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ABSTRACT
In this paper, the use of elliptic-curve cryptography (ECC)
to build an end-to-end verifiable electronic voting system
with homomorphic tallying is discussed. Verifiability is an
important property of electronic voting systems, allowing any
interested person to independently check that all votes were
correctly recorded and counted. On the other hand, homomorphic
tallying allows the votes to be counted without having to be
individually decrypted, which reinforces ballot secrecy, another
crucial security requirement for voting systems. After the
encrypted votes are counted, only the final tally is decrypted
in order to reveal the election result. Ballots are encrypted
using elliptic-curve cryptography, which has been proven to
offer high security levels, while keeping smaller key sizes,
in comparison to other well known cryptographic primitives.
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1. INTRODUCTION
Electronic voting systems have been in use around the world for
more than two decades. These systems are typically based on the
use of an electronic voting machine (EVM), which is basically a
computer capable of storing the votes in digital format. An EVM
offers an interface (a keyboard or a touchscreen) so that voters can
choose their candidates and cast their votes.
In countries like Brazil and India, electronic voting machines are
currently used nationwide. In the USA, they are used in a few
States, together with other voting systems that comprise hand
marked paper ballots and ballot marking devices (BMDs) [1].
Electronic voting machines, also known as Direct Recording
Electronic (DRE) systems, store the votes in digital format, using
some kind of computer memory. In Brazil, for example, the votes
are stored in a removable result memory, which operates as a sort

of flash drive, connected to the EVM by a USB port [2]. After the
election is closed, the result memory is removed from the EVM
and sent to the TRE (Regional Electoral Court) headquarters inside
a sealed envelope.
DRE systems have been thoroughly studied, and its security
vulnerabilities are well known and documented. In 2006, the
California Secretary of State requested a top-to-bottom review of
the California voting systems. At the request, the University of
California, Berkeley, prepared a report presenting the findings of
an analysis of the Diebold voting systems [3], which consisted
of the AccuVote-TSX DRE, the AccuVote-OS optical scanner and
the GEMS election management system. The report showed that
the Diebold system did not provide sufficient security, due to its
vulnerability to malicious software and susceptibility to viruses.
The study also concluded that the AV-TSX system failed to protect
ballot secrecy, because the votes were recorded in the order in
which they were cast, and there was a record of the time each
vote was cast. Finally, it was found that the GEMS central election
management system could not prevent malicious insiders from
tampering with ballot definitions and election results.
A security analysis of the Indian EVM also revealed major security
flaws [4], that allowed a malicious insider to tamper with the system
firmware even before it was built into the CPU, because there
was no verification of the software integrity. The changes would
be practically undetectable. The CPU could also be substituted
by a look-alike CPU containing malicious software, since there
was no cryptographic mechanism to identify the original hardware.
Finally, additional hardware could be attached to the control unit’s
circuit board, allowing an adversary to directly read and write the
EEPROM chips where the votes were recorded.
In face of the increasing number of vulnerabilities discovered in
DRE-based systems, and in order to reinforce the auditability of
the electoral process, some EVMs began to be equipped with
VVPAT (Voter Verifiable Paper Audit Trail) printers, that allow the
voters to confirm their selections on an independent paper record
before casting their votes into digital memory. These paper records
are preserved and can be used as a mechanism of post-election
audit or recount. In India, for example, VVPATs began to be
adopted in 2013 [5]. In the USA, EVMs equipped with VVPATs
are used in some states. In Brazil, there was a recent proposal
for a constitutional amendment in order to determine the use of
VVPATs in the Brazilian EVMs, but the proposal was rejected, so
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that Brazil remains as the only country in the world using DRE
machines without VVPAT nationwide, even after the discovery of
several vulnerabilities in the Brazilian EVM [6].
Although the use of VVPATs increase the auditability of voting
systems, the voter is still required to trust the integrity of the paper
records. End-to-end verifiable voting systems [7] were developed
under the premise that voters should not be required to trust
neither the election authority, nor the integrity of the voting
software, hardware or even paper records. These systems allow
every interested person to independently check that all votes were
correctly recorded and counted, which represents the strongest
notion of security for electronic voting systems.

1.1 Paper outline
This paper is organized as follows: section 2 presents a
brief review on the security requirements of electronic voting
systems, emphasizing verifiability and homomorphic tallying as a
mechanism to reinforce ballot secrecy. In section 3, a theoretical
review on elliptic-curve cryptography (ECC) is presented. Section
4 discusses the application of ECC to build a verifiable electronic
voting system, with homomorphic tallying using a variant of the El
Gamal encryption scheme, based on elliptic curves. Finally, section
5 presents the conclusions and final remarks.

2. SECURITY REQUIREMENTS OF ELECTRONIC
VOTING SYSTEMS

This section presents a brief theoretical review on the security
requirements of electronic voting systems, such as integrity,
reliability, vote secrecy, authentication, among others. Special
attention was given to the requirement of verifiability, which
underlies end-to-end verifiable systems.

2.1 General security criteria
Any electronic voting system must meet certain criteria in order
to be considered secure. Some of these criteria are mutually
conflicting, which makes the design of secure electronic voting
systems a special challenge. The main security requirements are
the following:

(1) System integrity: the voting system, both hardware and
software, must be tamper-proof. After the code is certified,
no changes are allowed, and any attempt to tamper with the
system must leave detectable evidence.

(2) Result integrity: the final tally should reflect voters intention.
This means that all votes should be cast as intended, and
counted as cast. No votes can be modified after they were cast.
Any attempt of tampering with cast votes should be detected.

(3) Reliability: system bugs must be unlikely to occur.
(4) Availability: the voting system must be available during

election time.
(5) Ballot secrecy: no voter should be able to reveal how they

voted, even if they want to.
(6) Authentication: only authorized voters can cast their votes.
(7) Enfranchisement: all authorized voters must have the

opportunity to vote.

Another important security property is auditability, according to
which the voting system should be capable of generating election
records, whose authenticity and integrity should be provable. The
use of VVPATs is an attempt to reinforce this property.

As mentioned before, although the use of VVPATs increases
auditability by offering the possibility of recounting the ballots,
the voter is still required to trust the integrity of the paper
records, which may be difficult to guarantee and verify. This is
an intrinsic limitation of DRE-based systems, and the reason for
the development of verifiable systems, which offer a very strong
security property called end-to-end verifiability, discussed in the
next section.

2.2 Verifiability as a security requirement
End-to-end verifiability (E2E) captures the notion that voters
should not be required to trust election software, hardware or
election officials in order to be convinced that the election outcome
is correct. This notion goes hand in hand with the concept of
software independence [8], which states that an undetected error
in the voting system should not be able to cause an undetectable
error in the election outcome.
Several E2E verifiable voting systems have been proposed in the
literature, like Chaum’s solution using visual cryptography [9], Prêt
à Voter [10], which uses a randomized candidate list as the core
idea, the ThreeBallot system proposed by Rivest [11], Scantegrity
II [12], the Helios voting system [13], Belenios [14], among others.
E2E verifiable systems are based upon the idea that, instead of
having to trust the integrity of election software, hardware or even
paper records, the voter should be able to check the correctness of
the election outcome electronically and independently. This can be
achieved by producing a chain of evidence that can help check that
all votes were:

(1) Cast as intended: this means that each voter is able to verify
that their vote was correctly recorded;

(2) Counted as cast: this means that any interested person is able to
verify that every recorded vote was included in the final tally.

This chain of evidence is typically published in some sort of public
bulletin board by the election authority.

2.3 Encrypting the votes
In order to preserve ballot secrecy, all votes must be encrypted
before being posted on the election bulletin board. However,
voters must be convinced that the ciphertexts actually correspond
to the encryption of their choices. In order to give the voter
some guarantee that the system is behaving honestly during ballot
encryption (by correctly encrypting the voter’s choices), some
verifiable systems employ a Benaloh challenge [15]:

(1) The voters are allowed to produce as many ballots as they wish,
but only one of these ballots will be actually cast;

(2) The other encrypted ballots are marked as challenge ballots;
(3) The voter randomly selects the challenge ballots and asks the

system to decrypt them, revealing all the information that was
used to encrypt that vote;

(4) The voters can independently check that all the encrypted
ballots were correctly generated.

Since the voting system does not know which ballots will be
marked as challenges, and cannot even predict if the voter will
choose to challenge or not, there is a high probability of detection
of any dishonest behavior(for example, if the system presents the
encryption of a choice that is different from the voter’s choice).
To give a concrete example of this idea, consider the El Gamal
encryption scheme [16], which is used by the Helios voting system.
El Gamal is a public key encryption scheme, which uses a very
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large prime number p and an integer g as public parameters. The
secret key is a randomly selected integer x, while the public key is
given by

y = gx (mod p). (1)

A vote is encoded as an integer v ∈ {0, 1}, where the voter must
choose 1 ir order to vote FOR a given candidate, and 0 to vote
AGAINST a given candidate. The encryption of the vote, called a
ciphertext, is given by the pair of integers (α, β), such that

α = gr (mod p)
β = gvyr (mod p)

(2)

where r is a randomly selected integer, called ephemeral key. We
remark that this version is called exponential El Gamal, since in
its original formulation, the value of β is given by vyr instead of
gvyr .
Suppose, for example, that the voter must choose between two
candidates, say Alice and Bob. Assuming that the vote goes for
candidate Alice, the unencrypted ballot looks like this:

Table 1. Unencrypted ballot.
Alice 1
Bob 0

On the other hand, the encryption of this ballot will consist of two
El Gamal ciphertexts, one for each of the voter’s choices (1 for
Alice and 0 for Bob):

Table 2. Encrypted ballot.
Alice (αA, βA)

Bob (αB , βB)

where (αA, βA) is the ciphertext encoding the choice for Alice
(the encryption of 1), and (αB , βB) is the encrypted choice for
Bob (the encryption of 0). These ciphertexts were generated using
ephemeral keys rA and rB , respectively. If the voter chooses to
cast the ballot, the system throws away these ephemeral keys and
records the ciphertexts. On the other hand, if the voter chooses to
challenge the ballot, the system must decrypt the ciphertexts and
reveal the ephemeral keys, so that the voter can check that each
ciphertext in fact corresponds to the encryption of her choices.
When the voter chooses to cast the ballot, the system may
generate some sort of tracking number, typically in the form of a
cryptographic hash of the ballot, so that the voter can subsequently
confirm that the encrypted ballot was correctly posted on the
bulletin board. Spoiled ballots (those that were challenged by
voters) can also be posted on the bulletin board for audit purposes.
However, these ballots will not be included in the final tally.

2.4 Homomorphic tallying
After the list of encrypted votes is published on the bulletin board,
the election authority proceeds to compute the final tally. The
tallying process must provide evidence that all the encrypted votes
were included in the tally, without revealing how any individual
voted. This can be achieved by a technique called homomorphic
tallying, which makes it possible to count the encrypted votes
without having to decrypt them individually. After the encrypted
votes are counted, the final tally is decrypted and the result is
published, along with a mathematical proof that the tally matches
the previously published encrypted votes. We shall discuss this
mathematical proofs in the forthcoming sections.

Back to the El Gamal example, imagine that one must compute the
total number of the votes for a given candidate, cast by n voters, in
an election with m candidates. Assume that the i-th voter marks a
choice for the j-th candidate, given by

vij ∈ {0, 1} . (3)

It is clear that the total number of votes for that candidate is given
by

tj =

n∑
i=1

vij . (4)

Since the votes were encrypted using the El Gamal encryption
scheme, for each one of them an ephemeral key rij was used, so
that each encrypted vote is given by

αij = grij (mod p)
βij = gvijyrij (mod p).

(5)

for i = 1, 2, · · · , n and j = 1, 2, · · · ,m. For each value of j,
multiplying the ciphertexts of the votes cast by all voters yields

Aj =

n∏
i=1

αij = gr1j+r2j+···+rnj (mod p)

Bj =

n∏
i=1

βij = gv1j+···+vnjyr1j+···+rnj (mod p).

(6)

Writing rj = r1j + · · · + rnj , it is clear that the pair (Aj , Bj)
corresponds to the encryption of tj using rj as ephemeral key. The
value of tj can be decrypted by computing

Dj = Bj(A
x
j )

−1 = gtj (mod p). (7)

In order to find the value of tj , successive powers of g must be
computed until the value of Dj is obtained as a result. Note that
this is computationally viable, due to the relatively small values of
tj . The final election result then will be a tuple

T = (t1, t2, · · · , tm) (8)

containing the total number of votes received by each candidate.

3. ELLIPTIC-CURVE CRYPTOGRAPHY
Elliptic curves are mathematical objects studied by algebraic
geometry, although they have their origins in the field of
analysis, namely in the theory of elliptic integrals and elliptic
functions. The use of elliptic curves in cryptography was
proposed independently by Koblitz [17] and Miller [18]. Currently,
elliptic-curve cryptography, or simply ECC, represents one of
the best options in terms of security and efficiency, due to its
faster operations and smaller key sizes, when compared to other
cryptographic primitives like RSA [19].
Mathematically speaking, an elliptic curve is the set of points that
satisfy the equation

y2 = x3 +Ax+B (9)

where A and B are constants over a certain field (the real numbers,
for example). For cryptographic purposes, elliptic curves over the
finite field Fp (the set of integers modulo p), denoted by E(Fp),
where p is a large prime number, are commonly used. The restraint

4A3 + 27B2 ̸= 0 (10)

is imposed, so that the curve is considered a non singular curve.
Mathematically speaking, the condition above imposes that the
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tangent line is well defined in all points of the curve. A certain
operation, a sum of points, can be defined over an elliptic curve
so that it has a group structure. Recall that a group is an algebraic
structure consisting of a set G and an operation ∗ with the following
properties:

(1) Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G;
(2) Identity element: there is an element e ∈ G such that g ∗ e =

e ∗ g = g for all g ∈ G;
(3) Inverse: every element g ∈ G has an inverse g−1 ∈ G such

that g ∗ g−1 = g−1 ∗ g = e.

The group is said to be Abelian if the operation is commutative.
In the case of elliptic curves, the operation is the sum of points
denoted by ⊕, and the identity element is a special point, called
point at infinity and represented by O. Furthermore, every point
P = (x, y) of an elliptic curve has an inverse given by P ′ =
(x,−y), such that P ⊕ P ′ = P ′ ⊕ P = O. The minus sign must
be interpreted as modular subtraction in the case of elliptic curves
over the finite field Fp.
For all two points P and Q over an elliptic curve, their sum is given
by

P ⊕Q =


P if Q = O;
Q if P = O;
O if P = Q′

R = (xR, yR) otherwise

(11)

where the coordinates of the point R are given by
§
xR = λ2 − xP − xQ

yR = −yP − λ(xR − xP )
(12)

The value of λ represents the slope of the straight line containing
the points P and Q and is given by

λ =


yP − yQ
xP − xQ

if P ̸= Q;

3x2
P +A

2yP
otherwise

(13)

Considering elliptic curves over the field of integers modulo p,
divisions must be interpreted as modular inversions, which can be
efficiently computed by using the extended euclidean algorithm.
In order to compute multiples of a given point, given by

nP = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n times

, (14)

one can employ an algorithm similar to the fast exponentiation
method, as described in [20]. Define also 0P = O, and nP =
−nP ′ for all n < 0. The order of a point G is the smallest positive
integer k such that

kG = O. (15)

For cryptographic purposes, points with very high order must be
chosen, so that the underlying instance of the discrete logarithm
problem (on whose hardness the security of these primitives
depend) is hard to solve.

3.1 Elliptic-Curve El Gamal
In the elliptic-curve variant of the El Gamal cipher (ECEG) [21], a
publicly known elliptic curve E(Fp) over the field Fp, where p is
a large prime also publicly known, is given as parameter, together
with a point G ∈ E(Fp) with very high order. The secret key is a

randomly selected integer x, and the public key is the curve point
P = xG.
An integer v is encrypted as the pair of points over E(Fp) given by

R = rG
S = vG⊕ rP

(16)

where r is a randomly chosen ephemeral key. The ciphertext is the
pair (R,S). In order to decrypt it, one has to compute

(xR)′ ⊕ S = r(xG)′ ⊕ vG⊕ rP = vG (17)

Assuming that the value of v is reasonably small, simply compute
successive values of kG, for k = 1, 2, 3, · · · , until the correct value
of v is obtained.

4. A VERIFIABLE VOTING SYSTEM WITH
ELLIPTIC-CURVE CRYPTOGRAPHY

In this paper, the use of elliptic-curve cryptography to build a
verifiable voting system is proposed. The idea is that each vote is
encrypted using the previously described elliptic-curve variant of
El Gamal, and all votes are homomorphically counted, so that no
individual ballot needs to be decrypted, reinforcing vote secrecy.
The proposal is based on the Helios voting system, with some
adaptations on the proofs of decryption correctness and ballot
integrity.
Prior to the election, candidates and voters are registered. The list
of candidates and authorized voters is published in the election
bulletin board, hosted at the election official website. Assume that
the number of candidates is m, while the number of voters is n.
To each candidate and voter is assigned a unique identifier, which
for the sake of simplicity is considered simply as an integer i =
1, 2, · · · , n for the voters, and j = 1, 2, · · · ,m for the candidates.
The election authority generates a random secret key x and the
public key, consisting of an elliptic curve E(Fp) and two points
G,P , where P = xG. The public key is made available on the
bulletin board, while the secret key is securely stored.
On election day, authorized voters are given access to the voting
system. After marking their choices (assigning the value 1 for the
chosen candidate and 0 to all others), the system encrypts the votes.
The choice marked by the i-th voter for the j-th candidate is given
by

vij ∈ {0, 1} (18)

and the encryption of this choice is an elliptic-curve El Gamal
ciphertext given by

Rij = rijG
Sij = vijG⊕ rijP

(19)

As previously described, a Benaloh challenge may be used to verify
that the voting system is behaving honestly during the encryption
of the votes (by correctly encrypting the actual choices made by
voters). If the voter chooses to challenge the ballot, the ciphertext
is decrypted and the ephemeral key is disclosed. Otherwise, the
ephemeral key is discarded and the ballot is cast.

4.1 Proving the correctness of each ballot
Although the Benaloh challenge decreases the probability of the
system behaving dishonestly without being caught, the ciphertexts
contained in the ballot cast by the voter are not disclosed and
could correspond, with non-negligible probability, to encryptions
of arbitrary values, which could be large numbers to increase the
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total votes for a given candidate, or even negative numbers in order
to steal votes from a given candidate.
In order to avoid such dishonest behavior, every interested person
must be given the opportunity to audit the ciphertexts that encrypt
the choices made by the voters, in order to be convinced that they
correspond to encryptions of valid votes, which means a value that
is either 0 or 1. However, the proof must be given without revealing
the plaintext, in order to preserve ballot secrecy.
Systems like Helios and Belenios employ zero-knowledge proofs
[22] as a means of proving the correctness of each cast ballot.
A zero-knowledge proof is a method by which a prover can
mathematically prove the validity of a statement to a verifier,
without conveying any information to the verifier, apart from the
fact that the statement is, in fact, valid. In this case, the prover is
the election authority, and the verifier is any person interested in
checking the integrity of the election.
Zero-knowledge proofs can be divided into interactive and
non-interactive. An interactive proof consists, as the name itself
suggests, of some sort of interaction between the prover and the
verifier, typically involving the following steps:

(1) The prover sends a set of commitments to the verifier;
(2) The verifier sends a challenge to the prover;
(3) The prover sends back a response
(4) After some sort of verification, the verifier may accept or reject

the proof.

In a voting scheme scenario, interactive proofs are not practical due
to the potentially huge number of verifiers. In order to circumvent
this problem, one can employ the Fiat-Shamir heuristic [23], which
transforms an interactive proof into a non-interactive one. Instead
of receiving the challenge from the verifier, the prover computes
the challenge as the hash of the commitments, and makes all
these pieces of information (commitments, challenge and response)
available to the verifier, without the need for any interaction.
The proof adopted by Helios is known as Chaum-Pedersen
protocol [24], transformed into a non-interactive proof by using the
Fiat-Shamir transform. It is used to convince the verifier that each
ciphertext actually corresponds to the encryption of either 0 or 1.
However, this kind of proof, also known as set membership proof,
has some well known pitfalls [25], so that it is possible to encrypt
an arbitrary value V and still produce a convincing “proof” that
the ciphertext is the encryption of either 0 or 1. In order to avoid
these pitfalls, the proposed voting system in this paper makes use
of an adaptation of a strong version of the Fiat-Shamir transform,
as described in [26].
Given a ciphertext (Rij , Sij), a set membership proof is a
zero-knowledge non-interactive proof that it corresponds to an
encryption of either 0 or 1. It is given by the set

Πij =
¦
(X

(0)
ij , Y

(0)
ij , c

(0)
ij , d

(0)
ij ), (X

(1)
ij , Y

(1)
ij , c

(1)
ij , d

(1)
ij )

©
(20)

where, for k = 0, 1:

(1) The commitment (X(k)
ij , Y

(k)
ij ) is a pair of elliptic curve points;

(2) The challenge c
(k)
ij and the response d

(k)
ij are integer numbers;

(3) If k ̸= vij , the values of c(k)ij and d
(k)
ij are chosen at random,

and the commitments are given by

X
(k)
ij = d

(k)
ij G⊕ (−c

(k)
ij )Rij

Y
(k)
ij = d

(k)
ij P ⊕ (−c

(k)
ij )(Sij ⊕ kG′)

(21)

(4) If k = vij , an integer wij is chosen at random, and the
commitments are given by

X
(k)
ij = wijG

Y
(k)
ij = wijP

(22)

(5) The expected overall challenge is given by

cij = H(G,P,Rij , Sij ,X
(0)
ij , Y

(0)
ij ,X

(1)
ij , Y

(1)
ij ) (23)

for a given cryptographically secure hash function H .
(6) For k = vij , the challenge and the response are respectively

given by

c
(k)
ij = cij − c

(1−k)
ij (24)

and
d
(k)
ij = wij + rijc

(k)
ij (25)

For each ciphertext, the verification procedure consists of the
following steps:

(1) For k = 0, 1, check that

d
(k)
ij G = X

(k)
ij ⊕ c

(k)
ij Rij

d
(k)
ij P = Y

(k)
ij ⊕ c

(k)
ij (Sij ⊕ kG′)

(26)

(2) Check that

c
(0)
ij + c

(1)
ij = H(G,P,Rij , Sij ,X

(0)
ij , Y

(0)
ij ,X

(1)
ij , Y

(1)
ij )

(27)

It is clear that, if the system behaves honestly, then every ballot will
pass verification. In fact, let (Rij , Sij) be a ciphertext encrypting
the voter’s choice vij , and k ∈ {0, 1}.

(1) If k = vij , then X
(k)
ij = wijG, Y (k)

ij = wijP and d
(k)
ij =

wij + rijc
(k)
ij . Therefore,

d
(k)
ij G = (wij + rijc

(k)
ij )G = X

(k)
ij ⊕ c

(k)
ij Rij (28)

(2) On the other hand, if k ̸= vij , then (21) yields

d
(k)
ij G = X

(k)
ij ⊕ c

(k)
ij Rij (29)

and (22) yields

d
(k)
ij P = Y

(k)
ij ⊕ c

(k)
ij (Sij ⊕ kG′). (30)

(3) Identity (27) is clearly satisfied because of (23) and (24).

Hence, each ballot consists of m ciphertexts, given by pairs
of points (Rij , Sij), and each pair is accompanied by a
zero-knowledge proof Πij that it corresponds to the encryption of
either 0 or 1. Additionally, a cryptographic hash of the ballot is
presented to the voter, in order to ensure that the ballot will not be
modified. The hash can be computed over the concatenation of all
encrypted choices, so that

Ballot hash = H((Ri1, Si1)|| · · · ||(Rim, Sim)) (31)

where H is a cryptographically secure hash function. After the
election is closed, a list of all encrypted ballots is published on
the election bulletin board. Each entry of the bulletin board has the
structure shown in Table 3.
Any interested party may independently check the correctness of
each ballot by checking the zero-knowledge proofs. Alternatively,
each ballot may include the spoiled ciphertexts disclosed to the
voters during ballot preparation.
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Table 3. Encrypted ballot for the i-th voter, as published in
the bulletin board. Each ciphertext is accompanied by a

zero-knowledge proof that it encrypts either 0 or 1.
Voter ID i

Encrypted choice cand. 1 (Ri1, Si1,Πi1)

Encrypted choice cand. 2 (Ri2, Si2,Πi2)

... ...
Encrypted choice cand. m (Rim, Sim,Πim)

Ballot hash H((Ri1, Si1)|| · · · ||(Rim, Sim))

4.2 Homomorphic tally
Once the election is closed, the election authority proceeds to
compute the final tally. Once again, the total number of votes for
the j-th candidate is given by

tj =

n∑
i=1

vij . (32)

Hence, by summing up the ciphertexts (using the previously
defined sum of points) that encode the votes cast by all voters, we
obtain, for each candidate,

Rj = R1j ⊕ · · · ⊕Rnj

Sj = S1j ⊕ · · · ⊕ Snj
(33)

which yields

Rj = (r1j + r2j + · · ·+ rnj)G
Sj = (v1j + · · ·+ vnj)G⊕ (r1j + · · ·+ rnj)P

(34)

Putting rj = r1j + · · · + rnj , it is clear that the pair (Rj , Sj)
corresponds to the encryption of tj using rj as ephemeral key.
Hence, the value of tj can be decrypted by computing

Qj = Sj ⊕ (xRj)
′ = tjG. (35)

To find the value of tj , compute successive multiples of G, until the
point Qj is found as a result. The final election result will be given
by the tuple

T = (t1, · · · , tm). (36)

4.3 Proving the correctness of decryption
The election authority must also provide a convincing proof that
the decrypted result is correct. Once again, a zero-knowledge
Chaum-Pedersen proof must be provided, by means of which the
election authority can prove knowledge of the secret decryption key
x (without revealing it!).
For each value of j = 1, 2, · · · ,m, the election authority computes
a decryption factor given by

Fj = xRj , (37)

where Rj is given by (33), and commits to the points

Xj = wjG
Yj = wjRj

(38)

for a randomly chosen wj . The challenge is the cryptographic hash
of the pair (Xj , Yj), concatenated with the public key and the
homomorphic sum of the ciphertexts, given by

cj = hash(G,P,Rj , Sj ,Xj , Yj) (39)

and the response is the integer

dj = wj + cjx. (40)

The proof of correct decryption is given by the set

Πj = {Fj ,Xj , Yj , cj , dj} . (41)

In order to verify that the election authority used the correct secret
key to decrypt the election tally, a verifier (any person interested in
verifying the election outcome) must check that:

djG = Xj ⊕ cjP (42)

and

djRj = Yj ⊕ cjFj . (43)

It is easy to see that, if the prover (the election authority) is honest,
it will pass the verification procedure, because

djG = wjG⊕ cjxG = Xj ⊕ cjP (44)

and

djRj = wjRj ⊕ cjxRj = Yj ⊕ cjFj . (45)

A malicious prover, who does not know the secret key x, will
be caught with overwhelming probability, because even if a fake
decryption factor is presented, verification (42) would fail because
x′G ̸= P for a value x′ ̸= x.
After the total number of votes tj for each candidate is published,
any verifier can confirm the correctness of the election outcome by
verifying identities (42) and (43) and by checking that

tjG = Sj ⊕ (Fj)
′. (46)

4.4 Full election verification procedure
Now, the verification algorithm for the entire election is formally
described. The first verification step consists of checking the
integrity of each encrypted ballot. The procedure takes as input the
voter identifier i and it works as follows:

Procedure: ballot_Verify(i)

For j = 1, 2, · · · ,m :
cij = 0
f o r k = 0, 1 :

i f d
(k)
ij G ̸= X

(k)
ij ⊕ c

(k)
ij Rij

r e t u r n F a l s e
i f d

(k)
ij P ̸= Y

(k)
ij ⊕ c

(k)
ij (Sij ⊕ kG′)

r e t u r n F a l s e
cij = cij + c

(k)
ij

i f cij ̸= H(G,P,Rij , Sij ,X
(0)
ij , Y

(0)
ij ,X

(1)
ij , Y

(1)
ij )

r e t u r n F a l s e
r e t u r n True

The second step of verification consists of checking the integrity
of the election tally. For each candidate, we must compute the
homomorphic sum of the ciphertexts, cast by all voters, and then
verify whether identities (42), (43) and (46) hold. The procedure
takes as input the candidate identifier j and it works as follows:

Procedure: candidate_tally_Verify(j)

Rj = O
Sj = O
For i = 1, 2, · · · , n :

i f n o t b a l l o t v e r i f y ( i )
r e t u r n F a l s e

6



International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.44, December 2021

Rj = Rj ⊕Rij

Sj = Sj ⊕ Sij

i f tjG⊕ Fj ̸= Sj :
r e t u r n F a l s e

i f djG ̸= Xj ⊕ cjP
r e t u r n F a l s e

i f djRj ̸= Yj ⊕ cjFj

r e t u r n F a l s e
r e t u r n True

Hence, the entire election verification procedure, taking as input the
number of candidates m and the number of voters n, can be done
as follows:

Procedure: full_election-verify(m,n)

f o r j = 1, · · · ,m
i f n o t c a n d i d a t e t a l l y v e r i f y ( j )

r e t u r n F a l s e
r e t u r n True

5. PRELIMINARY EXPERIMENTAL RESULTS
Although this paper does not address practical implementation
aspects of the proposed voting system, a prototype of an
implementation in Python language is currently undergoing a series
of preliminary tests. The main goal of these tests is to assess
the efficiency of elliptic-curve cryptography during the following
operations:

(1) Computation of the homomorphic tally;
(2) Decryption of the homomorphic tally.

The prototype was implemented in Python 3.6.9, running over
Linux Mint 19.3 on an Intel Core i3-7020U CPU with 2.30GHz and
4 GiB of RAM. In each test, a list of random votes (integers that
were either 0 or 1) was generated, then each vote was encrypted
with an elliptic-curve El Gamal public key, using the NIST p-256
curve. The results are summarized in Table 4.

Table 4. Efficiency assessment of elliptic-curve cryptography.
Number of random votes Tally Hom. tally comp. Decryption

32 12 0.0044s 0.0281s
100 48 0.0143s 0.0298s
200 109 0.0278s 0.0340s
500 265 0.0669s 0.0439s

1000 490 0.1406s 0.0589s

6. FINAL REMARKS AND FUTURE WORK
This paper presented a proposal for the use of elliptic-curve
cryptography to build a verifiable voting system, taking advantage
of the fast operations and compact keys offered by elliptic curves.
The proposed system allows every interested person to verify the
correctness of the election outcome by means of a zero-knowledge
proof of the decryption, together with homomorphic tallying,
which allows the votes to be counted without having to be
decrypted, reinforcing ballot secrecy.
Preliminary tests were performed in order to evaluate the
efficiency of elliptic-curve cryptography during the operations of
homomorphic tally computation and decryption. Further research
on other security aspects of the proposed system, as well as

more practical issues related to its implementation, is highly
encouraged. Future work must also include the zero-knowledge
proofs implementation and verification tests.
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