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ABSTRACT 

Crystal identification (CI) provides a solution for parallax 

error that occurs within the Positron Emission Tomography 

(PET) scanners. The CI rate is one of the main challenges to 

reconstruct the image in PET system. This paper proposed a 

high rate CI algorithm based on fractional Fourier transform 

(FRFT) and a powerful classifier that is Support Vector 

Machine (SVM). The computation of the proposed algorithm 

is significantly reduced to a single weighted sum of pulse’s 

samples. In addition, the computations were accelerated using 

two different approaches; Compute Unified Device 

Architecture (CUDA) or multi-threading high-level 

parallelism model (openMP) in order to satisfy a high rate for 

processing the scintillation pulses of PET systems. A huge 

number of scintillation pulses (100 000 pulses from LSO-

LuYAP crystals) were processed to take full advantage of the 

hardware speeding up provided by a parallel implementation 

on a graphics processing unit (GPU). The event rates of 

openMP are 13 or 76 M events/s on a serial single core or 

parallel 8 cores processor respectively. On the other hand, the 

pulses were processed using Tesla K20 GPU at 942 M 

events/sec.  The proposed implementations provide a high-

speed rate of scintillation pulses that enables the designers of 

PET systems to increase the number of detectors for high-

resolution PET images.  
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1. INTRODUCTION 
The spatial resolution of PET images is mainly affected by the 

detector width, positron range, a co-linearity, the detector ring 

, and sampling time [1]. These factors can be eliminated or 

reduced through a careful camera design. Furthermore, the 

spatial resolution can be enhanced by increasing number of 

detectors. Due to increase the amount of channels, a high-

performance sorting circuits could be used to process the read 

out channel accurately. However, the ring diameter of the 

PET system must be designed carefully to reduce the parallax 

error. This error occurs because of gamma ray that penetrates 

the crystal of the detector at non-perpendicular angles. One of 

good solutions to this error is the phosphor sandwich 

(phoswich) detector. This detector is constructed from 

multilayer scintillation materials (two or more layers). Where, 

the response to the radiation of each layer differs from the 

other. Therefore, the depth of interaction into the crystal can 

defined accurately based on the decay time of the scintillation 

pulse [2].  

The crystal identification can determined based on the pulse 

shape discrimination (PSD) method as in [3]. In this work, 

PSD was performed based on FFT and SVM using FPGA. 

The processing rate of this work was 6 M events/s. However, 

a high rate PSD method increases the PET system accuracy. 

Therefore, in the proposed work, the CI rate based on parallel 

computing platform was enhanced. However, a suitable 

sorting method should be used to record the scintillation 

pulses accurately. An implementation of sorting algorithm 

based on FPGA for the PET system events was presented in 

[4]. Based on this work, all events are detected from the PET 

channels, recorded. Thus, the scintillation event can be sent to 

host computer. Therefore, the proposed CI algorithm using 

GPU can be applied on the recorded events. Moreover, the 

coincidence identification processing and image 

reconstruction can be performed.  

The proposed work could be used to process a huge number 

of events in parallel approach.  Consequently, the computation 

time of CI algorithm is reduced. Here, we aim to implement a 

SVM based CI algorithm based on the computational 

capability of GPUs to enhance computational event rate. GPU 

is a specialized device designed to accelerate the image 

processing which is displayed on computer screens in real 

time. Recently, the massively parallel clusters can be replaced 

by GPU due to maintenance, energy costs, lower purchase, 

and GPU can be programmed   by simple instruction in 

programming frameworks such as Compute Unified Device 

Architecture (CUDA). Moreover, GPU are more effective 

than CPU in scientific computation speed due to their 

massively parallel architecture, where GPU process a huge 

number of data in parallel [5].  

In the proposed algorithm, the feature of parallel architecture 

of GPU based on CUDA model was used to process the 

scintillation pulses. The proposed algorithm is tested and 

compared against multicore architecture which code is written 

by openMP. The openMP is a multi-threading high-level 

parallelism model. OpenMP gives shared-memory parallel 

programmers an interface to develop parallel applications on 

multicore CPU.  

This paper is structured as follows: the mathematical 

background of the proposed algorithm is presented in section 

2.  Section 3 presents the proposed CI algorithm. GPU 

Realization of CI algorithm is discussed in section 4. Section 

5 presents Result and discussion.  Finally, the conclusion of 

this work is provided in section 6. 

2. MATHEMATICAL BACKGROUND  

2.1 Fractional Fourier transforms (FRFT)  
The FRFT is a generalization of the Fourier transform (FT) 

with an order parameter α. Equation (1) represents the value 

of (α), and (R) which is the fractional factor that ranges from 
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0 up to 1.  

𝛼 = 𝑅
𝜋

2
                                                                                          (1) 

The value of the parameter α ranges from 0 up to π/2. Each 

value of α can be defined as a rotated time–frequency 

representation of the original signal. When, the value of α 

equals to π/2 the FRFT becomes the FT. Thus, the FT is a 

special case of the FRFT. Equations (2) and (3) show the 

mathematical representation of the FRFT, and the kernel 

function respectively [6].  

𝑋𝛼 = 𝐹𝛼 𝑥 𝑡  =  𝑥 𝑡 𝐾𝛼 𝑡, 𝑢 𝑑𝑡                                      (2) 

𝐾𝛼 𝑡, 𝑢 =
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2  𝑐𝑜 𝑡 𝛼 −𝑗𝑢𝑡𝑐𝑠𝑐 (𝛼)

𝛿 𝑡 − 𝑢                 𝑖𝑓 𝛼 = 𝑛 2𝜋  

              𝛿 𝑡 + 𝑢                𝑖𝑓 (𝛼 + 𝜋) = 𝑛 2𝜋 

                                    

(3) 

Where n=1, 2, 3 

The proposed algorithm requires a discrete form of the FRFT 

transformation where the scintillation pulses were digitized as 

will be explained in the preprocessing section. So, the 

scintillation signals are transformed using DFRFT. There are 

different types to implement the DFRFT such as Eigenvector 
decomposition, Linear combination, and Sampling-FrFT [6].  

In this work, the Linear combination type was applied. Where, 

this type of DFRFT approach meets the periodicity and can 

computed using a transformation matrix that can be merged in 

the proposed algorithm. if the input digital signal is [ ]x n
where n is the number of samples, the output DFRFT 

coefficients for this signal is [ ]X k   as in equation (4). The 

transformation matrix of the DFRFT  (
RF ) is computed as 

follows in equation (5-7) [7]: 

𝑋 𝑘 = 𝐹𝑅𝑥 𝑛                                                                       (4) 

𝐹𝑅 =  𝜑𝑖 𝛼 𝐹
𝑖3

𝑖=0                                                                (5) 

𝜑𝑖 𝛼 =
1

4
 𝑒

𝑗  𝛼−𝑖
𝜋

2
 𝑘4

𝑘=1                                                      (6) 

𝑋 𝑘 = 𝐹𝑅𝑥[𝑛]                                                                      (7) 

 

2.2 Support Vector Machine (SVM) 
SVM is a supervised machine-learning algorithm. This 

algorithm is used to classify data. The classification is 

performed by determine the hyperplane that differentiates the 

two classes precisely. The margin between hyperplane and 

each type of data should be maximized to get an accurate 

classification. Moreover, the input data to the SVM could be 

converted from a low dimension space to a higher another 

dimension using a kernel function. This function is used to 

make the classified data to be separable. There are different 

types of the kernel function such as linear, quadratic, radial 

basis, and Gaussian. The selection of the kernel function 

depends on the form of the classified data and the 

implementation method. The optimal hyperplane for a training 

input data 
i

x  (i=1, 2, 3... M) is determined. Where, 
i

x  is 

classified into to two classes; class one and class two. 

Moreover, the label for each class is 
i

y  where 
i

y =1 or -1 

for class one or class two respectively. The decision function 

for these variables is represented in equation (8): 

 

𝐷 𝑥 = 𝑊𝑇𝑥 + 𝑏                                                                         (8) 

Where W is m-dimensional vector, b is the bias. 

Consequently, the optimal hyperplane can be determined by 

solving the following problem for w and b: 

 

 Mi𝑚𝑖𝑚𝑖𝑧𝑒         𝑄 𝑊, 𝑏 =
1

2
∥ 𝑊 ∥2                                  (9) 

Where  

𝑦𝑖 𝑊
𝑇𝑥𝑖 + 𝑏 ≥ 1     𝑓𝑜𝑟  𝑖 = 1, 2, 3, …M                         (10) 

 

Equations 9 and 10 can be solved by the quadratic 

programming technique for the small number of input data. 

However, input data could be classified efficiently when it 

converted to a high dimensions space. Hence, equations 9 and 

10 are converted into dual problem where the number of 

variables is equal to the number of training data by optimizing 

the following Lagrange equation as in equation (11).  

               

𝑄 𝑤, 𝑏, 𝛼 =
1

2
∥ 𝑊 ∥2−  𝑔𝑖 𝑦𝑖 𝑊

𝑇𝑥𝑖 + 𝑏 − 1 𝑀
𝑖=1        (11) 

 

i
g  is the nonnegative Lagrange Multipliers  

The unknown vector (u) can be classified by predicting the 

decision function C (u) as in equation (12): 

 

𝐶 𝑢 = 𝑠𝑖𝑔𝑛  𝐻(𝑢, 𝑆𝑖𝑖 )𝑦𝑖𝑔𝑖 + 𝑏                                     (12) 

The value of equation (12) is positive for class one and 

negative for class two. Where, 
iS  is called the support 

vectors. 

For the linear kernel which is used in this research work.  

 

𝐻 𝑢, 𝑆𝑖 = 𝑢𝜎𝑖𝑆𝑖                                                                         (13) 
 

𝜎𝑖  is a scale factor for i th feature. The main purpose of this 

work is reducing the processing time of the scintillation 

pulses. Hence, the linear kernel function of the SVM is used 

in this work where it can be merged with the feature extractor 

(DFRFT) in one function with a small number of 

multiplication and additions. Where, the direct 

implementation of Equation (12) (with L support vectors and 

M features) requires (LN + 1) additions and (N + 1) 

multiplications. Thus, the implementation time for this kernel 

function is the lowest.  

3. CRYSTAL IDENTIFICATION 

ALGORITHM 
Crystal identification algorithm is implemented based on 

merging the feature extractor (DFRFT) and the classifier 

(SVM) to create the classification vector (Z). The proposed 

merged FRFT-SVM algorithm is illustrated in Figure 1. As 

shown, this figure the proposed algorithm is implemented in 

two phases; in the first phase the vector (Z) is computed based 

on training the DFRFT coefficients of the training set of the 

scintillation pulses. In the second phase, the classification 

vector is multiplied with the testing set of the scintillation 

pulses and it added to the bias of the SVM to identify the 

pulse type. Thus, the acceleration of the proposed algorithm 

depends on the multiplication of the huge number of pulses by 

the vector (Z). This vector is obtained in the flowing section.  

The first phase of the SVM is performed to get the support 

vectors 𝑆𝑁×𝐿   as in equation (12). Then, the type can be 

identified based on equation (14). While, 𝑃1×N  is the 

scintillation pulse with N samples and index 1, and 𝐹𝑁×𝑁
𝑅  in 
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the FRFT matrix for N number of samples. 

𝑑 𝑝 = 𝑠𝑖𝑔𝑛  𝑃1×N ∙ 𝐹𝑁×𝑁
𝑅  ∙ 𝜎1×𝑁 ∙ (𝑆𝑁×𝐿 ∙  𝑦𝑔)𝐿×1 + 𝑏] 

(14) 

Equation (14) can be reduced to equation (15). Where, the 

discrimination vector (Z) is computed as in equation (16).  

𝑑 𝑝 = 𝑠𝑖𝑔𝑛[𝑝1×𝑁 ∙ 𝑍𝑁×1 + 𝑏]                                           (15) 

𝑍𝑛 =  𝑓𝑛,0
 …… . 𝑓𝑛,𝑁−1)  

𝜎
0  𝑆0,𝑙𝑦 𝑙𝛼𝑙

𝐿−1
𝑙=0 ...

𝜎
𝑁−1  𝑆𝑁−1,𝑙𝑦 𝑙𝛼𝑙

𝐿−1
𝑙=0

                        (16) 

For n=0, 1, ...N-1 

Based on (16), discrimination step are significantly reduced 

where the feature extraction and classification steps are 

merged in only single step. Hence, the unknown scintillation 

pulse is multiplied with the vector (Z) and the bias (b) is 

added to discriminate the pulse.  This algorithm includes N 

multiplications and N+1 additions. Thus, the proposed 

algorithm gives low complexity. On the other hand, the 

processing time of the proposed algorithm is independent on 

the feature extractor where the vector z is computed offline.  

 

Figure 1 the proposed DFRFT-SVM PSD algorithm 

4. GPU REALIZATION OF CI 

ALGORITHM 
The proposed work is implemented to be executed on single 

core, multicore (CPU) or many core (GPU) based on C++, 

OpenMP, or CUDA respectively. Firstly, the scintillation 

pulses are divided into two data sets; training set and testing 

set.  The number of testing set is 10% from the scintillation 

pulses. Phase one is applied on training set to get the 

discrimination vector (Z). Where the scintillation pulses is 

transformed from time domain to time-frequency domain 

using DFRFT. Then the coefficients of the DFRFT are trained 

using SVM to get the supported vectors (S) and the other 

parameter that are used to determine the vector (Z). This 

phase can be executed using single core (C++) due to the 

small arithmetic operations in this phase. However, phase two 

takes large time where huge scintillation pulses of the testing 

phase are tested. Therefore, this phase was executed using 

multicore or many cores to reduce the processing time. The 

speedup factors of the two different implementation 

algorithms are discussed in the next section. In phase two, the 

proposed algorithm identifies huge of scintillation pulse based 

matrix multiplication. The method is implemented in an 

approach that makes full use of the function hierarchy present 

within the CUDA framework. Two functions are used to 

implement the algorithm on the GPU; host function and 

kernel function.  A host function is executed and called by the 

CPU. However, the kernel function is executed in parallel by 

the GPU. The proposed algorithm can be integrated with a 

real time sorting algorithm that was implemented based on 

timestamp [4]. In this paper, pulses of the scintillation 

detector of the pet system were detected and recorded. Thus, 

the recorded pulses can be sent to a personal computer and the 

proposed algorithm can be applied on the recorded 

scintillation pulses. The CPU used in this work is Intel E5507, 

with 32GB of RAM and a clock speed of 2.27GHz. Two 

different GPUs have been used Tesla K20C and Quadro 6000. 

The Tesla K20 card is a dedicated scientific computation 

device used in professional workstations, whereas the Quadro 

is a graphics card that is used in a PC for games. The program 

was written with the minimal interaction between the GPU 

and the CPU without increasing the latency.  

5. RESULT AND DISCUSSION  
The proposed algorithm was applied on 100000 scintillation 

pulses of LuYAP and LSO crystals. These pulses were 

obtained as in [12]. The size of the LSO and LuYAP crystals 

is 2mm Χ 2mm Χ10 mm. 68Ge radiation source was coupled 

to PMT to get the scintillation pulses. This PMT was coupled 

to a low pass filter with a cutoff of 3.6 MHz. Then, the output 

of this filter was digitized using 16 samples ADC [8, 9]. The 

mean and standard deviation of the two types of scintillation 
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pulses is shown in figure 2. The standard deviations of the tail 

of two types of pulses are different where the difference in 

decay time of the LSO and LuYAP crystal are about 20 n sec.   

    
Figure 2 mean and standard deviation of the original 

scintillation pulses of the LSO and LuYAP crystals 

 

To obtain the best factor of the DFRFT, the proposed 

algorithm was applied on the scintillation pulses then the 

efficiency of identification was computed. The factor is varied 

from 0 up to 1 with step .05 to get the best one. Figure 3 

shows the efficiencies of identification for the predefined 

factors. The best factor is 0.2 where it separates the 

scintillation pulses with efficiency of 92.08%. Thus, this 

factor was used to get the transformation matrix of DFRFT of 

phase one from the proposed algorithm then we find the 

discrimination vector. After that, the testing phase is executed 

on the proposed platforms (multicore or many cores) to study 

the processing time, which is the aim of this work.          

 
Figure 3 discrimination efficiencies of different FRFT 

factors 

Finally, the proposed algorithm was executed on the multicore 

or many cores to find the speed up factor of each tool. As 

shown in figure 4 Tesla k20 and Quadro 6000 give a 

discrimination event rate of 942 M events/s and 186 M 

events/s respectively. On the other hand, eight cores gives 76 

M events/s. Due to the ability of the GPU of parallelization, 

the speed up over 8 cores and 1 core is about 12.4 and 69 

times respectively. 

As mentioned in the introduction, the event rate of our 

previous work was 6.2 M events/s [3]. However, the PET 

systems require a high-speed rate of the CI. Table 1 represents 

a comparison between the previous algorithms and the 

proposed one. The discrimination efficiency of the proposed 

algorithm are very close to the pervious algorithms. However, 

the discrimination rate of the proposed algorithms enhance the 

previous event rates in [3, 7] by factor 152 for the Tesla GPU.  

  

Algorithm 
Rate (M 

event/sec) 

Discrimination 

Efficiency (%) 

One  Dimension  ZM-

BASED CI (FPGA)[10] 
6.2 90.6 

DFT-SVM CI (FPGA) [3] 6.2 92 

Proposed CI (8 cores CPU) 76 92.08 

Proposed CI (Tesla GPU) 942 92.08 

 

 
Figure 4 comparison between the discrimination rates of 

the multicores processor (from 1 up to 8 cores) and many 

cores (using Quadro and Tesla GPU) 

6. CONCLUSION  
A merged FRFT-SVM algorithm was proposed to perform the 

CI in a high rate up to 942 M event/sec using the GPU. The 

proposed algorithm was executed based the parallel 

computing in the CI algorithm. Parallel computing achieves 

high classification efficiency besides a high discrimination 

rate, which was 92.08%. Thus, high-speed applications can be 

implemented based on the proposed algorithm. The proposed 

algorithm can be integrated with a real time sorting algorithm 

that can be used to send the scintillation pulses to PC.  On the 

other hand, timing information and the image reconstruction 

can be performed after the proposed algorithm based on GPU  
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