
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 44, December 2021

55

A Multi-Containerized Application using Docker

Containers and Kubernetes Clusters

Alowolodu Olufunso Dayo
Cybersecurity Department Federal University of Technology

Akure

ABSTRACT

The Cloud is a virtual environment that provisions massive

and scalable computing resources and services on a pay-as-

you-go basis which is also the process of migrating from a

physical environment to a virtual environment. Virtualization

could be achieved either through virtual machines or

containers. While virtual machines start with a full operating

system and all its included software hereby making it bulkier,

containers are built to contain only the necessary libraries and

dependencies inside them. There has been a huge problem

with developing and deploying applications in production and

development environments. The same apps that work

perfectly well in development can show glitches when

deployed in production thereby making the gap between the

Development and Operation to be wide which makes the

software being deployed to be delivered at a slower pace with

an increase in maintenance costs. This has necessitated the

introduction of Docker and Kubernetes to mitigate against this

and it will be tested with the Fibonacci sequence calculator.

General Terms

Cloud Computing

Keywords

Virtualization, Kubernetes, Docker, Clusters, Containers,

applications

1. INTRODUCTION
Virtualization technology which is the bedrock of the Cloud

Computing system has been existing for a long time and it

depends on software to simulate the functionality of the

hardware to create a virtual computer system (Alowolodu et

al., 2016). This had enabled the running of more than one

virtual system, multiple operating systems, and applications

on a single server. However, Virtualization could only be

achieved using the virtual machine which had some

disadvantages in that Virtual machines require a full operating

system to run which at times may be slow to start up, heavy,

and therefore not portable. For developers, Developing,

running, scaling, and deploying applications in a production

environment has proven to be challenging (Alowolodu, 2019).

When in a development environment, some applications work

perfectly fine, but when deployed in production environments,

they may have glitches. There is an increasing gulf between

the development and operations time due to these

environmental issues. As a result of this issue, software

delivery has been slower with increased maintenance costs.

To mitigate against this menace, multi containerization is

being proposed.

When container technology came into place, Containers

revolutionized virtualization. Containers do not require the

entire operating system to run which in turn makes the system

running time faster, increased lightweight, and portable

(Miika, 2018). Containers emulate the user space in kernel

mode, as opposed to traditional hypervisor virtualization

where multiple virtual machines can run on a single physical

machine through an intermediary layer. Containers isolate the

workspaces of multiple users. This unique feature of container

virtualization has led to its being called operating system-level

virtualization. Typical container technology is the Docker

whereby an application can be created along with all the

dependencies required for it to run and this can be deployed

on the Kubernetes. Kubernetes is the container management

platform for an extensible, portable open-source platform that

enables declarative configurations and automated execution

(Kristof, 2018). Containers and DevOps are making their way

to companies as well as smaller customers. With these,

Organizations will benefit more from these new techniques by

being able to resolve issues more efficiently and quickly.

According to demand, each service can be scaled up or down

which is a typical characteristic of Cloud infrastructures

(Alexander, 2020).

2. RELATED WORKS
Virtualization is the process of migrating from a physical

environment into a virtual environment. Virtualization has

already been adopted by several companies since it reduces

the overheads such as maintaining hardware that is present in

large rooms or data centers with a wide variety of devices and

cables. The use of bulky hardware was not completely solved

by virtualization, but it did contribute to reducing the amount

of unnecessary bulky and expensive hardware that was

burdensome to most organizations as iterated by (Reddy,

2018).

In the past, there has also been a huge problem with

developing and deploying applications in production and

development environments. The same apps that work

perfectly well in development are showing glitches when they

are deployed in production. As a result of these issues, the gap

between the Development and Operation Teams has widened.

Due to these issues, the software is being delivered at a slower

pace with an increase in maintenance costs, especially in

virtualized environments.

According to (Aaron, 2019), Virtualization has always offered

great support for applications that involve the use of an

operating system’s full functionality when deploying multiple

applications on a server or having a range of operating

systems to manage. For multiple applications where a

minimizing number of servers is always a priority, containers

are always the best choice of option. Wes et al., (2018) opined

that traditional virtual machine deployments are compared to

Linux containers in terms of performance. Workloads in these

applications strain resources including memory, CPU, and

storage, and that both VMs and containers need to be tuned to

support I/O intensive applications.

Using Docker as a well-known representative of container-

based approaches, Thanh (2015) analyzed the security level of

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 44, December 2021

56

the service. An analysis of the two main areas is undertaken:

Docker's internal security, and Docker's interaction with the

Linux kernel's security features, including SELinux and

AppArmor, as they serve to harden the host system.

Shu-Sheng et al. (2015) proposed a Transform-Extract-Load

(TEL) based on virtualized data. Various business scenarios

led to the development of heterogeneous databases and

various strategies, such as query, cache, and disk

objectification. TEL was designed to handle multiple sources

of heterogeneous data migration, TELS for single-source

migration and TELQ for real-time queries. Several metrics

were used to evaluate the approach, including low response

time, large storage space, and high operational efficiency.

Raghunath and Annappa (2015) proposed a decision-maker

that predicts migration triggering. For adding and removing

VM resources, this process is performed by vertical as well as

horizontal scaling. By removing unnecessary migrations for

triggering migration, this system improved resource

utilization compared with thresholds.

Muhammad (2015) also iterated about the use of Docker in a

bioinformatics computing platform. The work aimed to

simplify software selection, automatic building, and

deployment of containers with specific software on an

existing cloud virtual server instance of a researcher.

Using agent-based virtualization, Monali and Swati (2015)

presented smart home applications using sensor networks. In

addition to flexibility, diversity promotion, and increased

manageability, this application provided flexibility. They have

also developed mathematical models for improving allocation

and scheduling of resources, measuring energy consumption,

minimizing it, and evaluating its performance for a smart

home built from a VPN.

3. METHODOLOGY
The proposed system will be implemented with a Fibonacci

sequence calculator. Creating this app requires some services

i.e., react, node.js, Redis, and Postgres. Each of these services

will be in its container, and docker will connect the services

using docker-compose, which is a command-line tool used to

connect different containers.

3.1 Docker vs Traditional Virtual Machine
An abstraction of physical hardware is a virtual machine

(VM), which transforms one server into many. Hypervisors

run virtual machines on top of servers and can be used to run

more than one virtual machine on one computer. Virtual

machines take up several gigabytes of storage space and

several minutes to boot up in addition to containing a full

version of the operating system and its dependencies. (Miika,

2018).

Figure 1 (a) The Container Architecture

Figure 1 (b) The VM Architecture

The above figures depict the architecture of a container and

VM. It is seen that Docker eliminates the need for a

hypervisor in creating new environments for application

development by using a Docker image.

Table 1 The VM vs Docker Container

 Virtual Machines Docker Containers

Isolation Process

level

Hardware Operating System

Operating System Separated Shared

uptime Long Short

Resource usage More Less

Pre-built Images Not easy to find

and manage

Readily available

Size Bigger because it

contains the whole

OS

Smaller with only

docker

Creation Time Several minutes Within seconds

Table 1 shows that the Docker container is vanilla, which

means it includes only the necessary bootable files for starting

up the system. Since these containers are vanilla flavored, it is

simple and fast to create them. Containers can be considered

lightweight VMs, but they are not VMs.

Figure 2 The Docker Architecture (Turnbull, 2014)

From figure 2 above diagram, Docker client, Docker Daemon,

and Registry are the three main components of the Docker

architecture. Docker client. Containers are Client-Server

applications, which means that Docker clients communicate

with the Docker servers which in turn execute all the tasks.

The Docker client library comes with full HTTP

request/response capabilities for use (Turnbull, 2014). Docker

client and daemon can be run on the same host or can connect

local Docker client to remote Docker Daemon which is

running on the remote host like AWS Server.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 44, December 2021

57

3.2 Kubernetes
Developers interact with Kubernetes using deployment files.

The deployment file is a configuration file that contains how

the images are to work. The master has a Jotter, that records

all its responsibilities or essentially all the activities in the

form of these deployment files. On reading the file, it seems

that the developer wants to run two copies of the worker then

the master updates its little list of responsibilities and that

there should be two copies of the worker image running, yet

none are running now. Kube-server communicates with each

of these nodes and instructs them to start up a copy of multi-

worker. Inside of each of these nodes is a copy of docker

running that reaches out to Docker hub, finds the worker

image, then copies or download that image and stores it on a

local image cache inside each of these nodes. Each node now

uses the image to create a new container. Since each of these

has started up a copy of the worker, the master reaches back

to each one of these nodes and asks for a status update. Then

it checks the little list of activities as shown in figure 3.4 and

confirms that two copies of multi-worker are now running.

The same step is applicable for each of the containers. By

keeping track of the current status of all the different nodes

within the cluster, and making sure they are functioning

correctly, the Kube API server program maintains the overall

status of the cluster.

3.3 The Fibonacci Calculator Architecture

Figure 3 Fibonacci Calculator Architecture

When a user enters a number to the react application, the react

application will make an ajax request to the express server to

calculate a Fibonacci number, which will be stored in

Postgres. (Which has a permanent list of all the indexes that

have ever been submitted to the app), While the express

server does that, it saves that index to the Redis database.

When a new number shows up inside of the Redis database, it

takes up a separate backend node.js process which is referred

to as the worker process. Each time a new index appears in

Redis, the worker process accesses it, then pulls out that

index, the worker will calculate its Fibonacci value. It takes

that calculated value and puts it back into Redis, in this way,

react can request it and it will eventually appear on the screen.

To achieve this, multiple Dockerfiles will be created, then

docker-compose will be used to connect them.

3.4 Environmental Setup
Docker engine needs to be installed locally on the computer to

be used. Docker can be downloaded from the official

website(docker.com). Also, an Integrated Development

Environment (IDE) such as vscode is required.

3.4.1 Creating the Source Code
To get started, a new folder called complex will be created,

this folder comprises all the source code required to build this

application. After creating the source code, then docker will

be used to dockerize each of the services.

3.4.2. Dockerizing the Services
Inside the complex directory, there are the client, server, and

worker folders and each of these folders represent the React

Server, Express API, and the worker process respectively. The

next step is adding docker containers to each of these

applications so that it can start each of them up inside of a

development environment. Dockerfiles for the re-act project,

Express API, and the worker process will be created. In the

project files, inside of each of those directories will have a

similar Dockerfile workflow since each one of these projects

will have a package.json file that records all the dependencies

of the project. Fig 4 depicts a dockerfile template.

Figure 4 Docker File Template.

3.5 The Proposed System Architecture
The proposed system is a 2-tier architecture that comprises of

Fibonacci sequence Docker and Kubernetes workflow. The

Fibonacci sequence calculator contains different services,

each on its folder. The client folder contains the react

application, the worker folder includes the function for the

Fibonacci calculator, the express folder comprises of

express.js service, and Nginx consists of the Nginx web

server. Each folder also has a Dockerfile which is essentially

a plain text file that has a couple of lines of configuration

placed inside it. This configuration defines how a container

should behave. The Docker daemon also known as the docker

server, allows developers to communicate with docker

through the command-line interface (CLI). The Docker

compose is a command-line interface tool that runs multiple

containers. Docker-compose builds each container and pushes

them to the docker hub which is a repository of free public

images that can be downloaded and run on any computer.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 44, December 2021

58

Fig 5: The Proposed System Architecture

4. RESULT AND DISCUSSION
The system had been designed in such a way that to migrate

from a running application with Docker Compose to

Kubernetes, this will aid the developers to scale their

application and make it resilient so that deployments and bugs

do not cause downtime. To interact with the Kubernetes

cluster, developers make use of a program called Kubectl

which is used to interact with a Kubernetes cluster in general

and manage what all the different nodes are doing and what

different containers they are running. Config files are made

for the worker, express, and server image. Another

configuration file is created which handles networking setup

and makes sure that the container that is created with the first

configuration file will be exposed and available to the outside

world. The configuration files which have been written would

be put together and fed into the Kubectl command-line tool.

When passed into Kubectl, it will interpret both files and

create two objects out of each file.

4.1 Deploying the application
The configuration files have been written and are ready to be

loaded into the Kubernetes cluster and try to access a running

container. The Kubectl command-line tool is used to perform

this. The command is the “Apply” command and then the

name of a configuration file. When creating the virtual

machine on the computer, the IP address that was assigned to

the virtual machine on the computer must be known so that it

can be accessed from the web browser. To get this IP address,

the command minikube IP will be run on the terminal, which

will print out the IP address of that virtual machine. After

getting the IP address, then map it to the node port.

Figure 6 Application running in Kubernetes Cluster

4.2 Performance evaluation
The evaluation of Hyper-V VM and Docker was performed.

Both were tasked with running a Fibonacci Sequence

Calculator. During the evaluation, the following areas were

assessed: computation time, CPU performance, memory

throughput, and storage reads/writes. The two-virtualization

technology, Docker, and VM were tested in the same

environment and the same condition with the following

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 44, December 2021

59

specifications core i5 processor at 2.7 GHz at a total of 2

cores and 8 GB RAM on Windows 10 O.S for uniformity and

consistency.

4.2.1 Time of Computation
A computation time, also referred to as running time, is the

time spent performing the execution of the Fibonacci series

calculator that was tested on the VM and Docker. These

range from the start-up time and the time it takes for the

execution of the app to be calculated. The calculator was run

at five different times and the average time was computed.

Table 2. Run Time

Virtualization Computation Time (sec) Avg

Docker 53 54 52 51 50 52

Virtual Machine 97 95 97 96 95 96

Figure 7 Time of Computation

Table 2 and figure 7 show that Docker takes less time (55sec)

to load and compute than the VM (96 sec).

4.2.2 Memory Consumption
Table 3. Memory Consumption

Virtualization In Percentage Avg

Docker CPU 34 32 32 34 33 33

RAM 58 58 53 54 52 55

VM CPU 53 52 50 47 48 50

RAM 45 45 43 44 43 44

Figure 8 Memory Consumption

This section measures how much memory and ram is

consumed by both virtualization technologies that is Docker

and VM. Machine. Fig. 8 represents memory consumption

and CPU utilization (in percentage). It is seen that Docker

consumes less CPU at (33%) but more RAM (55%) than VM

whose CPU performance is (50%) and RAM consumption at

(44%). The reason for the greater Ram Consumption of the

Docker is because the number of services that were used to

build the Fibonacci Calculator on Docker is more (about 5)

than that of the VM (just 1).

4.2.3 Disk I/O Performance
Disk I/O performance is essential to test the read and write

operational speed of Docker and VM. When building an

image in docker, it is required to copy(read) files (such as

source code for the project) and folders (such as pictures,

etc.), from the host machine to the container, also when

saving(writing) images to docker hub. This also applies to

VM, when sharing images from one server to another. Table 4

and Figure 9 show the comparison between both

Virtualization technologies. The Disk I/O performance (read

and write operation) of Docker is quite higher at (23) than the

VM at (6).

Table 4. Disk I/O Performance

Virtualization Read/write Performance Avg

Docker Read 25 25 23 21 21 23

Write 7 7 6 5 5 6

VM Read 2 2 2 2 2 2

write 4 3 3 3 2 3

Figure 9 Disk I/O Performance (MBPS)

5. CONCLUSION
This application made use of several services, each of these

services was running in a different container. Docker connects

these containers using docker-compose. This application is

further deployed to Kubernetes. Kubernetes helps to scale by

creating multiple instances of the containers and handling

each request independently as traffic requests increases. It is

also performing systemic checks to ensure all containers are

working as expected, if not, it “self-heals” them and helps to

automate the containers. Docker containers have simplified

the development of applications across all environments,

including development, testing, and production. This study

also concludes that when Kubernetes is utilized to deploy an

application, there is a significant decrease in downtime when

scaling up the number of containers. With these,

Organizations and developers will benefit more from these

new techniques by being able to resolve issues more efficiently

and quickly. Developing, running, and scaling up applications

in different environments will be an easy task without any

stress.

6. REFERENCES
[1] Alexander S. Gillis, 2020; What are containers

(container-based virtualization or containerization) <

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 44, December 2021

60

https://searchitoperations.techtarget.com/definition/conta

iner-containerization-or-container-based-virtualization.>.

[2] Alowolodu Olufunso Dayo, Alese Boniface Kayode,

Adetunmbi Olusola Adebayo (2016); Secured Cloud

Application Platform using Elliptic Curve Cryptography,

Proceeding of the World Congress on Engineering and

Computer Science (WCECS 2016)

[3] Alowolodu Olufunso Dayo (2019); Cloud-Based

Platform for Student Developers (case study: Computer

Science Department, FUTA), American Journal of

Information Science and Computer Engineering, Vol 5,

No. 2, pp 29-37

[4] Aaron Strong, 2019, Containerization Vs Virtualization,

What’s the Difference? https://www.burwood.com/blog-

archive/containerization-vs-virtualization

[5] Miika Moilanen, 2018 Deploying an application using

Docker and Kubernetes.

Moilanen_Miika_Opinnaytetyo.pdf (Theseus. fi)

[6] Kristof, 2018, Fix Observability format to be consistent

with other items Kubernetes/website@9eb90fd · GitHub

[7] Muhamad Fitra Kacamarga, Bens Pardamean, and Hari

Wijaya, Lightweight Virtualization in Cloud Computing

for Research, 2015, Bioinformatics & Data Science

Research Center, Bina Nusantara University Jakarta,

Indonesia.

[8] Reddy Srinath Meadusani (2018); Virtualization Using

Docker Containers: For Reproducible Environments and

Containerized Applications" (2018). Culminating

Projects in Information Assurance. 50.

https://repository.stcloudstate.edu/msia_etds/50

[9] Wes Feller 2018, An updated Performance Comparison

of Virtual Machines and Linux Containers, An IBM

Research Report.

[10] Thanh Bui 2015, Analysis of Docker Survey (16) (PDF)

Analysis of Docker Security (researchgate.net)

[9] Shu-Sheng Guo 2015 A new ETL Approach based on

Data Virtualization J. Comput. Sci. Technol. 30, 311–323

(2015). https://doi.org/10.1007/s11390-015-1524-3

[11] Raman Raghunath and Annappa (2015), Virtual Machine

Migration Triggering using Application Workload

Prediction

[12] Monali and Swati Nikam (2015), A Review Paper On

Virtualization Technology In Cloud Big Data Abstract

[13] Turnbull J., 2014 “The Docker Book,”

https://dockerbook.com/.

IJCATM : www.ijcaonline.org

