic

extraction and classification of requirements are the focus of

several requirements engineering researchers [1], [4].

2. BACKGROUND

2.1 Non Functional Requirements
Although NFRs have been around since the early days of

software engineering, there is no consensus on a name or

definition of a NFR. It's been described as a software

requirement that doesn't describe what the software will really

perform, but rather how it will do it [5]. They are also known

as quality characteristics, technical requirements, or quality of

provision requirements. NFRs express the software

requirements and their effects inside the system such as:

 Performance requirement is concerned with

resource required, response time, throughput or

other thing else related to performance.

 Security is concerned with system or program

protection, like authentication and authorization.

 Reliability is regarded to the capacity of the system

to carry out its appropriate tasks and operations in

its specific environment without failure or system

downtime.

 Usability refers to the ease with which the user can

learn, operate, prepare inputs and explain outputs by

interacting with the system.

 Scalability requirement is the capability of software

to change with the business environment.

 Accessibility requirements are related to user

concerns about how easily the system can be used

by people with different abilities to fulfill a specific

goal in a specific use context.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 43, December 2021

24

 Availability is related to determine how long the

system runs, how long it takes to fix a fault, and

how long it takes between lapses.

 Data integrity: The term "data integrity" refers to

the process of maintaining, ensuring data accuracy

and consistency throughout its lifecycle. In case of

this factor is missing, data is lost because a database

is fault.

 Maintainability refers to how easily a software

system's faults may be identified and fixed.

 Verifiability refers to the number of tests, analyses,

and demonstrations required to evidence that the

system will work as purposed.

 Interoperability is referred to the ability of a

software system to join or simplify the interface

with other systems.

 Portability is related to the variety of hardware and

software platforms on which an information system

can run, as well as the ease with which the system

can be moved from one environment to another.

 Reusability is the degree to which components of an

information system, or its design, can be reused in

the development of other applications.

 Flexibility refers to the ability of a user to make

changes to an information system without having to

change the software itself in order to adapt to

diverse environments, configurations, and user

expectations.

2.2 Machine learning
Machine learning [6] is a kind of Artificial Intelligence that

enables software to act intelligently. Machine learning's main

goal is to create algorithms that can take in inputs and utilize

statistical analysis to expect outputs within a reasonable

range.

There are two types of machine learning algorithms:

supervised and unsupervised learning. In supervised learning,

a person supplies the necessary income and output, as well as

the accuracy of forecasts during the algorithm's training. The

algorithm applies what it has learned to new data after it has

finished learning. But unsupervised learning does not require

the algorithm to be trained with the required outputs, it relying

on an iterative process known as deep learning to analyze

data.

Fraud detection, spam filtering, network security threat

identification, predictive maintenance, and creating News feed

are all examples of machine learning applications[6].

2.3 Agile requirements engineering
Agile requirements engineering [7] differs from conventional

requirements engineering in that it takes an iterative and

incremental discovery approach. Unlike traditional

requirement engineering, agile does not encourage upfront

detailed planning for the entire project, promotes both quick

clean delivery and customers’ involvement in the entire

process of software development. Although agile engineering

requirements improve the understanding of customer needs

and the ability to adapt to the evolving needs of the current

dynamic environment, they present clear challenges

concerning NFRs.

3. RELATED WORK
Kurtanovic et al [8] classified requirements into Functional

Requirements (FR), Non-Functional Requirements (NFR),

and subcategories of non-functional requirements using the

Support Vector Machines (SVM) algorithm. The researchers

used the PROMISE repository, which is the most commonly

used requirements database and it is known to present an

unbalanced set of functional and non-functional requirements.

However, there are only 625 categorized (labeled)

specifications written in natural language in this repository,

which is unbalanced.

Maalej and Nabil [9] proposed a feature of app store analytics

that automatically classify user feedback into bug reports,

feature requests, user impressions, and ratings (i.e. simple

praise or dispraise repeating the star rating). the authors

presented a number of results that can be used to help

designers build review analytic tools.

The results of this research don't apply to particular stores

(such as Amazon), other languages with another orientations

and inferences than English, or other types of reviews, like

hotel or movie reviews.

The authors use supervised learning techniques to implement

automatic classification. the authors did this by manually

labeling 4,400 reviews using content analysis in order to

construct a truth set. This is clearly a high overhead, would be

making scale difficult, using semi-supervised learning can

avoid this problem.

Deocadez et al [10] applied SSL techniques in a dataset of

App Store reviews to demonstrate their feasibility and

capabilities for both transductive (predicting current instance

labels during training) and inductive (predicting labels on

unseen future data) results.

The results show that only a small amount of data is required

to achieve comparable results to classical supervised

techniques, and the trained models can correctly assign labels

to the collected data as well as identify unseen future reviews.

But the results may not apply to other app stores, especially

those with varying quality assurance standards. Furthermore,

they only considered reviews written in English, so the results

cannot be applied to reviews written in other languages [10].

On the basis of lingual relations, in [11] the authors suggested

a rule-based technique for classifying non-functional

requirements from the PROMISE corpus. To automatically

extract thematic roles from the SRS documents, the

researchers used text mining preprocessing methods like

ANNIE, MuNPEx, JAPE, Snowball, and ANNIE POS

Tagger. This proposal aims to reduce the pressure and effort

required by designers and analysts in identify NFRs from very

vast requirement documents, as well as to enhance the quality

of these documents. The precision and recall of the PROMISE

corpus classification findings were 97 percent and 96 percent,

respectively. The researchers, on the other hand, do not go

into detail on the machine learning techniques employed in

the classification.

In [12] the research aims to help analysts extract relevant non-

functional specifications from accessible unconstrained

natural language documents more efficiently using automated

natural language processing. The authors developed NFR

Locator, a tool-based method for classifying and extracting

sentences from existing natural language texts into their

relevant NFR categories, to achieve this aim. Despite NFR

Locator was dealing with textual sentences, it can't extract

data from images or tables. Also the process and tool cannot

be applied to other systems or domain.

Chuanyi Li et al [13] suggest a classification approach that

uses combined of project-specific and non-project-specific

keywords, as well as machine learning algorithms. The

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 43, December 2021

25

suggested technique succeeds in attaining high classification

accuracy by employing keywords as features, decreased

significant human labor in developing machine learning-based

classifiers, and obtained steady performance in detecting

minority groups, regardless of the number of few cases they

have. The authors found that using the suggested features,

SVM performed the best, also this method worked

effectively when working with unbalanced request classes.

However, User requisitions types that were used as

categorization goals throughout this paper were manually

identified by aggregating current requirements categories.

Different people might have dissimilar thoughts about how to

categorize and name these groups. Furthermore, Not-specific

to the project keywords for every kind of client request are

manually extracted from requirements papers, which

submissive to researcher prejudice.

Deocadez et al [14] suggest using semi-supervised learning to

automatically classify functional and non-functional

requirements in mobile app reviews published to app stores.

The authors assessed the performance of the three semi-

supervised learning algorithms that’s chose using the standard

accuracy metric. For classifying the apps reviews, the authors

used the FURPS (Functionality, Usability, Reliability,

Performance, and Supportability) as a basis model. But due to

differences between app stores in quality assurance standards

its make it hard to popularize to other app stores. The authors

only analyzed reviews written in English; therefore their

outcome cannot be applied to reviews written in other

languages. The authors used the performance measurements

for this study F-Score = 2 (P R)/ (P + R) [9], the authors assert

that this measure is extensively utilized for information

retrieval tasks, but they don't give the reasons for using it.

In [15], used a combination of four classification techniques

BoW, TF-IDF, CHI2, and AUR-BoW to automatically

classify user reviews into four categories of NFRs (reliability,

usability, portability, and performance), FRs, and Others with

three machine learning algorithms Naive Bayes, J48, and

Bagging[15]. The authors used textual semantics to enrich

user reviews by using word2vec to classify user reviews

automatically. The authors compared user reviews from two

popular Apps: iBooks and WhatsApp, which belong to

various categories (domains) from different App stores, to the

combinations of categorization approaches and machine

learning algorithms (platforms). The authors performed tests

to compare the F-measure of classification results across all

combinations and discovered that combining AUR-BoW with

Bagging results in the highest F-measure. However, the

machine learning algorithms applied in this study were Naive

Bayes, J48, and Bagging without providing the reasons for

applying these algorithms. They picked these algorithms for

user review categorization since they had previously been

successfully used for object classification in a number of

previous studies.

In [16], the authors used unsupervised machine learning

algorithms to classify NFRs. The Latent Dirichlet Allocation

(LDA) algorithm classifies documents dependent on the

frequency of word co-occurrences[12].The Biterm Topic

Model (BTM) technique, differently from the LDA approach,

is dependent on word co-occurrence manner and learns topics

by looking for word-word (such as biterm) manner. The Naive

Bayes Classification method is a supervised learning method

that uses preprocessing to decrease requirement specification

asymmetry through taking benefit of rich sentence

characteristics and latent co-occurrence relations. However,

clustering algorithms used for classifying NFRs had a poor

performance. This could mean that the dataset under study is

completely disorganized and subcategories of NFRs aren’t

separated fully. So, an unsupervised algorithm (like

Hierarchical or K-Means) will fail to fulfill exactly

segmentation.

The aim of [17] is to assist application developers to identify

and study NFRs in application development by automatically

classifying user reviews. In order to reduce human efforts and

to obtain valuable information from user reviews. In this study

the authors analyze the security requirements descriptions

existent in the Software Requirements Specification (SRS)

document and then develop the classification models. By

Using the J48 decision tree method, the authors analyze the

descriptions of the security requirements using text mining

tools, and after that categorized them to four types of security

requirements: authentication, authorization, access control,

cryptography-encryption, and data integrity. the authors

constructed the prediction model in the same way they did for

any other type of security requirement. However, this study

adapted ROC value to compute the performance of their

classifiers. But ROC suffers from less bias compared to other

measures, such as the F-Score, which skews toward the

positive class, especially in case of an imbalanced class. the

authors doing experiments by using Weka3 with different

machine learning algorithms: Naive Bayes, J48, and Bagging.

the authors did not explain why this algorithm was used to

classify user reviews. It is claimed that these techniques were

chosen because they had previously been successfully used

for object classification in several previous research [17].

4. CHALLENGES OF NFR

EXTRACTION
Despite the many advantages offered by considering NFR in

software developments, however, there are still some

associated challenges.

 In traditional software development technology as

well as in agile software development technology,

the users and developers spent most of their efforts

on modeling functional requirements, while non-

functional requirements are often neglected or

retrofitting late in software development can lead to

lower quality and errors in later stages of the

development process[18]which often result in

projects failing.

 Despite the fact that non-functional requirements

are becoming more widely regarded as a vital

success metric for projects, it receive less attention

in software development industrial practices than

functional requirements. There are numerous

guidelines for sketching and modeling functional

requirements. Focusing on NFR and specifying

NFR in conjunction with FR is still an open

research study, also integrating NFR into the

different phases of software development is still

difficult and very much challenging.

 Typically, People are capable of figuring out what

they want from the system, but they often don't care

or realize how to get it. To develop a high-quality

software product, NFR needs to be extracted from

the requirements documents to be implemented.

 Can’t deal with every NFR in the same way, for

example, usability and security requirements must

be handled in a different way. As a result, defining

one solution to deal with all NFRs is problematic.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 43, December 2021

26

 Different stakeholders have different perspectives

and preferences when it comes to eliciting

functional and non-functional requirements. The

NFR gathered from various stakeholders may be

conflict with one another. Rarely can NFR be said

to be fulfilled. Conflict resolution decisions must be

based on priority.

 Ambiguous specification of the system’s features is

usually the most important concerns, and the

insufficiency in addition to lack of consistency of

these features usually results in a system where

customer gratification remains a question mark.

5. CONCLUSION& FUTURE WORK
Non Functional requirements (NFRs) play a major function in

the success of software systems and it is as important as

Functional requirements. It is necessary to deal with NFRs at

early stages of agile software developments because its affect

the database decision, programming language, or operating

framework. As the absence of NFRs requires a high cost to

solve the problem. Its offer high quality product that is

accurate, consistent and reliable. This paper suggests

developing an efficient approach for automatic extraction of

NFRs in agile methods in order to prevent the problems that

are found previously, and try to improve the performance

through customer satisfaction. The goal is to be able to extract

NFRs that are embedded in FRs and classify NFRs in

available documents through automated natural language

processing and machine learning techniques.

6. REFERENCES
[1] A. M. Davis. Software requirements: objects, functions,

and states. Prentice-Hall, Inc., 1993.

[2] Handa, N., Sharma, D. A., & Gupta, D. A. (2019). Non

Functional Requirements Analysis using Data Analytics.

International Journal of Advanced Science and

Technology, 27, 383 - 393.

[3] Binkhonain, Manal, and Liping Zhao."A review of

machine learning algorithms for identification and

classification of non-functional requirements." Expert

Systems with Applications: X 1 (2019): 100001.

[4] Kurtanovi ´c, Z., &Maalej, W. (2017,

September).Automatically Classifying Functional and

Non-functional Requirements Using Supervised Machine

Learning. Paper presented at IEEE 25th International

Requirements Engineering Conference Workshops,

Lisbon, Portugal.

[5] NupurChugh and AdityaDev Mishra, “Assimilation of

Four Layered Approach to NFR in Agile Requirement

Engineering”, International Journal of Computer

Applications (0975 – 8887) Volume 78 – No.5,

September 2013.

[6] https://searchenterpriseai.techtarget.com/definition/machi

ne-learning-ML.

[7] Sillitti, Alberto, and Giancarlo Succi."Requirements

engineering for agile methods."Engineering and

Managing Software Requirements. Springer, Berlin,

Heidelberg, 2005.309-326.

[8] Kurtanovi´c, Z.; Maalej, W. Automatically classifying

functional and non-functional requirements using

supervised machine learning. In Proceedings of the 2017

IEEE 25th International Requirements Engineering

Conference (RE), Lisbon, Portugal, 4–8 September 2017;

pp. 490–495.

[9] W. Maalej and H. Nabil. 2015. Bug report, feature

request, orsimply praise? On automatically classifying

app reviews. In IEEE23rd International Requirements

Engineering Conference (RE).

[10] Deocadez, R., Harrison, R., & Rodriguez, D. (2017,

June). Preliminary Study on Applying Semi-Supervised

Learning to App Store Analysis.In Proceedings of the

21st International Conference on Evaluation and

Assessment in Software Engineering (pp. 320–323).

[11] P. Singh, D. Singh and A. Sharma, “Classification of

Non-functional Requirements from SRS Documents

Using Thematic Roles,” 2016 IEEE International

Symposium on Nan electronic and Information Systems

(iNIS), Gwalior, 2016, pp. 206-207.

[12] J. Slankas and L. Williams, "Automated extraction of

non-functional requirements in available

documentation," 2013 1st International Workshop on

Natural Language Analysis in Software

Engineering(NaturaLiSE), 2013, pp. 9-16, doi:

10.1109/NAturaLiSE.2013.6611715.

[13] Chuanyi Li , Liguo Huang , JidongGe , Bin Luo ,

Vincent Ng , Automatically Classifying User Requests in

Crowdsourcing Requirements Engineering, The Journal

of Systems & Software (2017), doi:

10.1016/j.jss.2017.12.028.

[14] Deocadez, R. , Harrison, R. , & Rodriguez, D. (2017).

Automatically classifying requirements from app stores:

a preliminary study. In Proceedings of the IEEE twenty–

fifth international requirements engineering conference

workshops September.

[15] Lu, M., & Liang, P. (2017, June).Automatic

Classification of Non-Functional Requirements from

Augmented App User Reviews.Proc.21st International

Conference on Evaluation and Assessment in Software

Engineering, Karlskrona, Sweden.

[16] Abad, Z. S. H. ,Karras, O. , Ghazi, P. , Glinz, M. , Ruhe,

G. , & Schneider, K. (2017). What works better? A study

of classifying requirements. In Proceedings of the IEEE

twenty-fifth international requirements engineering

conference (RE) September.

[17] Jindal, R. ,Malhotra, R. , & Jain, A. (2016). Automated

classification of security requirements. In Proceedings of

the 2016 international conference on advances in

computing, communications and informatics September.

[18] Tamai, T., &Anzai, T. (2018). Quality Requirements

Analysis with Machine Learning. In ENASE (pp. 241-

248).

IJCATM : www.ijcaonline.org

https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML

