
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 45, December 2021

8

An Analytical Study of Cognitive Code-Level Object-

Oriented Complexity Measures

Dilshan I. De Silva
Sri Lanka Institute of Information

Technology
Malabe, Sri Lanka

Saluka R. Kodituwakku
University of Peradeniya

Peradeniya
Sri Lanka

Amalka J. Pinidiyaarachchi
University of Peradeniya

Peradeniya
Sri Lanka

ABSTRACT

Although several surveys on complexity measures proposed

for the object-oriented approach can be found in the literature,

a survey specific to cognitive code-level object-oriented

complexity measures is yet to be published. Thus, a survey

was conducted to make the reader aware of the cognitive

code-level object-oriented complexity measures proposed

since inception. Along with their calculations, the paper

presents the existing cognitive code-level complexity

measures in chronological order.In addition, it classifies the

cognitive code-level measures based on the techniques

adopted to test the validity, program component in which

complexity is derived, adopted factors, the metrics used to

ascertain the complexity created by each factor, capability to

report program complexity as a combined value of all the

considered factors, and how the program complexity value is

expressed. Furthermore, the article presents the key findings

uncovered from the survey and areas for development.

Keywords

Software complexity, cognitive complexity, object-oriented

approach, cognitive code-level complexity measures, survey

1. INTRODUCTION
As with all the objects in the physical world, complexity is

apparent in software as well. Software complexity

measurement has now become an essential task that should be

practiced by every organization to ensure that the developed

software is ofhigh quality. IEEE defines software complexity

as “the degree to which a system or component has a design

or implementation that is difficult to understand and

verify”[1].

The object-oriented (OO) method is believed to be more

effective at regulating software complexity than the traditional

procedure-oriented approach. It also supports improved

quality, fast developments, cost decreases, and easier

maintenance [2]. Thus, the usage of the OO approach for the

development of software has become prevalent. This has led

to a rise in the introduction of complexity measures for the

OO approach. Based on the proposed artifact, the existing OO

complexity measures can be classified into two groups:

design-level and code-level measures. However, code-level

measures are more effective in predicting the maintenance

effort [3] and fault-prone modules [4] than the design-level

measures. Furthermore, source code is regarded as the easiest

artifact to compute complexity [5]. Hence, most OO measures

have been proposedbased on software code.

With the introduction of cognitive informatics for the

measurement of software complexity, proposing code-level

OO measures based on the cognitive approach has become a

popular method for measuring complexity as it computes the

mental effort required to read and understand a software

program.

The literature contains several surveys on existing OO

complexity measures [6], [7], [8]. However, a survey specific

to cognitive code-level (CCL) OO complexity measures is yet

to be published. Thus, a survey was conducted to make the

reader aware of the CCL OO complexity measures

proposedsince inception.

Along with their calculations, the paper presents the existing

CCL OO complexity measures in chronological order.The

study also presents the count and type of factors considered by

the studied CCL complexity measures. Furthermore, the paper

categorizes the existing CCL measures based on:

 The techniquesthat were adopted to test the validity of the

measures.

 The program component in which complexity is derived.

 The adopted factors

 The metrics used to ascertain the complexity created by

each factor.

 The capability to report program complexity as a combined

value of all theconsidered factors.

 How the program complexity value is expressed

Moreover, the article provides the following:

 The occurrence percentage of the factors used by the

existing CCL complexity measures.

 The factsuncovered from the survey

 The areas for development

The rest of the paper is structured as follows. Section 2

presents the methods of the study. Section 3 provides a

comprehensive description of the calculation approaches of

the existing CCL OO complexity measures in chronological

order. Section 4 discusses the results of the survey. Finally,

Section 5 concludes the paper by summarizing the key

findings uncoveredfrom the survey and suggesting areas for

development.

2. METHODS
First, the existing CCL complexity measures were identified.

Next, a further investigation was conducted on

theuncoveredmeasures to find answers for the following:

 Who proposed the measure, and when was itproposed?

 What type of factors has the measure used, and what

approaches has it used to determine the complexity

introduced by each factor?

 Can the measure report the complexity of a program as a

combined value of all its factors?

 What is the bottom-most level the measure can calculate

values: system, class, method, variable, or program

statement?

 Isthe complexity of a program expressedas an integer

value?

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 45, December 2021

9

 What techniques have been adopted to test the soundness of

the measure?

The gathered data was then subjected to a thorough study to

find answers for the following:

 What is the first CCL measure to be introduced?

 Have all the CCL measures been tested for their validity?

 What are the various validation techniques adopted by the

CCL measures, and what CCL measure adopted the highest

number of validation techniques?

 At which levels have complexity been calculated by the

existing CCL measures, and what metrics have been

utilized forderiving the complexity of each level?

 What CCL measures are able to report the complexity of a

program as a combined value of all its factors, and at which

level do they compute complexity?

 What is the total count of factors that have been taken into

account by the CCL measures?

 As a percentage, how much has each factor been taken into

account?

 What is the most considered factor by the studied CCL

measures?

 WhichCCL measure has adopted the highest number of

factors?

 What CCL measures can express program complexity as an

integer value?

Finally, existing CCL measureswere classified into several

categories with the intention of making the finding of the most

appropriate CCL measure(s) for a given circumstance quicker

and easier.

3. CCL OOCOMPLEXITY MEASURES
The first CCL measure to be proposed is the Total Complexity

of OO Software Product (TCOOSP) [9]. Its value is computed

as a summation of the values derived for Cognitive

Complexity of Inheritance (CCI), Probability of Use of

Instance Variable (PUIV), Cognitive Information Complexity

of Main Function (CICMF), and Cognitive Information

Complexity Metric of Classes (CICMC) metrics.

The CCI value of a program is calculatedas:

𝐶𝐶𝐼 = − 𝑝/𝑞 log 𝑝/𝑞 𝑟
ℎ
𝑟 =1 (1)

Where:

h = Total objects in the inheritance tree

p = Count of messages sent or received by an object

q = Total messages interchanged within the inheritance tree

The PUIV value for a method is computed by dividing the

instance variables used by a method from the total instance

variables of the class. The PUIV value of a programis derived

as the addition of total PUIV values computed for all the

methods in that program.

While the CICMF value is computed based on the Cognitive

Information Complexity Measure (CICM) [10] value derived

for the main method, the summation of the CICM values

calculated for all the other methods in a program provides the

value of the CICMS metric.The CICM value of a method is

calculated as a multiplication of the values derived for the

Cognitive Weight (CW) and Weighted Information Count

(WIC) metrics. The CW value is computed based on the

computation technique suggested in [11]. On the other hand,

the WIC value of a methodP with n number of lines of code

(LOC) is derived as:

𝑊𝐼𝐶𝑝 = 𝑊𝐼𝐶𝐿𝑖
𝑛
𝑖=1 (2)

Where:

WICL = Weighted information count of a line of code

The WICL value is derived as:

𝑊𝐼𝐶𝐿𝑘 = 𝐼𝐶𝑘 𝑛 − 𝑘 (3)

Where:

WICLk=WIC value of the kth line of method P

ICk= The total operators and identifiers in the kth line of

method P

Thesecond CCL measure to be introduced is the Class

Complexity (CC) measure [12]. It computes the complexity of

a program (PC) as a summation of the complexity values

calculated for all the methods in that program. The complexity

of a method (MC) is computed based on the computation

technique suggested in [11].

The third CCL measure to be introduced is the Weighted

Class Complexity (WCC) measure[13]. It computes the

complexity of a program (PC) as a summation of the

complexity values calculated for all the classes in that

program. The complexity of a class (CC) is obtained as a

summation of the values derived for Attribute Complexity

(AC) and Method Complexity (MC) metrics. The addition of

all the attributes in a class provides values for the AC metric.

On the other hand, the value of the MC metric is computed

based on the computation technique suggested in [11].

The fourth CCL measure to be introduced is the metric suite

suggested by Gupta and Chhabra[14]. It comprised nine

metrics:Object Definition Cognitive Spatial Complexity

(ODCSC), Object Member Usage Cognitive Spatial

Complexity (OMUCSC), Object Member Cognitive Spatial

Complexity (OMCSC), Object Cognitive Spatial Complexity

(OCSC), Attribute Cognitive Spatial Complexity (ACSC),

Class Attribute Cognitive Spatial Complexity (CACSC),

Method Cognitive Spatial Complexity (MCSC), Class Method

Cognitive Spatial Complexity (CMCSC), and Class Cognitive

Spatial Complexity (CCSC).

The ODCSC value of an object m that is defined at line

number x is computed as:

 𝑂𝐷𝐶𝑆𝐶 = 𝑊𝑥 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚, 𝑥
(4)

Where:

Wx = Cognitive weight of the BCS that resides at line number x

Distance (m,x) = The absolute difference in LOC between line

x and the line that contains the class declaration of object m

The OMUCSC value of an object member n that is presently

used at line number x is computed as:

 𝑂𝑀𝑈𝐶𝑆𝐶 = 𝑊𝑥 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑛, 𝑥 (5)

Where:

Wx = Cognitive weight of the BCS that resides at line number x

Distance (n,x) = The absolute difference in LOC between line

x and the line in which the object member n has been defined

in the corresponding class

The OMCSC value of an object is computed as an average of

the OMUCSC values derived for all its members. The

addition of the ODCSC and OMCSC values of an object

provides the OCSC value of that object.

The ACSC value of an attribute q that is being used at line

number x is computed as:

𝐴𝐶𝑆𝐶 = 𝑊𝑥 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑞, 𝑥 (6)

Where:

Wx = Cognitive weight of the BCS that resides at line number x

Distance (q, x) = The absolute difference in LOC between line

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 45, December 2021

10

x and the line in which attribute q was previously used or

defined

The CACSC value of a class is computed as an average of the

ACSC values derived for all its attributes. The MCSC value

of a method j that is presently being called or used at line

number x is computed as:

𝑀𝐶𝑆𝐶 = 𝑊𝑥 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑗, 𝑥 (7)

Where:

Wx = Cognitive weight of the BCS that resides at line number x

Distance (j,x) = The absolute difference in LOC between line

x and the line in which method j has been defined

The CMCSC value of a class is computed as an average of the

MCSC values derived for all the methods of that class. The

addition of the CACSC and CMCSC values provides the

CCSC value of a class.

Even though the WCC [13] measure was able to compute the

complexity of an OO program based on the BCSs structures

of each method and the data members of each class, it was

unable to capture the inheritance relationship between classes.

Hence, the Cognitive Code Complexity (CCC) measure was

proposed [15].The CCC measure first checks how the classes

of a program are connected to capture the inheritance

complexity. If there is a parent-child relationship between the

classes, it computes the complexity of a program (PC) by

multiplying the class complexity (CC) values derived for the

parent and child classes. However, if the relationship between

two classes is not a parent-child relationship, the PC value is

determined as a summation of the CC values derived for those

two classes.The CC value of a class is obtainedas a

summation of the complexity values computed for all the

methods of that class. The CCC measure uses the computation

technique suggested in [11] to compute the complexity of a

method.

Chhillar and Bhasin (CB) believed that software complexity is

a multidimensional attribute, and hence it cannot be measured

by considering a single factor [16]. With this in mind, they

proposed the Weighted Composite Complexity (CB WCC)

measure [16]. It computes the complexity of a program based

on the values derived for the following metrics:

 Size (SZ) metric: The size of an executable statement is

computed based on the number of operands, operators,

methods, and strings in that statement.

 Type of control structures (TCS) metric: A weight of zero

is assigned to sequential statements. Weights of 1, 2, and n

are assigned to conditional control structures, iterative

control structures, and a switch statement with n number of

cases.

 Nesting level of control structures (NLCS) metric: A

weight of zero is assigned to sequential statements. A

weight of1is allocated for statements at the outermost level

of nesting, 2for statements at the next inner level of nesting.

Similarly, the weight allocation is increased by one for each

level of nesting.

 Inheritance level (IL) metric: A weight of zero is allocated

to the executable statements that reside in the base class, 1

to the executable statements at the first derived class, 2 to

the statements at the next derived class. Similarly, the

weight allocation is increased by one for each derived class.

The Weighted Complexity of an Executable Statement

(WCES) is derived as:

 𝑊𝐶𝐸𝑆𝑘 = 𝑆𝑍𝑘 × 𝑇𝑊𝑘 (8)

Where:

WCESk= Weighted complexity of the kth executable

statement

SZk = The size of the kth executable statement

TWk = Total weight of the kth executable statement

The summation of the values computed for the NLCS, TCS,

and IL metrics provides the value of the TW metric. The value

for the Total Weighted Complexity (TWC) metric is derivedas

the addition of the WCES values computed for all the

executable statements in a program.

The Code Complexity (CoCo) measure [17]was created to

address several aspects that werenot considered by the CK

metrics suite [18]. Like the CCC measure [15], the CoCo

measure first checks how the classes of a program are

connectedto capture the inheritance complexity. If there is a

parent-child relationship between the classes, it computes the

complexity of a program (PC) by multiplying the class

complexity (CC) values derived for the parent and child

classes. However, if the relationship between two classes is

not a parent-child relationship, the PC value is determined as

a summation of the CC values derived for those two classes.

The CC value of a class is obtained as a summation of the

values derived for Attribute Complexity (AC) and Method

Complexity (MC) metrics. The addition of all the attributes in

a class provides values for the AC metric. On the other hand,

the value of the MC metric is computed based on the

computation technique suggested in [11].

In 2012, the Cognitive Weighted Coupling Between Objects

(CWCBO) measure was introduced [19]. To derive the

complexity of a program (PC), it considers the occurrences

and weights of five coupling types.The five coupling types

and the weights allocated to them are presented in Table 1.

The complexity introduced by a particular coupling type is

obtainedby multiplying the weight allocated for that coupling

type by the number of times it occurs in the program.

Accordingly, the value of the PC metric is computed as a

summation of the complexity values derived for the five

coupling types.

Table 1. Weights allocated for the coupling

typesconsidered under the CWCBO measure [19]

Coupling Type Weight

Control Coupling 1

Global Data Coupling 1

Internal Data Coupling 2

Data Coupling 3

Lexical Content Coupling 4

By suggestingmodifications to the cognitive weights

introduced in [11], Crasso et al. proposed their complexity

measure in 2016 [20]. As observable from Table 2,they

further divided the weight allocated fora function invocation

into four types.The value of the Wm variable in Table 2 is

computed based on the cognitive weight calculation approach

introduced in [11]. On the other hand, based on the person

who computes complexity, the weight of a call to an abstract

method is obtained either as the summation, average,

minimum, or maximum weight of the overriding methods.

The complexity of a method (MC) with k number of linear

BCS is calculated based on(9). The Weighted Class

Complexity (WCC) of a class with y number of methods is

calculated based on (11). Finally, the Code Complexity (CC)

of a program with d levels of hierarchical depth and level b

consisting of c number of classes is computed based on (13).

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 45, December 2021

11

𝑀𝐶 = log2 1 + 1 + 𝑀𝐶′ 𝑀𝐵𝐶𝑆 (9)

Where:

𝑀𝐶′ 𝑀𝐵𝐶𝑆 =
𝑊 𝐵𝐶𝑆𝑗 ∗ 𝑀𝐶′ 𝑖𝑛𝑛𝑒𝑟 𝐵𝐶𝑆 𝐵𝐶𝑆𝑗

𝑊 𝐵𝐶𝑆𝑗

 𝑘
𝑗=1 (10)

𝑊𝐶𝐶 = log2 2 + 𝑊𝐶𝐶′ (11)

𝑊𝐶𝐶′ = 𝐴𝐶 + 𝑀𝐶𝑖
′𝑦

𝑖=1 (12)

Where:

AC = Total global attributes in the class

𝐶𝐶 = log2 1 + 𝑊𝐶𝐶′𝑏ℎ
′𝑐

ℎ=1 𝑑
𝑏=1 (13)

Table 2. Weights allocated for the function invocations[20]

Type of Function Invocation Weight

Call to a local method 2

Call to a method of an external library 3

Call to a non-local method m 2 + Wm

Call to an abstract method y, for which y0, .., yn

override y
I + f(Wyx)

Byproposing enhancements to the CB WCC measure [16], the

MCB measure [21] was proposed in 2018. Accordingly, in

addition to taking into account the complexity introduced by

the size, nesting level and type of control structures,

andinheritance factors, the MCB measure takes into account

the complexities introduced by the exceptions, recursion,

compound conditions, pointers, dynamic memory access,

references, and threads factors.The MCB measure assignsa

value of 1 to the throw keyword under the SZ metric and a

weight of 1 to the first occurrence of each catch statement

under the TCS metricto determine the complexity introduced

by the exceptions factor.To compute the recursion

complexity, initially, the WCES value of a program is

computedbased on (8). Then, the summation of theWCES

values belonging to the executable statements of the recursive

method(s) is obtained. Finally, the complexity of a program

with recursive methods is calculated as a summation of the

values derived for the first two steps.A weight of 1is assigned

to each logical operator thatcombines two or more

conditionsunder the TCS metric to determine the complexity

introduced by the compound conditions.The complexity

introduced by the dynamic memory access, pointers, and

references factors isderivedby assigninga value of 2 under the

SZ metric to new and delete reserve words and dereference

(*) and reference (&) operators. Avalue of 2 is allocated to the

executable statements with thread invocationsunder the SZ

metric to derive the complexity introduced by threads. The

value of the Total Weighted Complexity (TWC) metric is

determined as an addition of the WCES values obtained for all

the executable statements in a program.

4. RESULTS AND DISCUSSION
Excluding the CB WCC [16] and DSAN MCB [21] measures,

all the other CCL measures compute the complexity of BCS

based on the cognitive weights proposed in [11]. In fact, all

those measures calculate the complexity due to BCS based on

the same calculation approach suggested in [11], except for

the GC [14] and CMZMP CC [20] measures. The AA

CWCBO measure is the only CCL measure to be proposed

based on the cognitive weight concept without considering the

weights of the TCS and NLCS factors.

As depicted in Table 3, the validation approaches used by the

CCL measures can be divided into three main types:

theoretical, empirical, and comparative study.In addition, the

following canbe observed from Table 3:

 Except for the KM TCOOSP [9] measure, all the other

CCL measures have been validated at least once, either

based on the theoretical or empirical approaches or via a

comparative study.

 The theoretical validation of the CCL measures has been

performed based on the frameworks proposed by Weyuker

[22] and Briand et al. [23].

 The MA WCC [13] measure is the one to be validated with

the most number of validation approaches.

 The MA WCC [13], MAK CCC [15], and AA CWCBO

[19] measures are the only measures to be validated

theoretically, empirically, and via a case study.

 The DSAN MCB [21] measure is the only CCL measure to

be validated based on expert opinion.

Based on the program component in which the complexity is

derived, the metrics of the CCL measures can be classified

into several levels: application, class, method, variable, and

program statement. As visible from Table 4, the lowest level

that most of the CCL measures are able to compute values is

the method level. However, the GC measure is even capable

of calculating values at the variable level. But, the CB WCC

[16] and DSAN MCB [21] measures can compute values at

the program statement level. Thus, they are the only CCL

measures to be blessed with this distinctive ability.

The CCL measures have revolved around twelve factors.

Table 5 depicts the total number of factors and the factor

types considered by each CCL measure studied for the survey.

The DSAN MCB [21] measure is the one to have considered

the highest number of factors. In fact, it is the only CCL

measure to consider compound conditions, pointers,

references, threads, and DMA factors. Table 6 provides

various metrics that could be used to compute the

complexities of the twelve factors.

As observable from Figure 1, with an occurrence percentage

of 20%, coupling is the most considered factor by the CCL

measures. Inheritance, size, TCS, and NLCS are the other

factors to have obtained a percentage value of more than 10%.

Thus, it is evident that most of the CCL measures have

revolved around coupling, inheritance, size, TCS, and NLCS

factors. Out of those five factors, inheritance is the only factor

that is unique to OO programming.

Except for the GC [14] measure, all the other CCL measures

are capable of providing program complexity as a combined

value of all the factors considered by them.Table 7 presents

the lowest level that the CCL measures compute complexity

based on all their factors. As visible from Table 7, most of the

CCL measures provide a single complexity value based on all

their factors, only at the application level. However, there

exist few measures that report a single complexity value at the

class and methods levels. But, only the CB WCC [16]

measure has the ability to provide a single complexity value at

the program statement level based on all its factors.

As visible from Table 8, the majority of the CCL measures

report program complexity as an integer value. However, few

of them derive complexity as a decimal value.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 45, December 2021

12

Table 3. Categorization of CCL measures based on the

techniques adopted to test the validity

Measure

Theoretical Empirical

C
o

m
p

a
ra

ti
v
e

S
tu

d
y

W
ey

u
k

er

B
ri

a
n

d
 e

t
a
l

E
x

p
er

t

O
p

in
io

n

C
a

se
 S

tu
d

y

KM TCOOSP measure - - - - -

MCC measure ✓ ✓ - - -

MA WCC measure ✓ ✓ - ✓ ✓

GC measure ✓ ✓ - - ✓

MAK CCC measure - ✓ - ✓ ✓

CB WCC measure - - - ✓ ✓

MKCMZ CoCo measure - - - ✓ -

AA CWCBO measure ✓ - - ✓ ✓

CMZMP CC measure - - - ✓ ✓

DSAN MCB measure - - ✓ ✓ ✓

Fig. 1: Percentage values of the factors used by the CCL

measures

Table 4. Categorization of CCL measures based on the program component in which complexity is derived and the metrics

used to compute the complexity of each level

Measure
Application

Level
Class Level Method Level

Variable

Level
Program Statement Level

KM TCOOSP measure CCI, CICMC - PUIV, CICMF - -

MCC measure PC - MC - -

MA WCC measure PC AC, CC MC - -

GC measure -
ODCSC, OMUCSC, OMCSC,

OCSC, CACSC, CMCSC, CCSC
MCSC ACSC -

MAK CCC measure PC CC - - -

CB WCC measure TWC - - - SZ, NLCS, TCS, IL, WCES

MKCMZ CoCo measure PC AC, CC MC - -

AA CWCBO measure PC - - - -

CMZMP CC measure CC AC, WCC MC - -

DSAN MCB measure TWC - CR - SZ, NLCS, TCS, IL, WCES

Table 5. Factor count and factor types of CCL measures used for the survey

Measure
Factor

Count

Short

Name
Factor Types

KM TCOOSP measure 4 M1 Inheritance, size, TCS, NLCS

MCC measure 3 M2 Coupling, TCS, NLCS

MA WCC measure 4 M3 Coupling, size, TCS, NLCS

GC measure 2 M4 Size, TCS

MAK CCC measure 5 M5 Coupling, inheritance, TCS, NLCS, recursion

CB WCC measure 4 M6 Inheritance, size, TCS, NLCS

MKCMZ CoCo measure 5 M7 Coupling, inheritance, size, TCS, NLCS

AA CWCBO measure 1 M8 Coupling

CMZMP CC measure 6 M9 Coupling, inheritance, size, TCS, NLCS, exceptions

DSAN MCB measure 11 M10
Inheritance, size, TCS, NLCS, recursion, exceptions, threads, compound conditions, DMA,

references, pointers

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 45, December 2021

13

Table 6. Categorization of CCL measures based on the metrics used to ascertain the complexity created by each factor

M
ea

su
re

C
o

u
p

li
n

g

In
h

er
it

a
n

ce

S
iz

e

T
C

S

N
L

C
S

E
x

ce
p

ti
o
n

s

R
ec

u
rs

io
n

C
o

m
p

o
u

n
d

C
o

n
d

it
io

n
s

D
M

A

P
o
in

te
rs

R
ef

er
e
n

ce
s

T
h

re
a

d
s

M1 - CCI CICMC, CICMF, PUIV CICMC, CICMF CICMC, CICMF - - - - - - -

M2 MC, PC - - MC, PC MC, PC - - - - - - -

M3 MC, CC, PC - AC, CC, PC MC, CC, PC MC, CC, PC - - - - - - -

M4 - -

ODCSC, OMUCSC,

OMCSC, OCSC, ACSC

CACSC, MCSC,

CMCSC, CCSC

ODCSC, OMUCSC,

OMCSC, OCSC,

ACSC, CACSC,

MCSC, MCSC,

CCSC

- - - - - - - -

M5 CC, PC PC - CC, PC CC, PC - CC, PC - - - - -

M6 - WCPS WCPS WCPS WCPS - - - - - - -

M7 MC, CC, PC PC AC, CC, PC MC, CC, PC MC, CC, PC - - - - - - -

M8 PC - - - - - - - - - - -

M9 MC CCI AC MC MC MC - - - - - -

M10 - WCPS WCPS WCPS WCPS WCPS CR WCPS WCPS WCPS WCPS WCPS

Table 7. CCL measures that report the complexity of a

program as a combined value of all the considered factors

and the bottom-most level that they compute complexity

Measure

The bottom-most level complexity is

computed as a combined value of all

the considered factors

KM TCOOSP measure Application

MCC measure Method

MA WCC measure Class

MAK CCC measure Application

CB WCC measure Program statement

MKCMZ CoCo measure Application

AA CWCBO measure Application

CMZMP CC measure Application

DSAN MCB measure Method

Table 8. Categorization of CCL measures based on how

complexity is expressed

Measures that report the

complexity as a decimal value

Measures that report the

complexity as a integer value

KM TCOOSP measure MCC measure

GC measure MA WCC measure

CMZMP CC measure MAK CCC measure

 CB WCC measure

 MKCMZ CoCo measure

 AA CWCBO measure

 DSAN MCB measure

5. CONCLUSION
This paper provides a comprehensive overview of the CCL

OO complexity measures proposed since inception.The key

findingsuncovered from the survey are:

 The KM TCOOSP [9] measure is the only CCL measure

not to be validated.

 Except for the CB WCC [16] and DSAN MCB [21]

measures, all the other CCL measures compute the

complexityofBCS based on the cognitive weights proposed

in [11].

 The theoretical validation of the CCL measures has been

performed based on the frameworks proposed by Weyuker

[22] and Briand et al. [23].

 The CCL measure to be validated with the most number of

validation approaches is the MA WCC [13] measure.

 The MA WCC [13], MAK CCC [15], and AA CWCBO

[19] measures are the only measures to be validated

theoretically, empirically, and via a case study.

 The DSAN MCB [21] measure is the only CCL measure to

be validated based on expert opinion.

 A total of twelve factors have been adopted by the existing

CCL measures to compute program complexity.

 A majority of the CCL complexity measures have revolved

around coupling, inheritance, size, TBCS, and NLCS

factors, with the most used factor being coupling.

 The CCL complexity measure to consider the highest

number of factors is the DSAN MCB [21] measure.

 Except for the GC [14] measure, all the other CCL

measures are able to provide the complexity of a program

as a combined value of all the considered factors.

As an area for development, there exists a compelling need to

validate the existing CCLcomplexity measures by assessing

their relationship with other quality attributes.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 45, December 2021

14

6. REFERENCES
[1] IEEE Computer Society, IEEE Standard for Software

Quality Metrics Methodology, IEEE Std.1061-1998, Dec.

1998.

[2] D. A. Taylor, Object-Oriented Technology: A Manager's

Guide,2nd ed., Addison-Wesley Professional, Sep. 1997.

[3] W. Li and S. Henry, “Maintenance metrics for the object-

oriented paradigm,” in Proc. First International Software

Metrics Symposium, Baltimore, MD, USA, May 1993,

pp. 52-60.

[4] Y. Jiang, B. Cukic, T. Menzies, N. Bartlow, “Comparing

Design and Code Metrics for Quality Prediction,” in Proc.

Fourth International Workshop on Predictor Models in

Software Engineering, Leipzig, Germany, May 2008, pp. 11-

18.

[5] A. Oram, G. Wilson, Making Software: What Really

Works, and Why We Believe It, 1st ed. O’Reilly Media,

Inc., USA, Oct. 2010, pp. 125.

[6] M. Sharma, N. S. Gill, and S. Sikka, "Survey of object-

oriented metrics: focusing on validation and formal

specification," ACM SIGSOFT Software Engineering

Notes, vol. 37, no. 6, pp. 1-5, Nov. 2012.

[7] B. M. Goel and P. K. Bhatia, "An overview of various

object oriented metrics," International Journal of

Information Technology & Systems, vol. 2, no. 1, pp. 18-

27, Jan. 2013.

[8] K. P. Srinivasan and T. Devi, "A comprehensive review

and analysis on object-oriented software metrics in

software measurement," International Journal of

Computer Science and Engineering, vol. 6, no. 7, pp.

247-261, July 2014.

[9] D. S. Kushwaha and A. K. Misra, "Cognitive information

complexity measure of object-oriented software - a

practitioner's approach," in Proc. Fifth WSEAS

International Conference on Software Engineering,

Parallel and Distributed Systems, Madrid, Spain, Feb.

2006, pp. 174-179.

[10] D. S. Kushwaha and A. K. Misra, "A modified cognitive

information complexity measure of software," ACM

SIGSOFT Software Engineering Notes, vol. 31, no. 1,

pp. 1-4, Jan. 2006.

[11] J. Shao and Y. Wang, "A new measure of software

complexity based on cognitive weights," Canadian

Journal of Electrical and Computer Engineering, vol. 28,

no. 2, pp. 69-74, Apr. 2003.

[12] S. Misra, "An object oriented complexity metric based on

cognitive weights," in Proc.Sixth IEEE International

Conference on Cognitive Informatics, Aug. 2007, pp.

134-139.

[13] S. Misra and K. I. Akman, "Weighted class complexity: a

measure of complexity for object oriented system,"

Journal of Information Science and Engineering, vol. 24,

no. 6, pp. 1689-1708, Nov. 2008.

[14] V. Gupta and J. K. Chhabra, "Object-oriented cognitive-

spatial complexity measures," International Journal of

Computer Science and Engineering, vol. 3, no. 6, pp.

122-129, Mar. 2009.

[15] S. Misra, I Akman, and M Koyuncu, "An inheritance

complexity metric for object-oriented code: a cognitive

approach," Indian Academy of Sciences, vol. 36, no. 3,

pp. 317-337, June 2011.

[16] U. Chhillar and S. Bhasin, "A new weighted composite

complexity measure for object-oriented systems,"

International Journal of Information and Communication

Technology Research, vol. 1, no. 3, pp. 101-108, July

2011.

[17] S. Misra, M. Koyuncu, M. Crasso, C. Mateos, and A.

Zunino, "A suite of cognitive complexity metrics," in

Proc. Twelfth International Conference on

Computational Science and its Applications, Berlin,

Heidelberg, June 2012, pp.234-247.

[18] S. R. Chidamber and C.F. Kemerer, "A metrics suite for

object oriented design," IEEE Transactions on Software

Engineering, vol. 20, no. 6, pp. 476-493, June 1994.

[19] A. Aloysius and L. Arockiam, "Coupling complexity

metric: a cognitive approach," International Journal of

Information Technology and Computer Science, vol. 4,

no. 9, pp. 29-35, Aug. 2012.

[20] M. Crasso, C. Mateos, A. Zunino, S. Misra, and P.

Polvorín, "Assessing cognitive complexity in java-based

object-oriented systems: Metrics and tool support,"

Computing and Informatics, vol. 35, no. 3, pp. 497-527,

Nov. 2016.

[21] D. I. De Silva, S. R. Kodituwakku, A. J.

Pinidiyaarachchi, and N. Kodagoda, "Enhancement to an

OO metric: CB measure," Journal of Software, vol. 13,

no. 1, pp. 72-81, Jan. 2018.

[22] E. J. Weyuker, "Evaluating Software Complexity

Measure," IEEE Transaction on Software Engineering,

vol. 14, no. 9, pp. 1357-1365, Sep. 1988.

[23] L .C. Briand, S. Morasca, V. R. Basili, "Property based

Software Engineering Measurement," IEEE Transactions

on Software Engineering, vol. 22, no. 1, pp. 68-86, Jan.

1996.

IJCATM : www.ijcaonline.org

